| // Copyright (c) 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package edwards25519 |
| |
| import ( |
| "crypto/ed25519/internal/edwards25519/field" |
| "errors" |
| ) |
| |
| // Point types. |
| |
| type projP1xP1 struct { |
| X, Y, Z, T field.Element |
| } |
| |
| type projP2 struct { |
| X, Y, Z field.Element |
| } |
| |
| // Point represents a point on the edwards25519 curve. |
| // |
| // This type works similarly to math/big.Int, and all arguments and receivers |
| // are allowed to alias. |
| // |
| // The zero value is NOT valid, and it may be used only as a receiver. |
| type Point struct { |
| // The point is internally represented in extended coordinates (X, Y, Z, T) |
| // where x = X/Z, y = Y/Z, and xy = T/Z per https://eprint.iacr.org/2008/522. |
| x, y, z, t field.Element |
| |
| // Make the type not comparable (i.e. used with == or as a map key), as |
| // equivalent points can be represented by different Go values. |
| _ incomparable |
| } |
| |
| type incomparable [0]func() |
| |
| func checkInitialized(points ...*Point) { |
| for _, p := range points { |
| if p.x == (field.Element{}) && p.y == (field.Element{}) { |
| panic("edwards25519: use of uninitialized Point") |
| } |
| } |
| } |
| |
| type projCached struct { |
| YplusX, YminusX, Z, T2d field.Element |
| } |
| |
| type affineCached struct { |
| YplusX, YminusX, T2d field.Element |
| } |
| |
| // Constructors. |
| |
| func (v *projP2) Zero() *projP2 { |
| v.X.Zero() |
| v.Y.One() |
| v.Z.One() |
| return v |
| } |
| |
| // identity is the point at infinity. |
| var identity, _ = new(Point).SetBytes([]byte{ |
| 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}) |
| |
| // NewIdentityPoint returns a new Point set to the identity. |
| func NewIdentityPoint() *Point { |
| return new(Point).Set(identity) |
| } |
| |
| // generator is the canonical curve basepoint. See TestGenerator for the |
| // correspondence of this encoding with the values in RFC 8032. |
| var generator, _ = new(Point).SetBytes([]byte{ |
| 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, |
| 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, |
| 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, |
| 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}) |
| |
| // NewGeneratorPoint returns a new Point set to the canonical generator. |
| func NewGeneratorPoint() *Point { |
| return new(Point).Set(generator) |
| } |
| |
| func (v *projCached) Zero() *projCached { |
| v.YplusX.One() |
| v.YminusX.One() |
| v.Z.One() |
| v.T2d.Zero() |
| return v |
| } |
| |
| func (v *affineCached) Zero() *affineCached { |
| v.YplusX.One() |
| v.YminusX.One() |
| v.T2d.Zero() |
| return v |
| } |
| |
| // Assignments. |
| |
| // Set sets v = u, and returns v. |
| func (v *Point) Set(u *Point) *Point { |
| *v = *u |
| return v |
| } |
| |
| // Encoding. |
| |
| // Bytes returns the canonical 32-byte encoding of v, according to RFC 8032, |
| // Section 5.1.2. |
| func (v *Point) Bytes() []byte { |
| // This function is outlined to make the allocations inline in the caller |
| // rather than happen on the heap. |
| var buf [32]byte |
| return v.bytes(&buf) |
| } |
| |
| func (v *Point) bytes(buf *[32]byte) []byte { |
| checkInitialized(v) |
| |
| var zInv, x, y field.Element |
| zInv.Invert(&v.z) // zInv = 1 / Z |
| x.Multiply(&v.x, &zInv) // x = X / Z |
| y.Multiply(&v.y, &zInv) // y = Y / Z |
| |
| out := copyFieldElement(buf, &y) |
| out[31] |= byte(x.IsNegative() << 7) |
| return out |
| } |
| |
| var feOne = new(field.Element).One() |
| |
| // SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not |
| // represent a valid point on the curve, SetBytes returns nil and an error and |
| // the receiver is unchanged. Otherwise, SetBytes returns v. |
| // |
| // Note that SetBytes accepts all non-canonical encodings of valid points. |
| // That is, it follows decoding rules that match most implementations in |
| // the ecosystem rather than RFC 8032. |
| func (v *Point) SetBytes(x []byte) (*Point, error) { |
| // Specifically, the non-canonical encodings that are accepted are |
| // 1) the ones where the field element is not reduced (see the |
| // (*field.Element).SetBytes docs) and |
| // 2) the ones where the x-coordinate is zero and the sign bit is set. |
| // |
| // This is consistent with crypto/ed25519/internal/edwards25519. Read more |
| // at https://hdevalence.ca/blog/2020-10-04-its-25519am, specifically the |
| // "Canonical A, R" section. |
| |
| if len(x) != 32 { |
| return nil, errors.New("edwards25519: invalid point encoding length") |
| } |
| y := new(field.Element).SetBytes(x) |
| |
| // -x² + y² = 1 + dx²y² |
| // x² + dx²y² = x²(dy² + 1) = y² - 1 |
| // x² = (y² - 1) / (dy² + 1) |
| |
| // u = y² - 1 |
| y2 := new(field.Element).Square(y) |
| u := new(field.Element).Subtract(y2, feOne) |
| |
| // v = dy² + 1 |
| vv := new(field.Element).Multiply(y2, d) |
| vv = vv.Add(vv, feOne) |
| |
| // x = +√(u/v) |
| xx, wasSquare := new(field.Element).SqrtRatio(u, vv) |
| if wasSquare == 0 { |
| return nil, errors.New("edwards25519: invalid point encoding") |
| } |
| |
| // Select the negative square root if the sign bit is set. |
| xxNeg := new(field.Element).Negate(xx) |
| xx = xx.Select(xxNeg, xx, int(x[31]>>7)) |
| |
| v.x.Set(xx) |
| v.y.Set(y) |
| v.z.One() |
| v.t.Multiply(xx, y) // xy = T / Z |
| |
| return v, nil |
| } |
| |
| func copyFieldElement(buf *[32]byte, v *field.Element) []byte { |
| copy(buf[:], v.Bytes()) |
| return buf[:] |
| } |
| |
| // Conversions. |
| |
| func (v *projP2) FromP1xP1(p *projP1xP1) *projP2 { |
| v.X.Multiply(&p.X, &p.T) |
| v.Y.Multiply(&p.Y, &p.Z) |
| v.Z.Multiply(&p.Z, &p.T) |
| return v |
| } |
| |
| func (v *projP2) FromP3(p *Point) *projP2 { |
| v.X.Set(&p.x) |
| v.Y.Set(&p.y) |
| v.Z.Set(&p.z) |
| return v |
| } |
| |
| func (v *Point) fromP1xP1(p *projP1xP1) *Point { |
| v.x.Multiply(&p.X, &p.T) |
| v.y.Multiply(&p.Y, &p.Z) |
| v.z.Multiply(&p.Z, &p.T) |
| v.t.Multiply(&p.X, &p.Y) |
| return v |
| } |
| |
| func (v *Point) fromP2(p *projP2) *Point { |
| v.x.Multiply(&p.X, &p.Z) |
| v.y.Multiply(&p.Y, &p.Z) |
| v.z.Square(&p.Z) |
| v.t.Multiply(&p.X, &p.Y) |
| return v |
| } |
| |
| // d is a constant in the curve equation. |
| var d = new(field.Element).SetBytes([]byte{ |
| 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75, |
| 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00, |
| 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c, |
| 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52}) |
| var d2 = new(field.Element).Add(d, d) |
| |
| func (v *projCached) FromP3(p *Point) *projCached { |
| v.YplusX.Add(&p.y, &p.x) |
| v.YminusX.Subtract(&p.y, &p.x) |
| v.Z.Set(&p.z) |
| v.T2d.Multiply(&p.t, d2) |
| return v |
| } |
| |
| func (v *affineCached) FromP3(p *Point) *affineCached { |
| v.YplusX.Add(&p.y, &p.x) |
| v.YminusX.Subtract(&p.y, &p.x) |
| v.T2d.Multiply(&p.t, d2) |
| |
| var invZ field.Element |
| invZ.Invert(&p.z) |
| v.YplusX.Multiply(&v.YplusX, &invZ) |
| v.YminusX.Multiply(&v.YminusX, &invZ) |
| v.T2d.Multiply(&v.T2d, &invZ) |
| return v |
| } |
| |
| // (Re)addition and subtraction. |
| |
| // Add sets v = p + q, and returns v. |
| func (v *Point) Add(p, q *Point) *Point { |
| checkInitialized(p, q) |
| qCached := new(projCached).FromP3(q) |
| result := new(projP1xP1).Add(p, qCached) |
| return v.fromP1xP1(result) |
| } |
| |
| // Subtract sets v = p - q, and returns v. |
| func (v *Point) Subtract(p, q *Point) *Point { |
| checkInitialized(p, q) |
| qCached := new(projCached).FromP3(q) |
| result := new(projP1xP1).Sub(p, qCached) |
| return v.fromP1xP1(result) |
| } |
| |
| func (v *projP1xP1) Add(p *Point, q *projCached) *projP1xP1 { |
| var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element |
| |
| YplusX.Add(&p.y, &p.x) |
| YminusX.Subtract(&p.y, &p.x) |
| |
| PP.Multiply(&YplusX, &q.YplusX) |
| MM.Multiply(&YminusX, &q.YminusX) |
| TT2d.Multiply(&p.t, &q.T2d) |
| ZZ2.Multiply(&p.z, &q.Z) |
| |
| ZZ2.Add(&ZZ2, &ZZ2) |
| |
| v.X.Subtract(&PP, &MM) |
| v.Y.Add(&PP, &MM) |
| v.Z.Add(&ZZ2, &TT2d) |
| v.T.Subtract(&ZZ2, &TT2d) |
| return v |
| } |
| |
| func (v *projP1xP1) Sub(p *Point, q *projCached) *projP1xP1 { |
| var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element |
| |
| YplusX.Add(&p.y, &p.x) |
| YminusX.Subtract(&p.y, &p.x) |
| |
| PP.Multiply(&YplusX, &q.YminusX) // flipped sign |
| MM.Multiply(&YminusX, &q.YplusX) // flipped sign |
| TT2d.Multiply(&p.t, &q.T2d) |
| ZZ2.Multiply(&p.z, &q.Z) |
| |
| ZZ2.Add(&ZZ2, &ZZ2) |
| |
| v.X.Subtract(&PP, &MM) |
| v.Y.Add(&PP, &MM) |
| v.Z.Subtract(&ZZ2, &TT2d) // flipped sign |
| v.T.Add(&ZZ2, &TT2d) // flipped sign |
| return v |
| } |
| |
| func (v *projP1xP1) AddAffine(p *Point, q *affineCached) *projP1xP1 { |
| var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element |
| |
| YplusX.Add(&p.y, &p.x) |
| YminusX.Subtract(&p.y, &p.x) |
| |
| PP.Multiply(&YplusX, &q.YplusX) |
| MM.Multiply(&YminusX, &q.YminusX) |
| TT2d.Multiply(&p.t, &q.T2d) |
| |
| Z2.Add(&p.z, &p.z) |
| |
| v.X.Subtract(&PP, &MM) |
| v.Y.Add(&PP, &MM) |
| v.Z.Add(&Z2, &TT2d) |
| v.T.Subtract(&Z2, &TT2d) |
| return v |
| } |
| |
| func (v *projP1xP1) SubAffine(p *Point, q *affineCached) *projP1xP1 { |
| var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element |
| |
| YplusX.Add(&p.y, &p.x) |
| YminusX.Subtract(&p.y, &p.x) |
| |
| PP.Multiply(&YplusX, &q.YminusX) // flipped sign |
| MM.Multiply(&YminusX, &q.YplusX) // flipped sign |
| TT2d.Multiply(&p.t, &q.T2d) |
| |
| Z2.Add(&p.z, &p.z) |
| |
| v.X.Subtract(&PP, &MM) |
| v.Y.Add(&PP, &MM) |
| v.Z.Subtract(&Z2, &TT2d) // flipped sign |
| v.T.Add(&Z2, &TT2d) // flipped sign |
| return v |
| } |
| |
| // Doubling. |
| |
| func (v *projP1xP1) Double(p *projP2) *projP1xP1 { |
| var XX, YY, ZZ2, XplusYsq field.Element |
| |
| XX.Square(&p.X) |
| YY.Square(&p.Y) |
| ZZ2.Square(&p.Z) |
| ZZ2.Add(&ZZ2, &ZZ2) |
| XplusYsq.Add(&p.X, &p.Y) |
| XplusYsq.Square(&XplusYsq) |
| |
| v.Y.Add(&YY, &XX) |
| v.Z.Subtract(&YY, &XX) |
| |
| v.X.Subtract(&XplusYsq, &v.Y) |
| v.T.Subtract(&ZZ2, &v.Z) |
| return v |
| } |
| |
| // Negation. |
| |
| // Negate sets v = -p, and returns v. |
| func (v *Point) Negate(p *Point) *Point { |
| checkInitialized(p) |
| v.x.Negate(&p.x) |
| v.y.Set(&p.y) |
| v.z.Set(&p.z) |
| v.t.Negate(&p.t) |
| return v |
| } |
| |
| // Equal returns 1 if v is equivalent to u, and 0 otherwise. |
| func (v *Point) Equal(u *Point) int { |
| checkInitialized(v, u) |
| |
| var t1, t2, t3, t4 field.Element |
| t1.Multiply(&v.x, &u.z) |
| t2.Multiply(&u.x, &v.z) |
| t3.Multiply(&v.y, &u.z) |
| t4.Multiply(&u.y, &v.z) |
| |
| return t1.Equal(&t2) & t3.Equal(&t4) |
| } |
| |
| // Constant-time operations |
| |
| // Select sets v to a if cond == 1 and to b if cond == 0. |
| func (v *projCached) Select(a, b *projCached, cond int) *projCached { |
| v.YplusX.Select(&a.YplusX, &b.YplusX, cond) |
| v.YminusX.Select(&a.YminusX, &b.YminusX, cond) |
| v.Z.Select(&a.Z, &b.Z, cond) |
| v.T2d.Select(&a.T2d, &b.T2d, cond) |
| return v |
| } |
| |
| // Select sets v to a if cond == 1 and to b if cond == 0. |
| func (v *affineCached) Select(a, b *affineCached, cond int) *affineCached { |
| v.YplusX.Select(&a.YplusX, &b.YplusX, cond) |
| v.YminusX.Select(&a.YminusX, &b.YminusX, cond) |
| v.T2d.Select(&a.T2d, &b.T2d, cond) |
| return v |
| } |
| |
| // CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0. |
| func (v *projCached) CondNeg(cond int) *projCached { |
| v.YplusX.Swap(&v.YminusX, cond) |
| v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond) |
| return v |
| } |
| |
| // CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0. |
| func (v *affineCached) CondNeg(cond int) *affineCached { |
| v.YplusX.Swap(&v.YminusX, cond) |
| v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond) |
| return v |
| } |