| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package template |
| |
| import ( |
| "fmt" |
| "internal/fmtsort" |
| "io" |
| "reflect" |
| "runtime" |
| "strings" |
| "text/template/parse" |
| ) |
| |
| // maxExecDepth specifies the maximum stack depth of templates within |
| // templates. This limit is only practically reached by accidentally |
| // recursive template invocations. This limit allows us to return |
| // an error instead of triggering a stack overflow. |
| var maxExecDepth = initMaxExecDepth() |
| |
| func initMaxExecDepth() int { |
| if runtime.GOARCH == "wasm" { |
| return 1000 |
| } |
| return 100000 |
| } |
| |
| // state represents the state of an execution. It's not part of the |
| // template so that multiple executions of the same template |
| // can execute in parallel. |
| type state struct { |
| tmpl *Template |
| wr io.Writer |
| node parse.Node // current node, for errors |
| vars []variable // push-down stack of variable values. |
| depth int // the height of the stack of executing templates. |
| } |
| |
| // variable holds the dynamic value of a variable such as $, $x etc. |
| type variable struct { |
| name string |
| value reflect.Value |
| } |
| |
| // push pushes a new variable on the stack. |
| func (s *state) push(name string, value reflect.Value) { |
| s.vars = append(s.vars, variable{name, value}) |
| } |
| |
| // mark returns the length of the variable stack. |
| func (s *state) mark() int { |
| return len(s.vars) |
| } |
| |
| // pop pops the variable stack up to the mark. |
| func (s *state) pop(mark int) { |
| s.vars = s.vars[0:mark] |
| } |
| |
| // setVar overwrites the last declared variable with the given name. |
| // Used by variable assignments. |
| func (s *state) setVar(name string, value reflect.Value) { |
| for i := s.mark() - 1; i >= 0; i-- { |
| if s.vars[i].name == name { |
| s.vars[i].value = value |
| return |
| } |
| } |
| s.errorf("undefined variable: %s", name) |
| } |
| |
| // setTopVar overwrites the top-nth variable on the stack. Used by range iterations. |
| func (s *state) setTopVar(n int, value reflect.Value) { |
| s.vars[len(s.vars)-n].value = value |
| } |
| |
| // varValue returns the value of the named variable. |
| func (s *state) varValue(name string) reflect.Value { |
| for i := s.mark() - 1; i >= 0; i-- { |
| if s.vars[i].name == name { |
| return s.vars[i].value |
| } |
| } |
| s.errorf("undefined variable: %s", name) |
| return zero |
| } |
| |
| var zero reflect.Value |
| |
| type missingValType struct{} |
| |
| var missingVal = reflect.ValueOf(missingValType{}) |
| |
| // at marks the state to be on node n, for error reporting. |
| func (s *state) at(node parse.Node) { |
| s.node = node |
| } |
| |
| // doublePercent returns the string with %'s replaced by %%, if necessary, |
| // so it can be used safely inside a Printf format string. |
| func doublePercent(str string) string { |
| return strings.ReplaceAll(str, "%", "%%") |
| } |
| |
| // TODO: It would be nice if ExecError was more broken down, but |
| // the way ErrorContext embeds the template name makes the |
| // processing too clumsy. |
| |
| // ExecError is the custom error type returned when Execute has an |
| // error evaluating its template. (If a write error occurs, the actual |
| // error is returned; it will not be of type ExecError.) |
| type ExecError struct { |
| Name string // Name of template. |
| Err error // Pre-formatted error. |
| } |
| |
| func (e ExecError) Error() string { |
| return e.Err.Error() |
| } |
| |
| func (e ExecError) Unwrap() error { |
| return e.Err |
| } |
| |
| // errorf records an ExecError and terminates processing. |
| func (s *state) errorf(format string, args ...interface{}) { |
| name := doublePercent(s.tmpl.Name()) |
| if s.node == nil { |
| format = fmt.Sprintf("template: %s: %s", name, format) |
| } else { |
| location, context := s.tmpl.ErrorContext(s.node) |
| format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) |
| } |
| panic(ExecError{ |
| Name: s.tmpl.Name(), |
| Err: fmt.Errorf(format, args...), |
| }) |
| } |
| |
| // writeError is the wrapper type used internally when Execute has an |
| // error writing to its output. We strip the wrapper in errRecover. |
| // Note that this is not an implementation of error, so it cannot escape |
| // from the package as an error value. |
| type writeError struct { |
| Err error // Original error. |
| } |
| |
| func (s *state) writeError(err error) { |
| panic(writeError{ |
| Err: err, |
| }) |
| } |
| |
| // errRecover is the handler that turns panics into returns from the top |
| // level of Parse. |
| func errRecover(errp *error) { |
| e := recover() |
| if e != nil { |
| switch err := e.(type) { |
| case runtime.Error: |
| panic(e) |
| case writeError: |
| *errp = err.Err // Strip the wrapper. |
| case ExecError: |
| *errp = err // Keep the wrapper. |
| default: |
| panic(e) |
| } |
| } |
| } |
| |
| // ExecuteTemplate applies the template associated with t that has the given name |
| // to the specified data object and writes the output to wr. |
| // If an error occurs executing the template or writing its output, |
| // execution stops, but partial results may already have been written to |
| // the output writer. |
| // A template may be executed safely in parallel, although if parallel |
| // executions share a Writer the output may be interleaved. |
| func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { |
| var tmpl *Template |
| if t.common != nil { |
| tmpl = t.tmpl[name] |
| } |
| if tmpl == nil { |
| return fmt.Errorf("template: no template %q associated with template %q", name, t.name) |
| } |
| return tmpl.Execute(wr, data) |
| } |
| |
| // Execute applies a parsed template to the specified data object, |
| // and writes the output to wr. |
| // If an error occurs executing the template or writing its output, |
| // execution stops, but partial results may already have been written to |
| // the output writer. |
| // A template may be executed safely in parallel, although if parallel |
| // executions share a Writer the output may be interleaved. |
| // |
| // If data is a reflect.Value, the template applies to the concrete |
| // value that the reflect.Value holds, as in fmt.Print. |
| func (t *Template) Execute(wr io.Writer, data interface{}) error { |
| return t.execute(wr, data) |
| } |
| |
| func (t *Template) execute(wr io.Writer, data interface{}) (err error) { |
| defer errRecover(&err) |
| value, ok := data.(reflect.Value) |
| if !ok { |
| value = reflect.ValueOf(data) |
| } |
| state := &state{ |
| tmpl: t, |
| wr: wr, |
| vars: []variable{{"$", value}}, |
| } |
| if t.Tree == nil || t.Root == nil { |
| state.errorf("%q is an incomplete or empty template", t.Name()) |
| } |
| state.walk(value, t.Root) |
| return |
| } |
| |
| // DefinedTemplates returns a string listing the defined templates, |
| // prefixed by the string "; defined templates are: ". If there are none, |
| // it returns the empty string. For generating an error message here |
| // and in html/template. |
| func (t *Template) DefinedTemplates() string { |
| if t.common == nil { |
| return "" |
| } |
| var b strings.Builder |
| for name, tmpl := range t.tmpl { |
| if tmpl.Tree == nil || tmpl.Root == nil { |
| continue |
| } |
| if b.Len() == 0 { |
| b.WriteString("; defined templates are: ") |
| } else { |
| b.WriteString(", ") |
| } |
| fmt.Fprintf(&b, "%q", name) |
| } |
| return b.String() |
| } |
| |
| // Walk functions step through the major pieces of the template structure, |
| // generating output as they go. |
| func (s *state) walk(dot reflect.Value, node parse.Node) { |
| s.at(node) |
| switch node := node.(type) { |
| case *parse.ActionNode: |
| // Do not pop variables so they persist until next end. |
| // Also, if the action declares variables, don't print the result. |
| val := s.evalPipeline(dot, node.Pipe) |
| if len(node.Pipe.Decl) == 0 { |
| s.printValue(node, val) |
| } |
| case *parse.CommentNode: |
| case *parse.IfNode: |
| s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) |
| case *parse.ListNode: |
| for _, node := range node.Nodes { |
| s.walk(dot, node) |
| } |
| case *parse.RangeNode: |
| s.walkRange(dot, node) |
| case *parse.TemplateNode: |
| s.walkTemplate(dot, node) |
| case *parse.TextNode: |
| if _, err := s.wr.Write(node.Text); err != nil { |
| s.writeError(err) |
| } |
| case *parse.WithNode: |
| s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) |
| default: |
| s.errorf("unknown node: %s", node) |
| } |
| } |
| |
| // walkIfOrWith walks an 'if' or 'with' node. The two control structures |
| // are identical in behavior except that 'with' sets dot. |
| func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { |
| defer s.pop(s.mark()) |
| val := s.evalPipeline(dot, pipe) |
| truth, ok := isTrue(indirectInterface(val)) |
| if !ok { |
| s.errorf("if/with can't use %v", val) |
| } |
| if truth { |
| if typ == parse.NodeWith { |
| s.walk(val, list) |
| } else { |
| s.walk(dot, list) |
| } |
| } else if elseList != nil { |
| s.walk(dot, elseList) |
| } |
| } |
| |
| // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, |
| // and whether the value has a meaningful truth value. This is the definition of |
| // truth used by if and other such actions. |
| func IsTrue(val interface{}) (truth, ok bool) { |
| return isTrue(reflect.ValueOf(val)) |
| } |
| |
| func isTrue(val reflect.Value) (truth, ok bool) { |
| if !val.IsValid() { |
| // Something like var x interface{}, never set. It's a form of nil. |
| return false, true |
| } |
| switch val.Kind() { |
| case reflect.Array, reflect.Map, reflect.Slice, reflect.String: |
| truth = val.Len() > 0 |
| case reflect.Bool: |
| truth = val.Bool() |
| case reflect.Complex64, reflect.Complex128: |
| truth = val.Complex() != 0 |
| case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: |
| truth = !val.IsNil() |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| truth = val.Int() != 0 |
| case reflect.Float32, reflect.Float64: |
| truth = val.Float() != 0 |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| truth = val.Uint() != 0 |
| case reflect.Struct: |
| truth = true // Struct values are always true. |
| default: |
| return |
| } |
| return truth, true |
| } |
| |
| func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { |
| s.at(r) |
| defer s.pop(s.mark()) |
| val, _ := indirect(s.evalPipeline(dot, r.Pipe)) |
| // mark top of stack before any variables in the body are pushed. |
| mark := s.mark() |
| oneIteration := func(index, elem reflect.Value) { |
| // Set top var (lexically the second if there are two) to the element. |
| if len(r.Pipe.Decl) > 0 { |
| s.setTopVar(1, elem) |
| } |
| // Set next var (lexically the first if there are two) to the index. |
| if len(r.Pipe.Decl) > 1 { |
| s.setTopVar(2, index) |
| } |
| s.walk(elem, r.List) |
| s.pop(mark) |
| } |
| switch val.Kind() { |
| case reflect.Array, reflect.Slice: |
| if val.Len() == 0 { |
| break |
| } |
| for i := 0; i < val.Len(); i++ { |
| oneIteration(reflect.ValueOf(i), val.Index(i)) |
| } |
| return |
| case reflect.Map: |
| if val.Len() == 0 { |
| break |
| } |
| om := fmtsort.Sort(val) |
| for i, key := range om.Key { |
| oneIteration(key, om.Value[i]) |
| } |
| return |
| case reflect.Chan: |
| if val.IsNil() { |
| break |
| } |
| if val.Type().ChanDir() == reflect.SendDir { |
| s.errorf("range over send-only channel %v", val) |
| break |
| } |
| i := 0 |
| for ; ; i++ { |
| elem, ok := val.Recv() |
| if !ok { |
| break |
| } |
| oneIteration(reflect.ValueOf(i), elem) |
| } |
| if i == 0 { |
| break |
| } |
| return |
| case reflect.Invalid: |
| break // An invalid value is likely a nil map, etc. and acts like an empty map. |
| default: |
| s.errorf("range can't iterate over %v", val) |
| } |
| if r.ElseList != nil { |
| s.walk(dot, r.ElseList) |
| } |
| } |
| |
| func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { |
| s.at(t) |
| tmpl := s.tmpl.tmpl[t.Name] |
| if tmpl == nil { |
| s.errorf("template %q not defined", t.Name) |
| } |
| if s.depth == maxExecDepth { |
| s.errorf("exceeded maximum template depth (%v)", maxExecDepth) |
| } |
| // Variables declared by the pipeline persist. |
| dot = s.evalPipeline(dot, t.Pipe) |
| newState := *s |
| newState.depth++ |
| newState.tmpl = tmpl |
| // No dynamic scoping: template invocations inherit no variables. |
| newState.vars = []variable{{"$", dot}} |
| newState.walk(dot, tmpl.Root) |
| } |
| |
| // Eval functions evaluate pipelines, commands, and their elements and extract |
| // values from the data structure by examining fields, calling methods, and so on. |
| // The printing of those values happens only through walk functions. |
| |
| // evalPipeline returns the value acquired by evaluating a pipeline. If the |
| // pipeline has a variable declaration, the variable will be pushed on the |
| // stack. Callers should therefore pop the stack after they are finished |
| // executing commands depending on the pipeline value. |
| func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { |
| if pipe == nil { |
| return |
| } |
| s.at(pipe) |
| value = missingVal |
| for _, cmd := range pipe.Cmds { |
| value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. |
| // If the object has type interface{}, dig down one level to the thing inside. |
| if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { |
| value = reflect.ValueOf(value.Interface()) // lovely! |
| } |
| } |
| for _, variable := range pipe.Decl { |
| if pipe.IsAssign { |
| s.setVar(variable.Ident[0], value) |
| } else { |
| s.push(variable.Ident[0], value) |
| } |
| } |
| return value |
| } |
| |
| func (s *state) notAFunction(args []parse.Node, final reflect.Value) { |
| if len(args) > 1 || final != missingVal { |
| s.errorf("can't give argument to non-function %s", args[0]) |
| } |
| } |
| |
| func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { |
| firstWord := cmd.Args[0] |
| switch n := firstWord.(type) { |
| case *parse.FieldNode: |
| return s.evalFieldNode(dot, n, cmd.Args, final) |
| case *parse.ChainNode: |
| return s.evalChainNode(dot, n, cmd.Args, final) |
| case *parse.IdentifierNode: |
| // Must be a function. |
| return s.evalFunction(dot, n, cmd, cmd.Args, final) |
| case *parse.PipeNode: |
| // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. |
| s.notAFunction(cmd.Args, final) |
| return s.evalPipeline(dot, n) |
| case *parse.VariableNode: |
| return s.evalVariableNode(dot, n, cmd.Args, final) |
| } |
| s.at(firstWord) |
| s.notAFunction(cmd.Args, final) |
| switch word := firstWord.(type) { |
| case *parse.BoolNode: |
| return reflect.ValueOf(word.True) |
| case *parse.DotNode: |
| return dot |
| case *parse.NilNode: |
| s.errorf("nil is not a command") |
| case *parse.NumberNode: |
| return s.idealConstant(word) |
| case *parse.StringNode: |
| return reflect.ValueOf(word.Text) |
| } |
| s.errorf("can't evaluate command %q", firstWord) |
| panic("not reached") |
| } |
| |
| // idealConstant is called to return the value of a number in a context where |
| // we don't know the type. In that case, the syntax of the number tells us |
| // its type, and we use Go rules to resolve. Note there is no such thing as |
| // a uint ideal constant in this situation - the value must be of int type. |
| func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { |
| // These are ideal constants but we don't know the type |
| // and we have no context. (If it was a method argument, |
| // we'd know what we need.) The syntax guides us to some extent. |
| s.at(constant) |
| switch { |
| case constant.IsComplex: |
| return reflect.ValueOf(constant.Complex128) // incontrovertible. |
| |
| case constant.IsFloat && |
| !isHexInt(constant.Text) && !isRuneInt(constant.Text) && |
| strings.ContainsAny(constant.Text, ".eEpP"): |
| return reflect.ValueOf(constant.Float64) |
| |
| case constant.IsInt: |
| n := int(constant.Int64) |
| if int64(n) != constant.Int64 { |
| s.errorf("%s overflows int", constant.Text) |
| } |
| return reflect.ValueOf(n) |
| |
| case constant.IsUint: |
| s.errorf("%s overflows int", constant.Text) |
| } |
| return zero |
| } |
| |
| func isRuneInt(s string) bool { |
| return len(s) > 0 && s[0] == '\'' |
| } |
| |
| func isHexInt(s string) bool { |
| return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") |
| } |
| |
| func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { |
| s.at(field) |
| return s.evalFieldChain(dot, dot, field, field.Ident, args, final) |
| } |
| |
| func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { |
| s.at(chain) |
| if len(chain.Field) == 0 { |
| s.errorf("internal error: no fields in evalChainNode") |
| } |
| if chain.Node.Type() == parse.NodeNil { |
| s.errorf("indirection through explicit nil in %s", chain) |
| } |
| // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. |
| pipe := s.evalArg(dot, nil, chain.Node) |
| return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) |
| } |
| |
| func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { |
| // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. |
| s.at(variable) |
| value := s.varValue(variable.Ident[0]) |
| if len(variable.Ident) == 1 { |
| s.notAFunction(args, final) |
| return value |
| } |
| return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) |
| } |
| |
| // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. |
| // dot is the environment in which to evaluate arguments, while |
| // receiver is the value being walked along the chain. |
| func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { |
| n := len(ident) |
| for i := 0; i < n-1; i++ { |
| receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) |
| } |
| // Now if it's a method, it gets the arguments. |
| return s.evalField(dot, ident[n-1], node, args, final, receiver) |
| } |
| |
| func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { |
| s.at(node) |
| name := node.Ident |
| function, ok := findFunction(name, s.tmpl) |
| if !ok { |
| s.errorf("%q is not a defined function", name) |
| } |
| return s.evalCall(dot, function, cmd, name, args, final) |
| } |
| |
| // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). |
| // The 'final' argument represents the return value from the preceding |
| // value of the pipeline, if any. |
| func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { |
| if !receiver.IsValid() { |
| if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. |
| s.errorf("nil data; no entry for key %q", fieldName) |
| } |
| return zero |
| } |
| typ := receiver.Type() |
| receiver, isNil := indirect(receiver) |
| if receiver.Kind() == reflect.Interface && isNil { |
| // Calling a method on a nil interface can't work. The |
| // MethodByName method call below would panic. |
| s.errorf("nil pointer evaluating %s.%s", typ, fieldName) |
| return zero |
| } |
| |
| // Unless it's an interface, need to get to a value of type *T to guarantee |
| // we see all methods of T and *T. |
| ptr := receiver |
| if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() { |
| ptr = ptr.Addr() |
| } |
| if method := ptr.MethodByName(fieldName); method.IsValid() { |
| return s.evalCall(dot, method, node, fieldName, args, final) |
| } |
| hasArgs := len(args) > 1 || final != missingVal |
| // It's not a method; must be a field of a struct or an element of a map. |
| switch receiver.Kind() { |
| case reflect.Struct: |
| tField, ok := receiver.Type().FieldByName(fieldName) |
| if ok { |
| field := receiver.FieldByIndex(tField.Index) |
| if tField.PkgPath != "" { // field is unexported |
| s.errorf("%s is an unexported field of struct type %s", fieldName, typ) |
| } |
| // If it's a function, we must call it. |
| if hasArgs { |
| s.errorf("%s has arguments but cannot be invoked as function", fieldName) |
| } |
| return field |
| } |
| case reflect.Map: |
| // If it's a map, attempt to use the field name as a key. |
| nameVal := reflect.ValueOf(fieldName) |
| if nameVal.Type().AssignableTo(receiver.Type().Key()) { |
| if hasArgs { |
| s.errorf("%s is not a method but has arguments", fieldName) |
| } |
| result := receiver.MapIndex(nameVal) |
| if !result.IsValid() { |
| switch s.tmpl.option.missingKey { |
| case mapInvalid: |
| // Just use the invalid value. |
| case mapZeroValue: |
| result = reflect.Zero(receiver.Type().Elem()) |
| case mapError: |
| s.errorf("map has no entry for key %q", fieldName) |
| } |
| } |
| return result |
| } |
| case reflect.Ptr: |
| etyp := receiver.Type().Elem() |
| if etyp.Kind() == reflect.Struct { |
| if _, ok := etyp.FieldByName(fieldName); !ok { |
| // If there's no such field, say "can't evaluate" |
| // instead of "nil pointer evaluating". |
| break |
| } |
| } |
| if isNil { |
| s.errorf("nil pointer evaluating %s.%s", typ, fieldName) |
| } |
| } |
| s.errorf("can't evaluate field %s in type %s", fieldName, typ) |
| panic("not reached") |
| } |
| |
| var ( |
| errorType = reflect.TypeOf((*error)(nil)).Elem() |
| fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() |
| reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() |
| ) |
| |
| // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so |
| // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] |
| // as the function itself. |
| func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { |
| if args != nil { |
| args = args[1:] // Zeroth arg is function name/node; not passed to function. |
| } |
| typ := fun.Type() |
| numIn := len(args) |
| if final != missingVal { |
| numIn++ |
| } |
| numFixed := len(args) |
| if typ.IsVariadic() { |
| numFixed = typ.NumIn() - 1 // last arg is the variadic one. |
| if numIn < numFixed { |
| s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) |
| } |
| } else if numIn != typ.NumIn() { |
| s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) |
| } |
| if !goodFunc(typ) { |
| // TODO: This could still be a confusing error; maybe goodFunc should provide info. |
| s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) |
| } |
| // Build the arg list. |
| argv := make([]reflect.Value, numIn) |
| // Args must be evaluated. Fixed args first. |
| i := 0 |
| for ; i < numFixed && i < len(args); i++ { |
| argv[i] = s.evalArg(dot, typ.In(i), args[i]) |
| } |
| // Now the ... args. |
| if typ.IsVariadic() { |
| argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. |
| for ; i < len(args); i++ { |
| argv[i] = s.evalArg(dot, argType, args[i]) |
| } |
| } |
| // Add final value if necessary. |
| if final != missingVal { |
| t := typ.In(typ.NumIn() - 1) |
| if typ.IsVariadic() { |
| if numIn-1 < numFixed { |
| // The added final argument corresponds to a fixed parameter of the function. |
| // Validate against the type of the actual parameter. |
| t = typ.In(numIn - 1) |
| } else { |
| // The added final argument corresponds to the variadic part. |
| // Validate against the type of the elements of the variadic slice. |
| t = t.Elem() |
| } |
| } |
| argv[i] = s.validateType(final, t) |
| } |
| v, err := safeCall(fun, argv) |
| // If we have an error that is not nil, stop execution and return that |
| // error to the caller. |
| if err != nil { |
| s.at(node) |
| s.errorf("error calling %s: %v", name, err) |
| } |
| if v.Type() == reflectValueType { |
| v = v.Interface().(reflect.Value) |
| } |
| return v |
| } |
| |
| // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. |
| func canBeNil(typ reflect.Type) bool { |
| switch typ.Kind() { |
| case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: |
| return true |
| case reflect.Struct: |
| return typ == reflectValueType |
| } |
| return false |
| } |
| |
| // validateType guarantees that the value is valid and assignable to the type. |
| func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { |
| if !value.IsValid() { |
| if typ == nil { |
| // An untyped nil interface{}. Accept as a proper nil value. |
| return reflect.ValueOf(nil) |
| } |
| if canBeNil(typ) { |
| // Like above, but use the zero value of the non-nil type. |
| return reflect.Zero(typ) |
| } |
| s.errorf("invalid value; expected %s", typ) |
| } |
| if typ == reflectValueType && value.Type() != typ { |
| return reflect.ValueOf(value) |
| } |
| if typ != nil && !value.Type().AssignableTo(typ) { |
| if value.Kind() == reflect.Interface && !value.IsNil() { |
| value = value.Elem() |
| if value.Type().AssignableTo(typ) { |
| return value |
| } |
| // fallthrough |
| } |
| // Does one dereference or indirection work? We could do more, as we |
| // do with method receivers, but that gets messy and method receivers |
| // are much more constrained, so it makes more sense there than here. |
| // Besides, one is almost always all you need. |
| switch { |
| case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): |
| value = value.Elem() |
| if !value.IsValid() { |
| s.errorf("dereference of nil pointer of type %s", typ) |
| } |
| case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): |
| value = value.Addr() |
| default: |
| s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) |
| } |
| } |
| return value |
| } |
| |
| func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { |
| s.at(n) |
| switch arg := n.(type) { |
| case *parse.DotNode: |
| return s.validateType(dot, typ) |
| case *parse.NilNode: |
| if canBeNil(typ) { |
| return reflect.Zero(typ) |
| } |
| s.errorf("cannot assign nil to %s", typ) |
| case *parse.FieldNode: |
| return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) |
| case *parse.VariableNode: |
| return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) |
| case *parse.PipeNode: |
| return s.validateType(s.evalPipeline(dot, arg), typ) |
| case *parse.IdentifierNode: |
| return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) |
| case *parse.ChainNode: |
| return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) |
| } |
| switch typ.Kind() { |
| case reflect.Bool: |
| return s.evalBool(typ, n) |
| case reflect.Complex64, reflect.Complex128: |
| return s.evalComplex(typ, n) |
| case reflect.Float32, reflect.Float64: |
| return s.evalFloat(typ, n) |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| return s.evalInteger(typ, n) |
| case reflect.Interface: |
| if typ.NumMethod() == 0 { |
| return s.evalEmptyInterface(dot, n) |
| } |
| case reflect.Struct: |
| if typ == reflectValueType { |
| return reflect.ValueOf(s.evalEmptyInterface(dot, n)) |
| } |
| case reflect.String: |
| return s.evalString(typ, n) |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| return s.evalUnsignedInteger(typ, n) |
| } |
| s.errorf("can't handle %s for arg of type %s", n, typ) |
| panic("not reached") |
| } |
| |
| func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { |
| s.at(n) |
| if n, ok := n.(*parse.BoolNode); ok { |
| value := reflect.New(typ).Elem() |
| value.SetBool(n.True) |
| return value |
| } |
| s.errorf("expected bool; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { |
| s.at(n) |
| if n, ok := n.(*parse.StringNode); ok { |
| value := reflect.New(typ).Elem() |
| value.SetString(n.Text) |
| return value |
| } |
| s.errorf("expected string; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { |
| s.at(n) |
| if n, ok := n.(*parse.NumberNode); ok && n.IsInt { |
| value := reflect.New(typ).Elem() |
| value.SetInt(n.Int64) |
| return value |
| } |
| s.errorf("expected integer; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { |
| s.at(n) |
| if n, ok := n.(*parse.NumberNode); ok && n.IsUint { |
| value := reflect.New(typ).Elem() |
| value.SetUint(n.Uint64) |
| return value |
| } |
| s.errorf("expected unsigned integer; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { |
| s.at(n) |
| if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { |
| value := reflect.New(typ).Elem() |
| value.SetFloat(n.Float64) |
| return value |
| } |
| s.errorf("expected float; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { |
| if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { |
| value := reflect.New(typ).Elem() |
| value.SetComplex(n.Complex128) |
| return value |
| } |
| s.errorf("expected complex; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { |
| s.at(n) |
| switch n := n.(type) { |
| case *parse.BoolNode: |
| return reflect.ValueOf(n.True) |
| case *parse.DotNode: |
| return dot |
| case *parse.FieldNode: |
| return s.evalFieldNode(dot, n, nil, missingVal) |
| case *parse.IdentifierNode: |
| return s.evalFunction(dot, n, n, nil, missingVal) |
| case *parse.NilNode: |
| // NilNode is handled in evalArg, the only place that calls here. |
| s.errorf("evalEmptyInterface: nil (can't happen)") |
| case *parse.NumberNode: |
| return s.idealConstant(n) |
| case *parse.StringNode: |
| return reflect.ValueOf(n.Text) |
| case *parse.VariableNode: |
| return s.evalVariableNode(dot, n, nil, missingVal) |
| case *parse.PipeNode: |
| return s.evalPipeline(dot, n) |
| } |
| s.errorf("can't handle assignment of %s to empty interface argument", n) |
| panic("not reached") |
| } |
| |
| // indirect returns the item at the end of indirection, and a bool to indicate |
| // if it's nil. If the returned bool is true, the returned value's kind will be |
| // either a pointer or interface. |
| func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { |
| for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { |
| if v.IsNil() { |
| return v, true |
| } |
| } |
| return v, false |
| } |
| |
| // indirectInterface returns the concrete value in an interface value, |
| // or else the zero reflect.Value. |
| // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): |
| // the fact that x was an interface value is forgotten. |
| func indirectInterface(v reflect.Value) reflect.Value { |
| if v.Kind() != reflect.Interface { |
| return v |
| } |
| if v.IsNil() { |
| return reflect.Value{} |
| } |
| return v.Elem() |
| } |
| |
| // printValue writes the textual representation of the value to the output of |
| // the template. |
| func (s *state) printValue(n parse.Node, v reflect.Value) { |
| s.at(n) |
| iface, ok := printableValue(v) |
| if !ok { |
| s.errorf("can't print %s of type %s", n, v.Type()) |
| } |
| _, err := fmt.Fprint(s.wr, iface) |
| if err != nil { |
| s.writeError(err) |
| } |
| } |
| |
| // printableValue returns the, possibly indirected, interface value inside v that |
| // is best for a call to formatted printer. |
| func printableValue(v reflect.Value) (interface{}, bool) { |
| if v.Kind() == reflect.Ptr { |
| v, _ = indirect(v) // fmt.Fprint handles nil. |
| } |
| if !v.IsValid() { |
| return "<no value>", true |
| } |
| |
| if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { |
| if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { |
| v = v.Addr() |
| } else { |
| switch v.Kind() { |
| case reflect.Chan, reflect.Func: |
| return nil, false |
| } |
| } |
| } |
| return v.Interface(), true |
| } |