blob: 25aea6522dc5fc2f64a892bf85463843a361253d [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"internal/goarch"
"runtime/internal/atomic"
"runtime/internal/syscall"
"unsafe"
)
// sigPerThreadSyscall is the same signal (SIGSETXID) used by glibc for
// per-thread syscalls on Linux. We use it for the same purpose in non-cgo
// binaries.
const sigPerThreadSyscall = _SIGRTMIN + 1
type mOS struct {
// profileTimer holds the ID of the POSIX interval timer for profiling CPU
// usage on this thread.
//
// It is valid when the profileTimerValid field is non-zero. A thread
// creates and manages its own timer, and these fields are read and written
// only by this thread. But because some of the reads on profileTimerValid
// are in signal handling code, access to that field uses atomic operations.
profileTimer int32
profileTimerValid uint32
// needPerThreadSyscall indicates that a per-thread syscall is required
// for doAllThreadsSyscall.
needPerThreadSyscall atomic.Uint8
}
//go:noescape
func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up threads sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
const (
_FUTEX_PRIVATE_FLAG = 128
_FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG
_FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG
)
// Atomically,
//
// if(*addr == val) sleep
//
// Might be woken up spuriously; that's allowed.
// Don't sleep longer than ns; ns < 0 means forever.
//
//go:nosplit
func futexsleep(addr *uint32, val uint32, ns int64) {
// Some Linux kernels have a bug where futex of
// FUTEX_WAIT returns an internal error code
// as an errno. Libpthread ignores the return value
// here, and so can we: as it says a few lines up,
// spurious wakeups are allowed.
if ns < 0 {
futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, nil, nil, 0)
return
}
var ts timespec
ts.setNsec(ns)
futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, unsafe.Pointer(&ts), nil, 0)
}
// If any procs are sleeping on addr, wake up at most cnt.
//
//go:nosplit
func futexwakeup(addr *uint32, cnt uint32) {
ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE_PRIVATE, cnt, nil, nil, 0)
if ret >= 0 {
return
}
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
systemstack(func() {
print("futexwakeup addr=", addr, " returned ", ret, "\n")
})
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
}
func getproccount() int32 {
// This buffer is huge (8 kB) but we are on the system stack
// and there should be plenty of space (64 kB).
// Also this is a leaf, so we're not holding up the memory for long.
// See golang.org/issue/11823.
// The suggested behavior here is to keep trying with ever-larger
// buffers, but we don't have a dynamic memory allocator at the
// moment, so that's a bit tricky and seems like overkill.
const maxCPUs = 64 * 1024
var buf [maxCPUs / 8]byte
r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
if r < 0 {
return 1
}
n := int32(0)
for _, v := range buf[:r] {
for v != 0 {
n += int32(v & 1)
v >>= 1
}
}
if n == 0 {
n = 1
}
return n
}
// Clone, the Linux rfork.
const (
_CLONE_VM = 0x100
_CLONE_FS = 0x200
_CLONE_FILES = 0x400
_CLONE_SIGHAND = 0x800
_CLONE_PTRACE = 0x2000
_CLONE_VFORK = 0x4000
_CLONE_PARENT = 0x8000
_CLONE_THREAD = 0x10000
_CLONE_NEWNS = 0x20000
_CLONE_SYSVSEM = 0x40000
_CLONE_SETTLS = 0x80000
_CLONE_PARENT_SETTID = 0x100000
_CLONE_CHILD_CLEARTID = 0x200000
_CLONE_UNTRACED = 0x800000
_CLONE_CHILD_SETTID = 0x1000000
_CLONE_STOPPED = 0x2000000
_CLONE_NEWUTS = 0x4000000
_CLONE_NEWIPC = 0x8000000
// As of QEMU 2.8.0 (5ea2fc84d), user emulation requires all six of these
// flags to be set when creating a thread; attempts to share the other
// five but leave SYSVSEM unshared will fail with -EINVAL.
//
// In non-QEMU environments CLONE_SYSVSEM is inconsequential as we do not
// use System V semaphores.
cloneFlags = _CLONE_VM | /* share memory */
_CLONE_FS | /* share cwd, etc */
_CLONE_FILES | /* share fd table */
_CLONE_SIGHAND | /* share sig handler table */
_CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */
_CLONE_THREAD /* revisit - okay for now */
)
//go:noescape
func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32
// May run with m.p==nil, so write barriers are not allowed.
//
//go:nowritebarrier
func newosproc(mp *m) {
stk := unsafe.Pointer(mp.g0.stack.hi)
/*
* note: strace gets confused if we use CLONE_PTRACE here.
*/
if false {
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", abi.FuncPCABI0(clone), " id=", mp.id, " ostk=", &mp, "\n")
}
// Disable signals during clone, so that the new thread starts
// with signals disabled. It will enable them in minit.
var oset sigset
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(abi.FuncPCABI0(mstart)))
sigprocmask(_SIG_SETMASK, &oset, nil)
if ret < 0 {
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
if ret == -_EAGAIN {
println("runtime: may need to increase max user processes (ulimit -u)")
}
throw("newosproc")
}
}
// Version of newosproc that doesn't require a valid G.
//
//go:nosplit
func newosproc0(stacksize uintptr, fn unsafe.Pointer) {
stack := sysAlloc(stacksize, &memstats.stacks_sys)
if stack == nil {
write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack)))
exit(1)
}
ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn)
if ret < 0 {
write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate)))
exit(1)
}
}
var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n")
var failthreadcreate = []byte("runtime: failed to create new OS thread\n")
const (
_AT_NULL = 0 // End of vector
_AT_PAGESZ = 6 // System physical page size
_AT_HWCAP = 16 // hardware capability bit vector
_AT_RANDOM = 25 // introduced in 2.6.29
_AT_HWCAP2 = 26 // hardware capability bit vector 2
)
var procAuxv = []byte("/proc/self/auxv\x00")
var addrspace_vec [1]byte
func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32
func sysargs(argc int32, argv **byte) {
n := argc + 1
// skip over argv, envp to get to auxv
for argv_index(argv, n) != nil {
n++
}
// skip NULL separator
n++
// now argv+n is auxv
auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*goarch.PtrSize))
if sysauxv(auxv[:]) != 0 {
return
}
// In some situations we don't get a loader-provided
// auxv, such as when loaded as a library on Android.
// Fall back to /proc/self/auxv.
fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0)
if fd < 0 {
// On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to
// try using mincore to detect the physical page size.
// mincore should return EINVAL when address is not a multiple of system page size.
const size = 256 << 10 // size of memory region to allocate
p, err := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
if err != 0 {
return
}
var n uintptr
for n = 4 << 10; n < size; n <<= 1 {
err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0])
if err == 0 {
physPageSize = n
break
}
}
if physPageSize == 0 {
physPageSize = size
}
munmap(p, size)
return
}
var buf [128]uintptr
n = read(fd, noescape(unsafe.Pointer(&buf[0])), int32(unsafe.Sizeof(buf)))
closefd(fd)
if n < 0 {
return
}
// Make sure buf is terminated, even if we didn't read
// the whole file.
buf[len(buf)-2] = _AT_NULL
sysauxv(buf[:])
}
// startupRandomData holds random bytes initialized at startup. These come from
// the ELF AT_RANDOM auxiliary vector.
var startupRandomData []byte
func sysauxv(auxv []uintptr) int {
var i int
for ; auxv[i] != _AT_NULL; i += 2 {
tag, val := auxv[i], auxv[i+1]
switch tag {
case _AT_RANDOM:
// The kernel provides a pointer to 16-bytes
// worth of random data.
startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:]
case _AT_PAGESZ:
physPageSize = val
}
archauxv(tag, val)
vdsoauxv(tag, val)
}
return i / 2
}
var sysTHPSizePath = []byte("/sys/kernel/mm/transparent_hugepage/hpage_pmd_size\x00")
func getHugePageSize() uintptr {
var numbuf [20]byte
fd := open(&sysTHPSizePath[0], 0 /* O_RDONLY */, 0)
if fd < 0 {
return 0
}
ptr := noescape(unsafe.Pointer(&numbuf[0]))
n := read(fd, ptr, int32(len(numbuf)))
closefd(fd)
if n <= 0 {
return 0
}
n-- // remove trailing newline
v, ok := atoi(slicebytetostringtmp((*byte)(ptr), int(n)))
if !ok || v < 0 {
v = 0
}
if v&(v-1) != 0 {
// v is not a power of 2
return 0
}
return uintptr(v)
}
func osinit() {
ncpu = getproccount()
physHugePageSize = getHugePageSize()
if iscgo {
// #42494 glibc and musl reserve some signals for
// internal use and require they not be blocked by
// the rest of a normal C runtime. When the go runtime
// blocks...unblocks signals, temporarily, the blocked
// interval of time is generally very short. As such,
// these expectations of *libc code are mostly met by
// the combined go+cgo system of threads. However,
// when go causes a thread to exit, via a return from
// mstart(), the combined runtime can deadlock if
// these signals are blocked. Thus, don't block these
// signals when exiting threads.
// - glibc: SIGCANCEL (32), SIGSETXID (33)
// - musl: SIGTIMER (32), SIGCANCEL (33), SIGSYNCCALL (34)
sigdelset(&sigsetAllExiting, 32)
sigdelset(&sigsetAllExiting, 33)
sigdelset(&sigsetAllExiting, 34)
}
osArchInit()
}
var urandom_dev = []byte("/dev/urandom\x00")
func getRandomData(r []byte) {
if startupRandomData != nil {
n := copy(r, startupRandomData)
extendRandom(r, n)
return
}
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
closefd(fd)
extendRandom(r, int(n))
}
func goenvs() {
goenvs_unix()
}
// Called to do synchronous initialization of Go code built with
// -buildmode=c-archive or -buildmode=c-shared.
// None of the Go runtime is initialized.
//
//go:nosplit
//go:nowritebarrierrec
func libpreinit() {
initsig(true)
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
mp.gsignal.m = mp
}
func gettid() uint32
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, cannot allocate memory.
func minit() {
minitSignals()
// Cgo-created threads and the bootstrap m are missing a
// procid. We need this for asynchronous preemption and it's
// useful in debuggers.
getg().m.procid = uint64(gettid())
}
// Called from dropm to undo the effect of an minit.
//
//go:nosplit
func unminit() {
unminitSignals()
}
// Called from exitm, but not from drop, to undo the effect of thread-owned
// resources in minit, semacreate, or elsewhere. Do not take locks after calling this.
func mdestroy(mp *m) {
}
//#ifdef GOARCH_386
//#define sa_handler k_sa_handler
//#endif
func sigreturn()
func sigtramp() // Called via C ABI
func cgoSigtramp()
//go:noescape
func sigaltstack(new, old *stackt)
//go:noescape
func setitimer(mode int32, new, old *itimerval)
//go:noescape
func timer_create(clockid int32, sevp *sigevent, timerid *int32) int32
//go:noescape
func timer_settime(timerid int32, flags int32, new, old *itimerspec) int32
//go:noescape
func timer_delete(timerid int32) int32
//go:noescape
func rtsigprocmask(how int32, new, old *sigset, size int32)
//go:nosplit
//go:nowritebarrierrec
func sigprocmask(how int32, new, old *sigset) {
rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new)))
}
func raise(sig uint32)
func raiseproc(sig uint32)
//go:noescape
func sched_getaffinity(pid, len uintptr, buf *byte) int32
func osyield()
//go:nosplit
func osyield_no_g() {
osyield()
}
func pipe2(flags int32) (r, w int32, errno int32)
const (
_si_max_size = 128
_sigev_max_size = 64
)
//go:nosplit
//go:nowritebarrierrec
func setsig(i uint32, fn uintptr) {
var sa sigactiont
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART
sigfillset(&sa.sa_mask)
// Although Linux manpage says "sa_restorer element is obsolete and
// should not be used". x86_64 kernel requires it. Only use it on
// x86.
if GOARCH == "386" || GOARCH == "amd64" {
sa.sa_restorer = abi.FuncPCABI0(sigreturn)
}
if fn == abi.FuncPCABIInternal(sighandler) { // abi.FuncPCABIInternal(sighandler) matches the callers in signal_unix.go
if iscgo {
fn = abi.FuncPCABI0(cgoSigtramp)
} else {
fn = abi.FuncPCABI0(sigtramp)
}
}
sa.sa_handler = fn
sigaction(i, &sa, nil)
}
//go:nosplit
//go:nowritebarrierrec
func setsigstack(i uint32) {
var sa sigactiont
sigaction(i, nil, &sa)
if sa.sa_flags&_SA_ONSTACK != 0 {
return
}
sa.sa_flags |= _SA_ONSTACK
sigaction(i, &sa, nil)
}
//go:nosplit
//go:nowritebarrierrec
func getsig(i uint32) uintptr {
var sa sigactiont
sigaction(i, nil, &sa)
return sa.sa_handler
}
// setSignaltstackSP sets the ss_sp field of a stackt.
//
//go:nosplit
func setSignalstackSP(s *stackt, sp uintptr) {
*(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp
}
//go:nosplit
func (c *sigctxt) fixsigcode(sig uint32) {
}
// sysSigaction calls the rt_sigaction system call.
//
//go:nosplit
func sysSigaction(sig uint32, new, old *sigactiont) {
if rt_sigaction(uintptr(sig), new, old, unsafe.Sizeof(sigactiont{}.sa_mask)) != 0 {
// Workaround for bugs in QEMU user mode emulation.
//
// QEMU turns calls to the sigaction system call into
// calls to the C library sigaction call; the C
// library call rejects attempts to call sigaction for
// SIGCANCEL (32) or SIGSETXID (33).
//
// QEMU rejects calling sigaction on SIGRTMAX (64).
//
// Just ignore the error in these case. There isn't
// anything we can do about it anyhow.
if sig != 32 && sig != 33 && sig != 64 {
// Use system stack to avoid split stack overflow on ppc64/ppc64le.
systemstack(func() {
throw("sigaction failed")
})
}
}
}
// rt_sigaction is implemented in assembly.
//
//go:noescape
func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32
func getpid() int
func tgkill(tgid, tid, sig int)
// signalM sends a signal to mp.
func signalM(mp *m, sig int) {
tgkill(getpid(), int(mp.procid), sig)
}
// go118UseTimerCreateProfiler enables the per-thread CPU profiler.
const go118UseTimerCreateProfiler = true
// validSIGPROF compares this signal delivery's code against the signal sources
// that the profiler uses, returning whether the delivery should be processed.
// To be processed, a signal delivery from a known profiling mechanism should
// correspond to the best profiling mechanism available to this thread. Signals
// from other sources are always considered valid.
//
//go:nosplit
func validSIGPROF(mp *m, c *sigctxt) bool {
code := int32(c.sigcode())
setitimer := code == _SI_KERNEL
timer_create := code == _SI_TIMER
if !(setitimer || timer_create) {
// The signal doesn't correspond to a profiling mechanism that the
// runtime enables itself. There's no reason to process it, but there's
// no reason to ignore it either.
return true
}
if mp == nil {
// Since we don't have an M, we can't check if there's an active
// per-thread timer for this thread. We don't know how long this thread
// has been around, and if it happened to interact with the Go scheduler
// at a time when profiling was active (causing it to have a per-thread
// timer). But it may have never interacted with the Go scheduler, or
// never while profiling was active. To avoid double-counting, process
// only signals from setitimer.
//
// When a custom cgo traceback function has been registered (on
// platforms that support runtime.SetCgoTraceback), SIGPROF signals
// delivered to a thread that cannot find a matching M do this check in
// the assembly implementations of runtime.cgoSigtramp.
return setitimer
}
// Having an M means the thread interacts with the Go scheduler, and we can
// check whether there's an active per-thread timer for this thread.
if atomic.Load(&mp.profileTimerValid) != 0 {
// If this M has its own per-thread CPU profiling interval timer, we
// should track the SIGPROF signals that come from that timer (for
// accurate reporting of its CPU usage; see issue 35057) and ignore any
// that it gets from the process-wide setitimer (to not over-count its
// CPU consumption).
return timer_create
}
// No active per-thread timer means the only valid profiler is setitimer.
return setitimer
}
func setProcessCPUProfiler(hz int32) {
setProcessCPUProfilerTimer(hz)
}
func setThreadCPUProfiler(hz int32) {
mp := getg().m
mp.profilehz = hz
if !go118UseTimerCreateProfiler {
return
}
// destroy any active timer
if atomic.Load(&mp.profileTimerValid) != 0 {
timerid := mp.profileTimer
atomic.Store(&mp.profileTimerValid, 0)
mp.profileTimer = 0
ret := timer_delete(timerid)
if ret != 0 {
print("runtime: failed to disable profiling timer; timer_delete(", timerid, ") errno=", -ret, "\n")
throw("timer_delete")
}
}
if hz == 0 {
// If the goal was to disable profiling for this thread, then the job's done.
return
}
// The period of the timer should be 1/Hz. For every "1/Hz" of additional
// work, the user should expect one additional sample in the profile.
//
// But to scale down to very small amounts of application work, to observe
// even CPU usage of "one tenth" of the requested period, set the initial
// timing delay in a different way: So that "one tenth" of a period of CPU
// spend shows up as a 10% chance of one sample (for an expected value of
// 0.1 samples), and so that "two and six tenths" periods of CPU spend show
// up as a 60% chance of 3 samples and a 40% chance of 2 samples (for an
// expected value of 2.6). Set the initial delay to a value in the unifom
// random distribution between 0 and the desired period. And because "0"
// means "disable timer", add 1 so the half-open interval [0,period) turns
// into (0,period].
//
// Otherwise, this would show up as a bias away from short-lived threads and
// from threads that are only occasionally active: for example, when the
// garbage collector runs on a mostly-idle system, the additional threads it
// activates may do a couple milliseconds of GC-related work and nothing
// else in the few seconds that the profiler observes.
spec := new(itimerspec)
spec.it_value.setNsec(1 + int64(fastrandn(uint32(1e9/hz))))
spec.it_interval.setNsec(1e9 / int64(hz))
var timerid int32
var sevp sigevent
sevp.notify = _SIGEV_THREAD_ID
sevp.signo = _SIGPROF
sevp.sigev_notify_thread_id = int32(mp.procid)
ret := timer_create(_CLOCK_THREAD_CPUTIME_ID, &sevp, &timerid)
if ret != 0 {
// If we cannot create a timer for this M, leave profileTimerValid false
// to fall back to the process-wide setitimer profiler.
return
}
ret = timer_settime(timerid, 0, spec, nil)
if ret != 0 {
print("runtime: failed to configure profiling timer; timer_settime(", timerid,
", 0, {interval: {",
spec.it_interval.tv_sec, "s + ", spec.it_interval.tv_nsec, "ns} value: {",
spec.it_value.tv_sec, "s + ", spec.it_value.tv_nsec, "ns}}, nil) errno=", -ret, "\n")
throw("timer_settime")
}
mp.profileTimer = timerid
atomic.Store(&mp.profileTimerValid, 1)
}
// perThreadSyscallArgs contains the system call number, arguments, and
// expected return values for a system call to be executed on all threads.
type perThreadSyscallArgs struct {
trap uintptr
a1 uintptr
a2 uintptr
a3 uintptr
a4 uintptr
a5 uintptr
a6 uintptr
r1 uintptr
r2 uintptr
}
// perThreadSyscall is the system call to execute for the ongoing
// doAllThreadsSyscall.
//
// perThreadSyscall may only be written while mp.needPerThreadSyscall == 0 on
// all Ms.
var perThreadSyscall perThreadSyscallArgs
// syscall_runtime_doAllThreadsSyscall and executes a specified system call on
// all Ms.
//
// The system call is expected to succeed and return the same value on every
// thread. If any threads do not match, the runtime throws.
//
//go:linkname syscall_runtime_doAllThreadsSyscall syscall.runtime_doAllThreadsSyscall
//go:uintptrescapes
func syscall_runtime_doAllThreadsSyscall(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr) {
if iscgo {
// In cgo, we are not aware of threads created in C, so this approach will not work.
panic("doAllThreadsSyscall not supported with cgo enabled")
}
// STW to guarantee that user goroutines see an atomic change to thread
// state. Without STW, goroutines could migrate Ms while change is in
// progress and e.g., see state old -> new -> old -> new.
//
// N.B. Internally, this function does not depend on STW to
// successfully change every thread. It is only needed for user
// expectations, per above.
stopTheWorld("doAllThreadsSyscall")
// This function depends on several properties:
//
// 1. All OS threads that already exist are associated with an M in
// allm. i.e., we won't miss any pre-existing threads.
// 2. All Ms listed in allm will eventually have an OS thread exist.
// i.e., they will set procid and be able to receive signals.
// 3. OS threads created after we read allm will clone from a thread
// that has executed the system call. i.e., they inherit the
// modified state.
//
// We achieve these through different mechanisms:
//
// 1. Addition of new Ms to allm in allocm happens before clone of its
// OS thread later in newm.
// 2. newm does acquirem to avoid being preempted, ensuring that new Ms
// created in allocm will eventually reach OS thread clone later in
// newm.
// 3. We take allocmLock for write here to prevent allocation of new Ms
// while this function runs. Per (1), this prevents clone of OS
// threads that are not yet in allm.
allocmLock.lock()
// Disable preemption, preventing us from changing Ms, as we handle
// this M specially.
//
// N.B. STW and lock() above do this as well, this is added for extra
// clarity.
acquirem()
// N.B. allocmLock also prevents concurrent execution of this function,
// serializing use of perThreadSyscall, mp.needPerThreadSyscall, and
// ensuring all threads execute system calls from multiple calls in the
// same order.
r1, r2, errno := syscall.Syscall6(trap, a1, a2, a3, a4, a5, a6)
if GOARCH == "ppc64" || GOARCH == "ppc64le" {
// TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2.
r2 = 0
}
if errno != 0 {
releasem(getg().m)
allocmLock.unlock()
startTheWorld()
return r1, r2, errno
}
perThreadSyscall = perThreadSyscallArgs{
trap: trap,
a1: a1,
a2: a2,
a3: a3,
a4: a4,
a5: a5,
a6: a6,
r1: r1,
r2: r2,
}
// Wait for all threads to start.
//
// As described above, some Ms have been added to allm prior to
// allocmLock, but not yet completed OS clone and set procid.
//
// At minimum we must wait for a thread to set procid before we can
// send it a signal.
//
// We take this one step further and wait for all threads to start
// before sending any signals. This prevents system calls from getting
// applied twice: once in the parent and once in the child, like so:
//
// A B C
// add C to allm
// doAllThreadsSyscall
// allocmLock.lock()
// signal B
// <receive signal>
// execute syscall
// <signal return>
// clone C
// <thread start>
// set procid
// signal C
// <receive signal>
// execute syscall
// <signal return>
//
// In this case, thread C inherited the syscall-modified state from
// thread B and did not need to execute the syscall, but did anyway
// because doAllThreadsSyscall could not be sure whether it was
// required.
//
// Some system calls may not be idempotent, so we ensure each thread
// executes the system call exactly once.
for mp := allm; mp != nil; mp = mp.alllink {
for atomic.Load64(&mp.procid) == 0 {
// Thread is starting.
osyield()
}
}
// Signal every other thread, where they will execute perThreadSyscall
// from the signal handler.
gp := getg()
tid := gp.m.procid
for mp := allm; mp != nil; mp = mp.alllink {
if atomic.Load64(&mp.procid) == tid {
// Our thread already performed the syscall.
continue
}
mp.needPerThreadSyscall.Store(1)
signalM(mp, sigPerThreadSyscall)
}
// Wait for all threads to complete.
for mp := allm; mp != nil; mp = mp.alllink {
if mp.procid == tid {
continue
}
for mp.needPerThreadSyscall.Load() != 0 {
osyield()
}
}
perThreadSyscall = perThreadSyscallArgs{}
releasem(getg().m)
allocmLock.unlock()
startTheWorld()
return r1, r2, errno
}
// runPerThreadSyscall runs perThreadSyscall for this M if required.
//
// This function throws if the system call returns with anything other than the
// expected values.
//
//go:nosplit
func runPerThreadSyscall() {
gp := getg()
if gp.m.needPerThreadSyscall.Load() == 0 {
return
}
args := perThreadSyscall
r1, r2, errno := syscall.Syscall6(args.trap, args.a1, args.a2, args.a3, args.a4, args.a5, args.a6)
if GOARCH == "ppc64" || GOARCH == "ppc64le" {
// TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2.
r2 = 0
}
if errno != 0 || r1 != args.r1 || r2 != args.r2 {
print("trap:", args.trap, ", a123456=[", args.a1, ",", args.a2, ",", args.a3, ",", args.a4, ",", args.a5, ",", args.a6, "]\n")
print("results: got {r1=", r1, ",r2=", r2, ",errno=", errno, "}, want {r1=", args.r1, ",r2=", args.r2, ",errno=0\n")
fatal("AllThreadsSyscall6 results differ between threads; runtime corrupted")
}
gp.m.needPerThreadSyscall.Store(0)
}