| // Copyright (c) 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package field implements fast arithmetic modulo 2^255-19. |
| package field |
| |
| import ( |
| "crypto/subtle" |
| "encoding/binary" |
| "math/bits" |
| ) |
| |
| // Element represents an element of the field GF(2^255-19). Note that this |
| // is not a cryptographically secure group, and should only be used to interact |
| // with edwards25519.Point coordinates. |
| // |
| // This type works similarly to math/big.Int, and all arguments and receivers |
| // are allowed to alias. |
| // |
| // The zero value is a valid zero element. |
| type Element struct { |
| // An element t represents the integer |
| // t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204 |
| // |
| // Between operations, all limbs are expected to be lower than 2^52. |
| l0 uint64 |
| l1 uint64 |
| l2 uint64 |
| l3 uint64 |
| l4 uint64 |
| } |
| |
| const maskLow51Bits uint64 = (1 << 51) - 1 |
| |
| var feZero = &Element{0, 0, 0, 0, 0} |
| |
| // Zero sets v = 0, and returns v. |
| func (v *Element) Zero() *Element { |
| *v = *feZero |
| return v |
| } |
| |
| var feOne = &Element{1, 0, 0, 0, 0} |
| |
| // One sets v = 1, and returns v. |
| func (v *Element) One() *Element { |
| *v = *feOne |
| return v |
| } |
| |
| // reduce reduces v modulo 2^255 - 19 and returns it. |
| func (v *Element) reduce() *Element { |
| v.carryPropagate() |
| |
| // After the light reduction we now have a field element representation |
| // v < 2^255 + 2^13 * 19, but need v < 2^255 - 19. |
| |
| // If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1, |
| // generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise. |
| c := (v.l0 + 19) >> 51 |
| c = (v.l1 + c) >> 51 |
| c = (v.l2 + c) >> 51 |
| c = (v.l3 + c) >> 51 |
| c = (v.l4 + c) >> 51 |
| |
| // If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's |
| // effectively applying the reduction identity to the carry. |
| v.l0 += 19 * c |
| |
| v.l1 += v.l0 >> 51 |
| v.l0 = v.l0 & maskLow51Bits |
| v.l2 += v.l1 >> 51 |
| v.l1 = v.l1 & maskLow51Bits |
| v.l3 += v.l2 >> 51 |
| v.l2 = v.l2 & maskLow51Bits |
| v.l4 += v.l3 >> 51 |
| v.l3 = v.l3 & maskLow51Bits |
| // no additional carry |
| v.l4 = v.l4 & maskLow51Bits |
| |
| return v |
| } |
| |
| // Add sets v = a + b, and returns v. |
| func (v *Element) Add(a, b *Element) *Element { |
| v.l0 = a.l0 + b.l0 |
| v.l1 = a.l1 + b.l1 |
| v.l2 = a.l2 + b.l2 |
| v.l3 = a.l3 + b.l3 |
| v.l4 = a.l4 + b.l4 |
| // Using the generic implementation here is actually faster than the |
| // assembly. Probably because the body of this function is so simple that |
| // the compiler can figure out better optimizations by inlining the carry |
| // propagation. |
| return v.carryPropagateGeneric() |
| } |
| |
| // Subtract sets v = a - b, and returns v. |
| func (v *Element) Subtract(a, b *Element) *Element { |
| // We first add 2 * p, to guarantee the subtraction won't underflow, and |
| // then subtract b (which can be up to 2^255 + 2^13 * 19). |
| v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0 |
| v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1 |
| v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2 |
| v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3 |
| v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4 |
| return v.carryPropagate() |
| } |
| |
| // Negate sets v = -a, and returns v. |
| func (v *Element) Negate(a *Element) *Element { |
| return v.Subtract(feZero, a) |
| } |
| |
| // Invert sets v = 1/z mod p, and returns v. |
| // |
| // If z == 0, Invert returns v = 0. |
| func (v *Element) Invert(z *Element) *Element { |
| // Inversion is implemented as exponentiation with exponent p − 2. It uses the |
| // same sequence of 255 squarings and 11 multiplications as [Curve25519]. |
| var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element |
| |
| z2.Square(z) // 2 |
| t.Square(&z2) // 4 |
| t.Square(&t) // 8 |
| z9.Multiply(&t, z) // 9 |
| z11.Multiply(&z9, &z2) // 11 |
| t.Square(&z11) // 22 |
| z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0 |
| |
| t.Square(&z2_5_0) // 2^6 - 2^1 |
| for i := 0; i < 4; i++ { |
| t.Square(&t) // 2^10 - 2^5 |
| } |
| z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0 |
| |
| t.Square(&z2_10_0) // 2^11 - 2^1 |
| for i := 0; i < 9; i++ { |
| t.Square(&t) // 2^20 - 2^10 |
| } |
| z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0 |
| |
| t.Square(&z2_20_0) // 2^21 - 2^1 |
| for i := 0; i < 19; i++ { |
| t.Square(&t) // 2^40 - 2^20 |
| } |
| t.Multiply(&t, &z2_20_0) // 2^40 - 2^0 |
| |
| t.Square(&t) // 2^41 - 2^1 |
| for i := 0; i < 9; i++ { |
| t.Square(&t) // 2^50 - 2^10 |
| } |
| z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0 |
| |
| t.Square(&z2_50_0) // 2^51 - 2^1 |
| for i := 0; i < 49; i++ { |
| t.Square(&t) // 2^100 - 2^50 |
| } |
| z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0 |
| |
| t.Square(&z2_100_0) // 2^101 - 2^1 |
| for i := 0; i < 99; i++ { |
| t.Square(&t) // 2^200 - 2^100 |
| } |
| t.Multiply(&t, &z2_100_0) // 2^200 - 2^0 |
| |
| t.Square(&t) // 2^201 - 2^1 |
| for i := 0; i < 49; i++ { |
| t.Square(&t) // 2^250 - 2^50 |
| } |
| t.Multiply(&t, &z2_50_0) // 2^250 - 2^0 |
| |
| t.Square(&t) // 2^251 - 2^1 |
| t.Square(&t) // 2^252 - 2^2 |
| t.Square(&t) // 2^253 - 2^3 |
| t.Square(&t) // 2^254 - 2^4 |
| t.Square(&t) // 2^255 - 2^5 |
| |
| return v.Multiply(&t, &z11) // 2^255 - 21 |
| } |
| |
| // Set sets v = a, and returns v. |
| func (v *Element) Set(a *Element) *Element { |
| *v = *a |
| return v |
| } |
| |
| // SetBytes sets v to x, which must be a 32-byte little-endian encoding. |
| // |
| // Consistent with RFC 7748, the most significant bit (the high bit of the |
| // last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1) |
| // are accepted. Note that this is laxer than specified by RFC 8032. |
| func (v *Element) SetBytes(x []byte) *Element { |
| if len(x) != 32 { |
| panic("edwards25519: invalid field element input size") |
| } |
| |
| // Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51). |
| v.l0 = binary.LittleEndian.Uint64(x[0:8]) |
| v.l0 &= maskLow51Bits |
| // Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51). |
| v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3 |
| v.l1 &= maskLow51Bits |
| // Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51). |
| v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6 |
| v.l2 &= maskLow51Bits |
| // Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51). |
| v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1 |
| v.l3 &= maskLow51Bits |
| // Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51). |
| // Note: not bytes 25:33, shift 4, to avoid overread. |
| v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12 |
| v.l4 &= maskLow51Bits |
| |
| return v |
| } |
| |
| // Bytes returns the canonical 32-byte little-endian encoding of v. |
| func (v *Element) Bytes() []byte { |
| // This function is outlined to make the allocations inline in the caller |
| // rather than happen on the heap. |
| var out [32]byte |
| return v.bytes(&out) |
| } |
| |
| func (v *Element) bytes(out *[32]byte) []byte { |
| t := *v |
| t.reduce() |
| |
| var buf [8]byte |
| for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} { |
| bitsOffset := i * 51 |
| binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8)) |
| for i, bb := range buf { |
| off := bitsOffset/8 + i |
| if off >= len(out) { |
| break |
| } |
| out[off] |= bb |
| } |
| } |
| |
| return out[:] |
| } |
| |
| // Equal returns 1 if v and u are equal, and 0 otherwise. |
| func (v *Element) Equal(u *Element) int { |
| sa, sv := u.Bytes(), v.Bytes() |
| return subtle.ConstantTimeCompare(sa, sv) |
| } |
| |
| // mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise. |
| func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) } |
| |
| // Select sets v to a if cond == 1, and to b if cond == 0. |
| func (v *Element) Select(a, b *Element, cond int) *Element { |
| m := mask64Bits(cond) |
| v.l0 = (m & a.l0) | (^m & b.l0) |
| v.l1 = (m & a.l1) | (^m & b.l1) |
| v.l2 = (m & a.l2) | (^m & b.l2) |
| v.l3 = (m & a.l3) | (^m & b.l3) |
| v.l4 = (m & a.l4) | (^m & b.l4) |
| return v |
| } |
| |
| // Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v. |
| func (v *Element) Swap(u *Element, cond int) { |
| m := mask64Bits(cond) |
| t := m & (v.l0 ^ u.l0) |
| v.l0 ^= t |
| u.l0 ^= t |
| t = m & (v.l1 ^ u.l1) |
| v.l1 ^= t |
| u.l1 ^= t |
| t = m & (v.l2 ^ u.l2) |
| v.l2 ^= t |
| u.l2 ^= t |
| t = m & (v.l3 ^ u.l3) |
| v.l3 ^= t |
| u.l3 ^= t |
| t = m & (v.l4 ^ u.l4) |
| v.l4 ^= t |
| u.l4 ^= t |
| } |
| |
| // IsNegative returns 1 if v is negative, and 0 otherwise. |
| func (v *Element) IsNegative() int { |
| return int(v.Bytes()[0] & 1) |
| } |
| |
| // Absolute sets v to |u|, and returns v. |
| func (v *Element) Absolute(u *Element) *Element { |
| return v.Select(new(Element).Negate(u), u, u.IsNegative()) |
| } |
| |
| // Multiply sets v = x * y, and returns v. |
| func (v *Element) Multiply(x, y *Element) *Element { |
| feMul(v, x, y) |
| return v |
| } |
| |
| // Square sets v = x * x, and returns v. |
| func (v *Element) Square(x *Element) *Element { |
| feSquare(v, x) |
| return v |
| } |
| |
| // Mult32 sets v = x * y, and returns v. |
| func (v *Element) Mult32(x *Element, y uint32) *Element { |
| x0lo, x0hi := mul51(x.l0, y) |
| x1lo, x1hi := mul51(x.l1, y) |
| x2lo, x2hi := mul51(x.l2, y) |
| x3lo, x3hi := mul51(x.l3, y) |
| x4lo, x4hi := mul51(x.l4, y) |
| v.l0 = x0lo + 19*x4hi // carried over per the reduction identity |
| v.l1 = x1lo + x0hi |
| v.l2 = x2lo + x1hi |
| v.l3 = x3lo + x2hi |
| v.l4 = x4lo + x3hi |
| // The hi portions are going to be only 32 bits, plus any previous excess, |
| // so we can skip the carry propagation. |
| return v |
| } |
| |
| // mul51 returns lo + hi * 2⁵¹ = a * b. |
| func mul51(a uint64, b uint32) (lo uint64, hi uint64) { |
| mh, ml := bits.Mul64(a, uint64(b)) |
| lo = ml & maskLow51Bits |
| hi = (mh << 13) | (ml >> 51) |
| return |
| } |
| |
| // Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3. |
| func (v *Element) Pow22523(x *Element) *Element { |
| var t0, t1, t2 Element |
| |
| t0.Square(x) // x^2 |
| t1.Square(&t0) // x^4 |
| t1.Square(&t1) // x^8 |
| t1.Multiply(x, &t1) // x^9 |
| t0.Multiply(&t0, &t1) // x^11 |
| t0.Square(&t0) // x^22 |
| t0.Multiply(&t1, &t0) // x^31 |
| t1.Square(&t0) // x^62 |
| for i := 1; i < 5; i++ { // x^992 |
| t1.Square(&t1) |
| } |
| t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1 |
| t1.Square(&t0) // 2^11 - 2 |
| for i := 1; i < 10; i++ { // 2^20 - 2^10 |
| t1.Square(&t1) |
| } |
| t1.Multiply(&t1, &t0) // 2^20 - 1 |
| t2.Square(&t1) // 2^21 - 2 |
| for i := 1; i < 20; i++ { // 2^40 - 2^20 |
| t2.Square(&t2) |
| } |
| t1.Multiply(&t2, &t1) // 2^40 - 1 |
| t1.Square(&t1) // 2^41 - 2 |
| for i := 1; i < 10; i++ { // 2^50 - 2^10 |
| t1.Square(&t1) |
| } |
| t0.Multiply(&t1, &t0) // 2^50 - 1 |
| t1.Square(&t0) // 2^51 - 2 |
| for i := 1; i < 50; i++ { // 2^100 - 2^50 |
| t1.Square(&t1) |
| } |
| t1.Multiply(&t1, &t0) // 2^100 - 1 |
| t2.Square(&t1) // 2^101 - 2 |
| for i := 1; i < 100; i++ { // 2^200 - 2^100 |
| t2.Square(&t2) |
| } |
| t1.Multiply(&t2, &t1) // 2^200 - 1 |
| t1.Square(&t1) // 2^201 - 2 |
| for i := 1; i < 50; i++ { // 2^250 - 2^50 |
| t1.Square(&t1) |
| } |
| t0.Multiply(&t1, &t0) // 2^250 - 1 |
| t0.Square(&t0) // 2^251 - 2 |
| t0.Square(&t0) // 2^252 - 4 |
| return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3) |
| } |
| |
| // sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion. |
| var sqrtM1 = &Element{1718705420411056, 234908883556509, |
| 2233514472574048, 2117202627021982, 765476049583133} |
| |
| // SqrtRatio sets r to the non-negative square root of the ratio of u and v. |
| // |
| // If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio |
| // sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00, |
| // and returns r and 0. |
| func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) { |
| var a, b Element |
| |
| // r = (u * v3) * (u * v7)^((p-5)/8) |
| v2 := a.Square(v) |
| uv3 := b.Multiply(u, b.Multiply(v2, v)) |
| uv7 := a.Multiply(uv3, a.Square(v2)) |
| r.Multiply(uv3, r.Pow22523(uv7)) |
| |
| check := a.Multiply(v, a.Square(r)) // check = v * r^2 |
| |
| uNeg := b.Negate(u) |
| correctSignSqrt := check.Equal(u) |
| flippedSignSqrt := check.Equal(uNeg) |
| flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1)) |
| |
| rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r |
| // r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r) |
| r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI) |
| |
| r.Absolute(r) // Choose the nonnegative square root. |
| return r, correctSignSqrt | flippedSignSqrt |
| } |