| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| import ( |
| "fmt" |
| "sort" |
| ) |
| |
| const ( |
| cmpDepth = 4 |
| ) |
| |
| // cse does common-subexpression elimination on the Function. |
| // Values are just relinked, nothing is deleted. A subsequent deadcode |
| // pass is required to actually remove duplicate expressions. |
| func cse(f *Func) { |
| // Two values are equivalent if they satisfy the following definition: |
| // equivalent(v, w): |
| // v.op == w.op |
| // v.type == w.type |
| // v.aux == w.aux |
| // v.auxint == w.auxint |
| // len(v.args) == len(w.args) |
| // v.block == w.block if v.op == OpPhi |
| // equivalent(v.args[i], w.args[i]) for i in 0..len(v.args)-1 |
| |
| // The algorithm searches for a partition of f's values into |
| // equivalence classes using the above definition. |
| // It starts with a coarse partition and iteratively refines it |
| // until it reaches a fixed point. |
| |
| // Make initial coarse partitions by using a subset of the conditions above. |
| a := make([]*Value, 0, f.NumValues()) |
| auxIDs := auxmap{} |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| if auxIDs[v.Aux] == 0 { |
| auxIDs[v.Aux] = int32(len(auxIDs)) + 1 |
| } |
| if v.Type.IsMemory() { |
| continue // memory values can never cse |
| } |
| if opcodeTable[v.Op].commutative && len(v.Args) == 2 && v.Args[1].ID < v.Args[0].ID { |
| // Order the arguments of binary commutative operations. |
| v.Args[0], v.Args[1] = v.Args[1], v.Args[0] |
| } |
| a = append(a, v) |
| } |
| } |
| partition := partitionValues(a, auxIDs) |
| |
| // map from value id back to eqclass id |
| valueEqClass := make([]ID, f.NumValues()) |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| // Use negative equivalence class #s for unique values. |
| valueEqClass[v.ID] = -v.ID |
| } |
| } |
| for i, e := range partition { |
| if f.pass.debug > 1 && len(e) > 500 { |
| fmt.Printf("CSE.large partition (%d): ", len(e)) |
| for j := 0; j < 3; j++ { |
| fmt.Printf("%s ", e[j].LongString()) |
| } |
| fmt.Println() |
| } |
| |
| for _, v := range e { |
| valueEqClass[v.ID] = ID(i) |
| } |
| if f.pass.debug > 2 && len(e) > 1 { |
| fmt.Printf("CSE.partition #%d:", i) |
| for _, v := range e { |
| fmt.Printf(" %s", v.String()) |
| } |
| fmt.Printf("\n") |
| } |
| } |
| |
| // Find an equivalence class where some members of the class have |
| // non-equivalent arguments. Split the equivalence class appropriately. |
| // Repeat until we can't find any more splits. |
| for { |
| changed := false |
| |
| // partition can grow in the loop. By not using a range loop here, |
| // we process new additions as they arrive, avoiding O(n^2) behavior. |
| for i := 0; i < len(partition); i++ { |
| e := partition[i] |
| v := e[0] |
| // all values in this equiv class that are not equivalent to v get moved |
| // into another equiv class. |
| // To avoid allocating while building that equivalence class, |
| // move the values equivalent to v to the beginning of e |
| // and other values to the end of e. |
| allvals := e |
| eqloop: |
| for j := 1; j < len(e); { |
| w := e[j] |
| equivalent := true |
| for i := 0; i < len(v.Args); i++ { |
| if valueEqClass[v.Args[i].ID] != valueEqClass[w.Args[i].ID] { |
| equivalent = false |
| break |
| } |
| } |
| if !equivalent || v.Type.Compare(w.Type) != CMPeq { |
| // w is not equivalent to v. |
| // move it to the end and shrink e. |
| e[j], e[len(e)-1] = e[len(e)-1], e[j] |
| e = e[:len(e)-1] |
| valueEqClass[w.ID] = ID(len(partition)) |
| changed = true |
| continue eqloop |
| } |
| // v and w are equivalent. Keep w in e. |
| j++ |
| } |
| partition[i] = e |
| if len(e) < len(allvals) { |
| partition = append(partition, allvals[len(e):]) |
| } |
| } |
| |
| if !changed { |
| break |
| } |
| } |
| |
| // Dominator tree (f.sdom) is computed by the generic domtree pass. |
| |
| // Compute substitutions we would like to do. We substitute v for w |
| // if v and w are in the same equivalence class and v dominates w. |
| rewrite := make([]*Value, f.NumValues()) |
| for _, e := range partition { |
| sort.Sort(partitionByDom{e, f.sdom}) |
| for i := 0; i < len(e)-1; i++ { |
| // e is sorted by domorder, so a maximal dominant element is first in the slice |
| v := e[i] |
| if v == nil { |
| continue |
| } |
| |
| e[i] = nil |
| // Replace all elements of e which v dominates |
| for j := i + 1; j < len(e); j++ { |
| w := e[j] |
| if w == nil { |
| continue |
| } |
| if f.sdom.isAncestorEq(v.Block, w.Block) { |
| rewrite[w.ID] = v |
| e[j] = nil |
| } else { |
| // e is sorted by domorder, so v.Block doesn't dominate any subsequent blocks in e |
| break |
| } |
| } |
| } |
| } |
| |
| // if we rewrite a tuple generator to a new one in a different block, |
| // copy its selectors to the new generator's block, so tuple generator |
| // and selectors stay together. |
| // be careful not to copy same selectors more than once (issue 16741). |
| copiedSelects := make(map[ID][]*Value) |
| for _, b := range f.Blocks { |
| out: |
| for _, v := range b.Values { |
| if rewrite[v.ID] != nil { |
| continue |
| } |
| if v.Op != OpSelect0 && v.Op != OpSelect1 { |
| continue |
| } |
| if !v.Args[0].Type.IsTuple() { |
| f.Fatalf("arg of tuple selector %s is not a tuple: %s", v.String(), v.Args[0].LongString()) |
| } |
| t := rewrite[v.Args[0].ID] |
| if t != nil && t.Block != b { |
| // v.Args[0] is tuple generator, CSE'd into a different block as t, v is left behind |
| for _, c := range copiedSelects[t.ID] { |
| if v.Op == c.Op { |
| // an equivalent selector is already copied |
| rewrite[v.ID] = c |
| continue out |
| } |
| } |
| c := v.copyInto(t.Block) |
| rewrite[v.ID] = c |
| copiedSelects[t.ID] = append(copiedSelects[t.ID], c) |
| } |
| } |
| } |
| |
| rewrites := int64(0) |
| |
| // Apply substitutions |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| for i, w := range v.Args { |
| if x := rewrite[w.ID]; x != nil { |
| v.SetArg(i, x) |
| rewrites++ |
| } |
| } |
| } |
| if v := b.Control; v != nil { |
| if x := rewrite[v.ID]; x != nil { |
| if v.Op == OpNilCheck { |
| // nilcheck pass will remove the nil checks and log |
| // them appropriately, so don't mess with them here. |
| continue |
| } |
| b.SetControl(x) |
| } |
| } |
| } |
| if f.pass.stats > 0 { |
| f.LogStat("CSE REWRITES", rewrites) |
| } |
| } |
| |
| // An eqclass approximates an equivalence class. During the |
| // algorithm it may represent the union of several of the |
| // final equivalence classes. |
| type eqclass []*Value |
| |
| // partitionValues partitions the values into equivalence classes |
| // based on having all the following features match: |
| // - opcode |
| // - type |
| // - auxint |
| // - aux |
| // - nargs |
| // - block # if a phi op |
| // - first two arg's opcodes and auxint |
| // - NOT first two arg's aux; that can break CSE. |
| // partitionValues returns a list of equivalence classes, each |
| // being a sorted by ID list of *Values. The eqclass slices are |
| // backed by the same storage as the input slice. |
| // Equivalence classes of size 1 are ignored. |
| func partitionValues(a []*Value, auxIDs auxmap) []eqclass { |
| sort.Sort(sortvalues{a, auxIDs}) |
| |
| var partition []eqclass |
| for len(a) > 0 { |
| v := a[0] |
| j := 1 |
| for ; j < len(a); j++ { |
| w := a[j] |
| if cmpVal(v, w, auxIDs, cmpDepth) != CMPeq { |
| break |
| } |
| } |
| if j > 1 { |
| partition = append(partition, a[:j]) |
| } |
| a = a[j:] |
| } |
| |
| return partition |
| } |
| func lt2Cmp(isLt bool) Cmp { |
| if isLt { |
| return CMPlt |
| } |
| return CMPgt |
| } |
| |
| type auxmap map[interface{}]int32 |
| |
| func cmpVal(v, w *Value, auxIDs auxmap, depth int) Cmp { |
| // Try to order these comparison by cost (cheaper first) |
| if v.Op != w.Op { |
| return lt2Cmp(v.Op < w.Op) |
| } |
| if v.AuxInt != w.AuxInt { |
| return lt2Cmp(v.AuxInt < w.AuxInt) |
| } |
| if len(v.Args) != len(w.Args) { |
| return lt2Cmp(len(v.Args) < len(w.Args)) |
| } |
| if v.Op == OpPhi && v.Block != w.Block { |
| return lt2Cmp(v.Block.ID < w.Block.ID) |
| } |
| if v.Type.IsMemory() { |
| // We will never be able to CSE two values |
| // that generate memory. |
| return lt2Cmp(v.ID < w.ID) |
| } |
| |
| if tc := v.Type.Compare(w.Type); tc != CMPeq { |
| return tc |
| } |
| |
| if v.Aux != w.Aux { |
| if v.Aux == nil { |
| return CMPlt |
| } |
| if w.Aux == nil { |
| return CMPgt |
| } |
| return lt2Cmp(auxIDs[v.Aux] < auxIDs[w.Aux]) |
| } |
| |
| if depth > 0 { |
| for i := range v.Args { |
| if v.Args[i] == w.Args[i] { |
| // skip comparing equal args |
| continue |
| } |
| if ac := cmpVal(v.Args[i], w.Args[i], auxIDs, depth-1); ac != CMPeq { |
| return ac |
| } |
| } |
| } |
| |
| return CMPeq |
| } |
| |
| // Sort values to make the initial partition. |
| type sortvalues struct { |
| a []*Value // array of values |
| auxIDs auxmap // aux -> aux ID map |
| } |
| |
| func (sv sortvalues) Len() int { return len(sv.a) } |
| func (sv sortvalues) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] } |
| func (sv sortvalues) Less(i, j int) bool { |
| v := sv.a[i] |
| w := sv.a[j] |
| if cmp := cmpVal(v, w, sv.auxIDs, cmpDepth); cmp != CMPeq { |
| return cmp == CMPlt |
| } |
| |
| // Sort by value ID last to keep the sort result deterministic. |
| return v.ID < w.ID |
| } |
| |
| type partitionByDom struct { |
| a []*Value // array of values |
| sdom SparseTree |
| } |
| |
| func (sv partitionByDom) Len() int { return len(sv.a) } |
| func (sv partitionByDom) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] } |
| func (sv partitionByDom) Less(i, j int) bool { |
| v := sv.a[i] |
| w := sv.a[j] |
| return sv.sdom.domorder(v.Block) < sv.sdom.domorder(w.Block) |
| } |