| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "go_asm.h" |
| #include "go_tls.h" |
| #include "funcdata.h" |
| #include "textflag.h" |
| |
| TEXT runtime·rt0_go(SB),NOSPLIT,$0 |
| // copy arguments forward on an even stack |
| MOVL argc+0(FP), AX |
| MOVL argv+4(FP), BX |
| SUBL $128, SP // plenty of scratch |
| ANDL $~15, SP |
| MOVL AX, 120(SP) // save argc, argv away |
| MOVL BX, 124(SP) |
| |
| // set default stack bounds. |
| // _cgo_init may update stackguard. |
| MOVL $runtime·g0(SB), BP |
| LEAL (-64*1024+104)(SP), BX |
| MOVL BX, g_stackguard0(BP) |
| MOVL BX, g_stackguard1(BP) |
| MOVL BX, (g_stack+stack_lo)(BP) |
| MOVL SP, (g_stack+stack_hi)(BP) |
| |
| // find out information about the processor we're on |
| MOVL $0, AX |
| CPUID |
| CMPL AX, $0 |
| JE nocpuinfo |
| |
| // Figure out how to serialize RDTSC. |
| // On Intel processors LFENCE is enough. AMD requires MFENCE. |
| // Don't know about the rest, so let's do MFENCE. |
| CMPL BX, $0x756E6547 // "Genu" |
| JNE notintel |
| CMPL DX, $0x49656E69 // "ineI" |
| JNE notintel |
| CMPL CX, $0x6C65746E // "ntel" |
| JNE notintel |
| MOVB $1, runtime·lfenceBeforeRdtsc(SB) |
| notintel: |
| |
| MOVL $1, AX |
| CPUID |
| MOVL CX, runtime·cpuid_ecx(SB) |
| MOVL DX, runtime·cpuid_edx(SB) |
| nocpuinfo: |
| |
| // if there is an _cgo_init, call it to let it |
| // initialize and to set up GS. if not, |
| // we set up GS ourselves. |
| MOVL _cgo_init(SB), AX |
| TESTL AX, AX |
| JZ needtls |
| MOVL $setg_gcc<>(SB), BX |
| MOVL BX, 4(SP) |
| MOVL BP, 0(SP) |
| CALL AX |
| |
| // update stackguard after _cgo_init |
| MOVL $runtime·g0(SB), CX |
| MOVL (g_stack+stack_lo)(CX), AX |
| ADDL $const__StackGuard, AX |
| MOVL AX, g_stackguard0(CX) |
| MOVL AX, g_stackguard1(CX) |
| |
| // skip runtime·ldt0setup(SB) and tls test after _cgo_init for non-windows |
| CMPL runtime·iswindows(SB), $0 |
| JEQ ok |
| needtls: |
| // skip runtime·ldt0setup(SB) and tls test on Plan 9 in all cases |
| CMPL runtime·isplan9(SB), $1 |
| JEQ ok |
| |
| // set up %gs |
| CALL runtime·ldt0setup(SB) |
| |
| // store through it, to make sure it works |
| get_tls(BX) |
| MOVL $0x123, g(BX) |
| MOVL runtime·tls0(SB), AX |
| CMPL AX, $0x123 |
| JEQ ok |
| MOVL AX, 0 // abort |
| ok: |
| // set up m and g "registers" |
| get_tls(BX) |
| LEAL runtime·g0(SB), CX |
| MOVL CX, g(BX) |
| LEAL runtime·m0(SB), AX |
| |
| // save m->g0 = g0 |
| MOVL CX, m_g0(AX) |
| // save g0->m = m0 |
| MOVL AX, g_m(CX) |
| |
| CALL runtime·emptyfunc(SB) // fault if stack check is wrong |
| |
| // convention is D is always cleared |
| CLD |
| |
| CALL runtime·check(SB) |
| |
| // saved argc, argv |
| MOVL 120(SP), AX |
| MOVL AX, 0(SP) |
| MOVL 124(SP), AX |
| MOVL AX, 4(SP) |
| CALL runtime·args(SB) |
| CALL runtime·osinit(SB) |
| CALL runtime·schedinit(SB) |
| |
| // create a new goroutine to start program |
| PUSHL $runtime·mainPC(SB) // entry |
| PUSHL $0 // arg size |
| CALL runtime·newproc(SB) |
| POPL AX |
| POPL AX |
| |
| // start this M |
| CALL runtime·mstart(SB) |
| |
| INT $3 |
| RET |
| |
| DATA runtime·mainPC+0(SB)/4,$runtime·main(SB) |
| GLOBL runtime·mainPC(SB),RODATA,$4 |
| |
| TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 |
| INT $3 |
| RET |
| |
| TEXT runtime·asminit(SB),NOSPLIT,$0-0 |
| // Linux and MinGW start the FPU in extended double precision. |
| // Other operating systems use double precision. |
| // Change to double precision to match them, |
| // and to match other hardware that only has double. |
| PUSHL $0x27F |
| FLDCW 0(SP) |
| POPL AX |
| RET |
| |
| /* |
| * go-routine |
| */ |
| |
| // void gosave(Gobuf*) |
| // save state in Gobuf; setjmp |
| TEXT runtime·gosave(SB), NOSPLIT, $0-4 |
| MOVL buf+0(FP), AX // gobuf |
| LEAL buf+0(FP), BX // caller's SP |
| MOVL BX, gobuf_sp(AX) |
| MOVL 0(SP), BX // caller's PC |
| MOVL BX, gobuf_pc(AX) |
| MOVL $0, gobuf_ret(AX) |
| MOVL $0, gobuf_ctxt(AX) |
| get_tls(CX) |
| MOVL g(CX), BX |
| MOVL BX, gobuf_g(AX) |
| RET |
| |
| // void gogo(Gobuf*) |
| // restore state from Gobuf; longjmp |
| TEXT runtime·gogo(SB), NOSPLIT, $0-4 |
| MOVL buf+0(FP), BX // gobuf |
| MOVL gobuf_g(BX), DX |
| MOVL 0(DX), CX // make sure g != nil |
| get_tls(CX) |
| MOVL DX, g(CX) |
| MOVL gobuf_sp(BX), SP // restore SP |
| MOVL gobuf_ret(BX), AX |
| MOVL gobuf_ctxt(BX), DX |
| MOVL $0, gobuf_sp(BX) // clear to help garbage collector |
| MOVL $0, gobuf_ret(BX) |
| MOVL $0, gobuf_ctxt(BX) |
| MOVL gobuf_pc(BX), BX |
| JMP BX |
| |
| // func mcall(fn func(*g)) |
| // Switch to m->g0's stack, call fn(g). |
| // Fn must never return. It should gogo(&g->sched) |
| // to keep running g. |
| TEXT runtime·mcall(SB), NOSPLIT, $0-4 |
| MOVL fn+0(FP), DI |
| |
| get_tls(CX) |
| MOVL g(CX), AX // save state in g->sched |
| MOVL 0(SP), BX // caller's PC |
| MOVL BX, (g_sched+gobuf_pc)(AX) |
| LEAL fn+0(FP), BX // caller's SP |
| MOVL BX, (g_sched+gobuf_sp)(AX) |
| MOVL AX, (g_sched+gobuf_g)(AX) |
| |
| // switch to m->g0 & its stack, call fn |
| MOVL g(CX), BX |
| MOVL g_m(BX), BX |
| MOVL m_g0(BX), SI |
| CMPL SI, AX // if g == m->g0 call badmcall |
| JNE 3(PC) |
| MOVL $runtime·badmcall(SB), AX |
| JMP AX |
| MOVL SI, g(CX) // g = m->g0 |
| MOVL (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp |
| PUSHL AX |
| MOVL DI, DX |
| MOVL 0(DI), DI |
| CALL DI |
| POPL AX |
| MOVL $runtime·badmcall2(SB), AX |
| JMP AX |
| RET |
| |
| // systemstack_switch is a dummy routine that systemstack leaves at the bottom |
| // of the G stack. We need to distinguish the routine that |
| // lives at the bottom of the G stack from the one that lives |
| // at the top of the system stack because the one at the top of |
| // the system stack terminates the stack walk (see topofstack()). |
| TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 |
| RET |
| |
| // func systemstack(fn func()) |
| TEXT runtime·systemstack(SB), NOSPLIT, $0-4 |
| MOVL fn+0(FP), DI // DI = fn |
| get_tls(CX) |
| MOVL g(CX), AX // AX = g |
| MOVL g_m(AX), BX // BX = m |
| |
| MOVL m_gsignal(BX), DX // DX = gsignal |
| CMPL AX, DX |
| JEQ noswitch |
| |
| MOVL m_g0(BX), DX // DX = g0 |
| CMPL AX, DX |
| JEQ noswitch |
| |
| MOVL m_curg(BX), BP |
| CMPL AX, BP |
| JEQ switch |
| |
| // Bad: g is not gsignal, not g0, not curg. What is it? |
| // Hide call from linker nosplit analysis. |
| MOVL $runtime·badsystemstack(SB), AX |
| CALL AX |
| |
| switch: |
| // save our state in g->sched. Pretend to |
| // be systemstack_switch if the G stack is scanned. |
| MOVL $runtime·systemstack_switch(SB), (g_sched+gobuf_pc)(AX) |
| MOVL SP, (g_sched+gobuf_sp)(AX) |
| MOVL AX, (g_sched+gobuf_g)(AX) |
| |
| // switch to g0 |
| MOVL DX, g(CX) |
| MOVL (g_sched+gobuf_sp)(DX), BX |
| // make it look like mstart called systemstack on g0, to stop traceback |
| SUBL $4, BX |
| MOVL $runtime·mstart(SB), DX |
| MOVL DX, 0(BX) |
| MOVL BX, SP |
| |
| // call target function |
| MOVL DI, DX |
| MOVL 0(DI), DI |
| CALL DI |
| |
| // switch back to g |
| get_tls(CX) |
| MOVL g(CX), AX |
| MOVL g_m(AX), BX |
| MOVL m_curg(BX), AX |
| MOVL AX, g(CX) |
| MOVL (g_sched+gobuf_sp)(AX), SP |
| MOVL $0, (g_sched+gobuf_sp)(AX) |
| RET |
| |
| noswitch: |
| // already on system stack, just call directly |
| MOVL DI, DX |
| MOVL 0(DI), DI |
| CALL DI |
| RET |
| |
| /* |
| * support for morestack |
| */ |
| |
| // Called during function prolog when more stack is needed. |
| // |
| // The traceback routines see morestack on a g0 as being |
| // the top of a stack (for example, morestack calling newstack |
| // calling the scheduler calling newm calling gc), so we must |
| // record an argument size. For that purpose, it has no arguments. |
| TEXT runtime·morestack(SB),NOSPLIT,$0-0 |
| // Cannot grow scheduler stack (m->g0). |
| get_tls(CX) |
| MOVL g(CX), BX |
| MOVL g_m(BX), BX |
| MOVL m_g0(BX), SI |
| CMPL g(CX), SI |
| JNE 2(PC) |
| INT $3 |
| |
| // Cannot grow signal stack. |
| MOVL m_gsignal(BX), SI |
| CMPL g(CX), SI |
| JNE 2(PC) |
| INT $3 |
| |
| // Called from f. |
| // Set m->morebuf to f's caller. |
| MOVL 4(SP), DI // f's caller's PC |
| MOVL DI, (m_morebuf+gobuf_pc)(BX) |
| LEAL 8(SP), CX // f's caller's SP |
| MOVL CX, (m_morebuf+gobuf_sp)(BX) |
| get_tls(CX) |
| MOVL g(CX), SI |
| MOVL SI, (m_morebuf+gobuf_g)(BX) |
| |
| // Set g->sched to context in f. |
| MOVL 0(SP), AX // f's PC |
| MOVL AX, (g_sched+gobuf_pc)(SI) |
| MOVL SI, (g_sched+gobuf_g)(SI) |
| LEAL 4(SP), AX // f's SP |
| MOVL AX, (g_sched+gobuf_sp)(SI) |
| MOVL DX, (g_sched+gobuf_ctxt)(SI) |
| |
| // Call newstack on m->g0's stack. |
| MOVL m_g0(BX), BP |
| MOVL BP, g(CX) |
| MOVL (g_sched+gobuf_sp)(BP), AX |
| MOVL -4(AX), BX // fault if CALL would, before smashing SP |
| MOVL AX, SP |
| CALL runtime·newstack(SB) |
| MOVL $0, 0x1003 // crash if newstack returns |
| RET |
| |
| TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0-0 |
| MOVL $0, DX |
| JMP runtime·morestack(SB) |
| |
| // reflectcall: call a function with the given argument list |
| // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). |
| // we don't have variable-sized frames, so we use a small number |
| // of constant-sized-frame functions to encode a few bits of size in the pc. |
| // Caution: ugly multiline assembly macros in your future! |
| |
| #define DISPATCH(NAME,MAXSIZE) \ |
| CMPL CX, $MAXSIZE; \ |
| JA 3(PC); \ |
| MOVL $NAME(SB), AX; \ |
| JMP AX |
| // Note: can't just "JMP NAME(SB)" - bad inlining results. |
| |
| TEXT reflect·call(SB), NOSPLIT, $0-0 |
| JMP ·reflectcall(SB) |
| |
| TEXT ·reflectcall(SB), NOSPLIT, $0-20 |
| MOVL argsize+12(FP), CX |
| DISPATCH(runtime·call16, 16) |
| DISPATCH(runtime·call32, 32) |
| DISPATCH(runtime·call64, 64) |
| DISPATCH(runtime·call128, 128) |
| DISPATCH(runtime·call256, 256) |
| DISPATCH(runtime·call512, 512) |
| DISPATCH(runtime·call1024, 1024) |
| DISPATCH(runtime·call2048, 2048) |
| DISPATCH(runtime·call4096, 4096) |
| DISPATCH(runtime·call8192, 8192) |
| DISPATCH(runtime·call16384, 16384) |
| DISPATCH(runtime·call32768, 32768) |
| DISPATCH(runtime·call65536, 65536) |
| DISPATCH(runtime·call131072, 131072) |
| DISPATCH(runtime·call262144, 262144) |
| DISPATCH(runtime·call524288, 524288) |
| DISPATCH(runtime·call1048576, 1048576) |
| DISPATCH(runtime·call2097152, 2097152) |
| DISPATCH(runtime·call4194304, 4194304) |
| DISPATCH(runtime·call8388608, 8388608) |
| DISPATCH(runtime·call16777216, 16777216) |
| DISPATCH(runtime·call33554432, 33554432) |
| DISPATCH(runtime·call67108864, 67108864) |
| DISPATCH(runtime·call134217728, 134217728) |
| DISPATCH(runtime·call268435456, 268435456) |
| DISPATCH(runtime·call536870912, 536870912) |
| DISPATCH(runtime·call1073741824, 1073741824) |
| MOVL $runtime·badreflectcall(SB), AX |
| JMP AX |
| |
| #define CALLFN(NAME,MAXSIZE) \ |
| TEXT NAME(SB), WRAPPER, $MAXSIZE-20; \ |
| NO_LOCAL_POINTERS; \ |
| /* copy arguments to stack */ \ |
| MOVL argptr+8(FP), SI; \ |
| MOVL argsize+12(FP), CX; \ |
| MOVL SP, DI; \ |
| REP;MOVSB; \ |
| /* call function */ \ |
| MOVL f+4(FP), DX; \ |
| MOVL (DX), AX; \ |
| PCDATA $PCDATA_StackMapIndex, $0; \ |
| CALL AX; \ |
| /* copy return values back */ \ |
| MOVL argptr+8(FP), DI; \ |
| MOVL argsize+12(FP), CX; \ |
| MOVL retoffset+16(FP), BX; \ |
| MOVL SP, SI; \ |
| ADDL BX, DI; \ |
| ADDL BX, SI; \ |
| SUBL BX, CX; \ |
| REP;MOVSB; \ |
| /* execute write barrier updates */ \ |
| MOVL argtype+0(FP), DX; \ |
| MOVL argptr+8(FP), DI; \ |
| MOVL argsize+12(FP), CX; \ |
| MOVL retoffset+16(FP), BX; \ |
| MOVL DX, 0(SP); \ |
| MOVL DI, 4(SP); \ |
| MOVL CX, 8(SP); \ |
| MOVL BX, 12(SP); \ |
| CALL runtime·callwritebarrier(SB); \ |
| RET |
| |
| CALLFN(·call16, 16) |
| CALLFN(·call32, 32) |
| CALLFN(·call64, 64) |
| CALLFN(·call128, 128) |
| CALLFN(·call256, 256) |
| CALLFN(·call512, 512) |
| CALLFN(·call1024, 1024) |
| CALLFN(·call2048, 2048) |
| CALLFN(·call4096, 4096) |
| CALLFN(·call8192, 8192) |
| CALLFN(·call16384, 16384) |
| CALLFN(·call32768, 32768) |
| CALLFN(·call65536, 65536) |
| CALLFN(·call131072, 131072) |
| CALLFN(·call262144, 262144) |
| CALLFN(·call524288, 524288) |
| CALLFN(·call1048576, 1048576) |
| CALLFN(·call2097152, 2097152) |
| CALLFN(·call4194304, 4194304) |
| CALLFN(·call8388608, 8388608) |
| CALLFN(·call16777216, 16777216) |
| CALLFN(·call33554432, 33554432) |
| CALLFN(·call67108864, 67108864) |
| CALLFN(·call134217728, 134217728) |
| CALLFN(·call268435456, 268435456) |
| CALLFN(·call536870912, 536870912) |
| CALLFN(·call1073741824, 1073741824) |
| |
| // bool cas(int32 *val, int32 old, int32 new) |
| // Atomically: |
| // if(*val == old){ |
| // *val = new; |
| // return 1; |
| // }else |
| // return 0; |
| TEXT runtime·cas(SB), NOSPLIT, $0-13 |
| MOVL ptr+0(FP), BX |
| MOVL old+4(FP), AX |
| MOVL new+8(FP), CX |
| LOCK |
| CMPXCHGL CX, 0(BX) |
| SETEQ ret+12(FP) |
| RET |
| |
| TEXT runtime·casuintptr(SB), NOSPLIT, $0-13 |
| JMP runtime·cas(SB) |
| |
| TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $0-8 |
| JMP runtime·atomicload(SB) |
| |
| TEXT runtime·atomicloaduint(SB), NOSPLIT, $0-8 |
| JMP runtime·atomicload(SB) |
| |
| TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-8 |
| JMP runtime·atomicstore(SB) |
| |
| // bool runtime·cas64(uint64 *val, uint64 old, uint64 new) |
| // Atomically: |
| // if(*val == *old){ |
| // *val = new; |
| // return 1; |
| // } else { |
| // return 0; |
| // } |
| TEXT runtime·cas64(SB), NOSPLIT, $0-21 |
| MOVL ptr+0(FP), BP |
| MOVL old_lo+4(FP), AX |
| MOVL old_hi+8(FP), DX |
| MOVL new_lo+12(FP), BX |
| MOVL new_hi+16(FP), CX |
| LOCK |
| CMPXCHG8B 0(BP) |
| SETEQ ret+20(FP) |
| RET |
| |
| // bool casp(void **p, void *old, void *new) |
| // Atomically: |
| // if(*p == old){ |
| // *p = new; |
| // return 1; |
| // }else |
| // return 0; |
| TEXT runtime·casp1(SB), NOSPLIT, $0-13 |
| MOVL ptr+0(FP), BX |
| MOVL old+4(FP), AX |
| MOVL new+8(FP), CX |
| LOCK |
| CMPXCHGL CX, 0(BX) |
| SETEQ ret+12(FP) |
| RET |
| |
| // uint32 xadd(uint32 volatile *val, int32 delta) |
| // Atomically: |
| // *val += delta; |
| // return *val; |
| TEXT runtime·xadd(SB), NOSPLIT, $0-12 |
| MOVL ptr+0(FP), BX |
| MOVL delta+4(FP), AX |
| MOVL AX, CX |
| LOCK |
| XADDL AX, 0(BX) |
| ADDL CX, AX |
| MOVL AX, ret+8(FP) |
| RET |
| |
| TEXT runtime·xchg(SB), NOSPLIT, $0-12 |
| MOVL ptr+0(FP), BX |
| MOVL new+4(FP), AX |
| XCHGL AX, 0(BX) |
| MOVL AX, ret+8(FP) |
| RET |
| |
| TEXT runtime·xchgp1(SB), NOSPLIT, $0-12 |
| MOVL ptr+0(FP), BX |
| MOVL new+4(FP), AX |
| XCHGL AX, 0(BX) |
| MOVL AX, ret+8(FP) |
| RET |
| |
| TEXT runtime·xchguintptr(SB), NOSPLIT, $0-12 |
| JMP runtime·xchg(SB) |
| |
| TEXT runtime·procyield(SB),NOSPLIT,$0-0 |
| MOVL cycles+0(FP), AX |
| again: |
| PAUSE |
| SUBL $1, AX |
| JNZ again |
| RET |
| |
| TEXT runtime·atomicstorep1(SB), NOSPLIT, $0-8 |
| MOVL ptr+0(FP), BX |
| MOVL val+4(FP), AX |
| XCHGL AX, 0(BX) |
| RET |
| |
| TEXT runtime·atomicstore(SB), NOSPLIT, $0-8 |
| MOVL ptr+0(FP), BX |
| MOVL val+4(FP), AX |
| XCHGL AX, 0(BX) |
| RET |
| |
| // uint64 atomicload64(uint64 volatile* addr); |
| TEXT runtime·atomicload64(SB), NOSPLIT, $0-12 |
| MOVL ptr+0(FP), AX |
| TESTL $7, AX |
| JZ 2(PC) |
| MOVL 0, AX // crash with nil ptr deref |
| LEAL ret_lo+4(FP), BX |
| // MOVQ (%EAX), %MM0 |
| BYTE $0x0f; BYTE $0x6f; BYTE $0x00 |
| // MOVQ %MM0, 0(%EBX) |
| BYTE $0x0f; BYTE $0x7f; BYTE $0x03 |
| // EMMS |
| BYTE $0x0F; BYTE $0x77 |
| RET |
| |
| // void runtime·atomicstore64(uint64 volatile* addr, uint64 v); |
| TEXT runtime·atomicstore64(SB), NOSPLIT, $0-12 |
| MOVL ptr+0(FP), AX |
| TESTL $7, AX |
| JZ 2(PC) |
| MOVL 0, AX // crash with nil ptr deref |
| // MOVQ and EMMS were introduced on the Pentium MMX. |
| // MOVQ 0x8(%ESP), %MM0 |
| BYTE $0x0f; BYTE $0x6f; BYTE $0x44; BYTE $0x24; BYTE $0x08 |
| // MOVQ %MM0, (%EAX) |
| BYTE $0x0f; BYTE $0x7f; BYTE $0x00 |
| // EMMS |
| BYTE $0x0F; BYTE $0x77 |
| // This is essentially a no-op, but it provides required memory fencing. |
| // It can be replaced with MFENCE, but MFENCE was introduced only on the Pentium4 (SSE2). |
| MOVL $0, AX |
| LOCK |
| XADDL AX, (SP) |
| RET |
| |
| // void runtime·atomicor8(byte volatile*, byte); |
| TEXT runtime·atomicor8(SB), NOSPLIT, $0-5 |
| MOVL ptr+0(FP), AX |
| MOVB val+4(FP), BX |
| LOCK |
| ORB BX, (AX) |
| RET |
| |
| // void runtime·atomicand8(byte volatile*, byte); |
| TEXT runtime·atomicand8(SB), NOSPLIT, $0-5 |
| MOVL ptr+0(FP), AX |
| MOVB val+4(FP), BX |
| LOCK |
| ANDB BX, (AX) |
| RET |
| |
| // void jmpdefer(fn, sp); |
| // called from deferreturn. |
| // 1. pop the caller |
| // 2. sub 5 bytes from the callers return |
| // 3. jmp to the argument |
| TEXT runtime·jmpdefer(SB), NOSPLIT, $0-8 |
| MOVL fv+0(FP), DX // fn |
| MOVL argp+4(FP), BX // caller sp |
| LEAL -4(BX), SP // caller sp after CALL |
| SUBL $5, (SP) // return to CALL again |
| MOVL 0(DX), BX |
| JMP BX // but first run the deferred function |
| |
| // Save state of caller into g->sched. |
| TEXT gosave<>(SB),NOSPLIT,$0 |
| PUSHL AX |
| PUSHL BX |
| get_tls(BX) |
| MOVL g(BX), BX |
| LEAL arg+0(FP), AX |
| MOVL AX, (g_sched+gobuf_sp)(BX) |
| MOVL -4(AX), AX |
| MOVL AX, (g_sched+gobuf_pc)(BX) |
| MOVL $0, (g_sched+gobuf_ret)(BX) |
| MOVL $0, (g_sched+gobuf_ctxt)(BX) |
| POPL BX |
| POPL AX |
| RET |
| |
| // asmcgocall(void(*fn)(void*), void *arg) |
| // Call fn(arg) on the scheduler stack, |
| // aligned appropriately for the gcc ABI. |
| // See cgocall.c for more details. |
| TEXT ·asmcgocall(SB),NOSPLIT,$0-8 |
| MOVL fn+0(FP), AX |
| MOVL arg+4(FP), BX |
| CALL asmcgocall<>(SB) |
| RET |
| |
| TEXT ·asmcgocall_errno(SB),NOSPLIT,$0-12 |
| MOVL fn+0(FP), AX |
| MOVL arg+4(FP), BX |
| CALL asmcgocall<>(SB) |
| MOVL AX, ret+8(FP) |
| RET |
| |
| TEXT asmcgocall<>(SB),NOSPLIT,$0-0 |
| // fn in AX, arg in BX |
| MOVL SP, DX |
| |
| // Figure out if we need to switch to m->g0 stack. |
| // We get called to create new OS threads too, and those |
| // come in on the m->g0 stack already. |
| get_tls(CX) |
| MOVL g(CX), BP |
| MOVL g_m(BP), BP |
| MOVL m_g0(BP), SI |
| MOVL g(CX), DI |
| CMPL SI, DI |
| JEQ 4(PC) |
| CALL gosave<>(SB) |
| MOVL SI, g(CX) |
| MOVL (g_sched+gobuf_sp)(SI), SP |
| |
| // Now on a scheduling stack (a pthread-created stack). |
| SUBL $32, SP |
| ANDL $~15, SP // alignment, perhaps unnecessary |
| MOVL DI, 8(SP) // save g |
| MOVL (g_stack+stack_hi)(DI), DI |
| SUBL DX, DI |
| MOVL DI, 4(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) |
| MOVL BX, 0(SP) // first argument in x86-32 ABI |
| CALL AX |
| |
| // Restore registers, g, stack pointer. |
| get_tls(CX) |
| MOVL 8(SP), DI |
| MOVL (g_stack+stack_hi)(DI), SI |
| SUBL 4(SP), SI |
| MOVL DI, g(CX) |
| MOVL SI, SP |
| RET |
| |
| // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) |
| // Turn the fn into a Go func (by taking its address) and call |
| // cgocallback_gofunc. |
| TEXT runtime·cgocallback(SB),NOSPLIT,$12-12 |
| LEAL fn+0(FP), AX |
| MOVL AX, 0(SP) |
| MOVL frame+4(FP), AX |
| MOVL AX, 4(SP) |
| MOVL framesize+8(FP), AX |
| MOVL AX, 8(SP) |
| MOVL $runtime·cgocallback_gofunc(SB), AX |
| CALL AX |
| RET |
| |
| // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) |
| // See cgocall.c for more details. |
| TEXT ·cgocallback_gofunc(SB),NOSPLIT,$12-12 |
| NO_LOCAL_POINTERS |
| |
| // If g is nil, Go did not create the current thread. |
| // Call needm to obtain one for temporary use. |
| // In this case, we're running on the thread stack, so there's |
| // lots of space, but the linker doesn't know. Hide the call from |
| // the linker analysis by using an indirect call through AX. |
| get_tls(CX) |
| #ifdef GOOS_windows |
| MOVL $0, BP |
| CMPL CX, $0 |
| JEQ 2(PC) // TODO |
| #endif |
| MOVL g(CX), BP |
| CMPL BP, $0 |
| JEQ needm |
| MOVL g_m(BP), BP |
| MOVL BP, DX // saved copy of oldm |
| JMP havem |
| needm: |
| MOVL $0, 0(SP) |
| MOVL $runtime·needm(SB), AX |
| CALL AX |
| MOVL 0(SP), DX |
| get_tls(CX) |
| MOVL g(CX), BP |
| MOVL g_m(BP), BP |
| |
| // Set m->sched.sp = SP, so that if a panic happens |
| // during the function we are about to execute, it will |
| // have a valid SP to run on the g0 stack. |
| // The next few lines (after the havem label) |
| // will save this SP onto the stack and then write |
| // the same SP back to m->sched.sp. That seems redundant, |
| // but if an unrecovered panic happens, unwindm will |
| // restore the g->sched.sp from the stack location |
| // and then systemstack will try to use it. If we don't set it here, |
| // that restored SP will be uninitialized (typically 0) and |
| // will not be usable. |
| MOVL m_g0(BP), SI |
| MOVL SP, (g_sched+gobuf_sp)(SI) |
| |
| havem: |
| // Now there's a valid m, and we're running on its m->g0. |
| // Save current m->g0->sched.sp on stack and then set it to SP. |
| // Save current sp in m->g0->sched.sp in preparation for |
| // switch back to m->curg stack. |
| // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). |
| MOVL m_g0(BP), SI |
| MOVL (g_sched+gobuf_sp)(SI), AX |
| MOVL AX, 0(SP) |
| MOVL SP, (g_sched+gobuf_sp)(SI) |
| |
| // Switch to m->curg stack and call runtime.cgocallbackg. |
| // Because we are taking over the execution of m->curg |
| // but *not* resuming what had been running, we need to |
| // save that information (m->curg->sched) so we can restore it. |
| // We can restore m->curg->sched.sp easily, because calling |
| // runtime.cgocallbackg leaves SP unchanged upon return. |
| // To save m->curg->sched.pc, we push it onto the stack. |
| // This has the added benefit that it looks to the traceback |
| // routine like cgocallbackg is going to return to that |
| // PC (because the frame we allocate below has the same |
| // size as cgocallback_gofunc's frame declared above) |
| // so that the traceback will seamlessly trace back into |
| // the earlier calls. |
| // |
| // In the new goroutine, 0(SP) holds the saved oldm (DX) register. |
| // 4(SP) and 8(SP) are unused. |
| MOVL m_curg(BP), SI |
| MOVL SI, g(CX) |
| MOVL (g_sched+gobuf_sp)(SI), DI // prepare stack as DI |
| MOVL (g_sched+gobuf_pc)(SI), BP |
| MOVL BP, -4(DI) |
| LEAL -(4+12)(DI), SP |
| MOVL DX, 0(SP) |
| CALL runtime·cgocallbackg(SB) |
| MOVL 0(SP), DX |
| |
| // Restore g->sched (== m->curg->sched) from saved values. |
| get_tls(CX) |
| MOVL g(CX), SI |
| MOVL 12(SP), BP |
| MOVL BP, (g_sched+gobuf_pc)(SI) |
| LEAL (12+4)(SP), DI |
| MOVL DI, (g_sched+gobuf_sp)(SI) |
| |
| // Switch back to m->g0's stack and restore m->g0->sched.sp. |
| // (Unlike m->curg, the g0 goroutine never uses sched.pc, |
| // so we do not have to restore it.) |
| MOVL g(CX), BP |
| MOVL g_m(BP), BP |
| MOVL m_g0(BP), SI |
| MOVL SI, g(CX) |
| MOVL (g_sched+gobuf_sp)(SI), SP |
| MOVL 0(SP), AX |
| MOVL AX, (g_sched+gobuf_sp)(SI) |
| |
| // If the m on entry was nil, we called needm above to borrow an m |
| // for the duration of the call. Since the call is over, return it with dropm. |
| CMPL DX, $0 |
| JNE 3(PC) |
| MOVL $runtime·dropm(SB), AX |
| CALL AX |
| |
| // Done! |
| RET |
| |
| // void setg(G*); set g. for use by needm. |
| TEXT runtime·setg(SB), NOSPLIT, $0-4 |
| MOVL gg+0(FP), BX |
| #ifdef GOOS_windows |
| CMPL BX, $0 |
| JNE settls |
| MOVL $0, 0x14(FS) |
| RET |
| settls: |
| MOVL g_m(BX), AX |
| LEAL m_tls(AX), AX |
| MOVL AX, 0x14(FS) |
| #endif |
| get_tls(CX) |
| MOVL BX, g(CX) |
| RET |
| |
| // void setg_gcc(G*); set g. for use by gcc |
| TEXT setg_gcc<>(SB), NOSPLIT, $0 |
| get_tls(AX) |
| MOVL gg+0(FP), DX |
| MOVL DX, g(AX) |
| RET |
| |
| // check that SP is in range [g->stack.lo, g->stack.hi) |
| TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 |
| get_tls(CX) |
| MOVL g(CX), AX |
| CMPL (g_stack+stack_hi)(AX), SP |
| JHI 2(PC) |
| INT $3 |
| CMPL SP, (g_stack+stack_lo)(AX) |
| JHI 2(PC) |
| INT $3 |
| RET |
| |
| TEXT runtime·getcallerpc(SB),NOSPLIT,$0-8 |
| MOVL argp+0(FP),AX // addr of first arg |
| MOVL -4(AX),AX // get calling pc |
| MOVL AX, ret+4(FP) |
| RET |
| |
| TEXT runtime·setcallerpc(SB),NOSPLIT,$0-8 |
| MOVL argp+0(FP),AX // addr of first arg |
| MOVL pc+4(FP), BX |
| MOVL BX, -4(AX) // set calling pc |
| RET |
| |
| TEXT runtime·getcallersp(SB), NOSPLIT, $0-8 |
| MOVL argp+0(FP), AX |
| MOVL AX, ret+4(FP) |
| RET |
| |
| // func cputicks() int64 |
| TEXT runtime·cputicks(SB),NOSPLIT,$0-8 |
| TESTL $0x4000000, runtime·cpuid_edx(SB) // no sse2, no mfence |
| JEQ done |
| CMPB runtime·lfenceBeforeRdtsc(SB), $1 |
| JNE mfence |
| BYTE $0x0f; BYTE $0xae; BYTE $0xe8 // LFENCE |
| JMP done |
| mfence: |
| BYTE $0x0f; BYTE $0xae; BYTE $0xf0 // MFENCE |
| done: |
| RDTSC |
| MOVL AX, ret_lo+0(FP) |
| MOVL DX, ret_hi+4(FP) |
| RET |
| |
| TEXT runtime·ldt0setup(SB),NOSPLIT,$16-0 |
| // set up ldt 7 to point at tls0 |
| // ldt 1 would be fine on Linux, but on OS X, 7 is as low as we can go. |
| // the entry number is just a hint. setldt will set up GS with what it used. |
| MOVL $7, 0(SP) |
| LEAL runtime·tls0(SB), AX |
| MOVL AX, 4(SP) |
| MOVL $32, 8(SP) // sizeof(tls array) |
| CALL runtime·setldt(SB) |
| RET |
| |
| TEXT runtime·emptyfunc(SB),0,$0-0 |
| RET |
| |
| TEXT runtime·abort(SB),NOSPLIT,$0-0 |
| INT $0x3 |
| |
| // memhash_varlen(p unsafe.Pointer, h seed) uintptr |
| // redirects to memhash(p, h, size) using the size |
| // stored in the closure. |
| TEXT runtime·memhash_varlen(SB),NOSPLIT,$16-12 |
| GO_ARGS |
| NO_LOCAL_POINTERS |
| MOVL p+0(FP), AX |
| MOVL h+4(FP), BX |
| MOVL 4(DX), CX |
| MOVL AX, 0(SP) |
| MOVL BX, 4(SP) |
| MOVL CX, 8(SP) |
| CALL runtime·memhash(SB) |
| MOVL 12(SP), AX |
| MOVL AX, ret+8(FP) |
| RET |
| |
| // hash function using AES hardware instructions |
| TEXT runtime·aeshash(SB),NOSPLIT,$0-16 |
| MOVL p+0(FP), AX // ptr to data |
| MOVL s+8(FP), CX // size |
| LEAL ret+12(FP), DX |
| JMP runtime·aeshashbody(SB) |
| |
| TEXT runtime·aeshashstr(SB),NOSPLIT,$0-12 |
| MOVL p+0(FP), AX // ptr to string object |
| MOVL 4(AX), CX // length of string |
| MOVL (AX), AX // string data |
| LEAL ret+8(FP), DX |
| JMP runtime·aeshashbody(SB) |
| |
| // AX: data |
| // CX: length |
| // DX: address to put return value |
| TEXT runtime·aeshashbody(SB),NOSPLIT,$0-0 |
| MOVL h+4(FP), X6 // seed to low 64 bits of xmm6 |
| PINSRD $2, CX, X6 // size to high 64 bits of xmm6 |
| PSHUFHW $0, X6, X6 // replace size with its low 2 bytes repeated 4 times |
| MOVO runtime·aeskeysched(SB), X7 |
| CMPL CX, $16 |
| JB aes0to15 |
| JE aes16 |
| CMPL CX, $32 |
| JBE aes17to32 |
| CMPL CX, $64 |
| JBE aes33to64 |
| JMP aes65plus |
| |
| aes0to15: |
| TESTL CX, CX |
| JE aes0 |
| |
| ADDL $16, AX |
| TESTW $0xff0, AX |
| JE endofpage |
| |
| // 16 bytes loaded at this address won't cross |
| // a page boundary, so we can load it directly. |
| MOVOU -16(AX), X0 |
| ADDL CX, CX |
| PAND masks<>(SB)(CX*8), X0 |
| |
| // scramble 3 times |
| AESENC X6, X0 |
| AESENC X7, X0 |
| AESENC X7, X0 |
| MOVL X0, (DX) |
| RET |
| |
| endofpage: |
| // address ends in 1111xxxx. Might be up against |
| // a page boundary, so load ending at last byte. |
| // Then shift bytes down using pshufb. |
| MOVOU -32(AX)(CX*1), X0 |
| ADDL CX, CX |
| PSHUFB shifts<>(SB)(CX*8), X0 |
| AESENC X6, X0 |
| AESENC X7, X0 |
| AESENC X7, X0 |
| MOVL X0, (DX) |
| RET |
| |
| aes0: |
| // return input seed |
| MOVL h+4(FP), AX |
| MOVL AX, (DX) |
| RET |
| |
| aes16: |
| MOVOU (AX), X0 |
| AESENC X6, X0 |
| AESENC X7, X0 |
| AESENC X7, X0 |
| MOVL X0, (DX) |
| RET |
| |
| |
| aes17to32: |
| // load data to be hashed |
| MOVOU (AX), X0 |
| MOVOU -16(AX)(CX*1), X1 |
| |
| // scramble 3 times |
| AESENC X6, X0 |
| AESENC runtime·aeskeysched+16(SB), X1 |
| AESENC X7, X0 |
| AESENC X7, X1 |
| AESENC X7, X0 |
| AESENC X7, X1 |
| |
| // combine results |
| PXOR X1, X0 |
| MOVL X0, (DX) |
| RET |
| |
| aes33to64: |
| MOVOU (AX), X0 |
| MOVOU 16(AX), X1 |
| MOVOU -32(AX)(CX*1), X2 |
| MOVOU -16(AX)(CX*1), X3 |
| |
| AESENC X6, X0 |
| AESENC runtime·aeskeysched+16(SB), X1 |
| AESENC runtime·aeskeysched+32(SB), X2 |
| AESENC runtime·aeskeysched+48(SB), X3 |
| AESENC X7, X0 |
| AESENC X7, X1 |
| AESENC X7, X2 |
| AESENC X7, X3 |
| AESENC X7, X0 |
| AESENC X7, X1 |
| AESENC X7, X2 |
| AESENC X7, X3 |
| |
| PXOR X2, X0 |
| PXOR X3, X1 |
| PXOR X1, X0 |
| MOVL X0, (DX) |
| RET |
| |
| aes65plus: |
| // start with last (possibly overlapping) block |
| MOVOU -64(AX)(CX*1), X0 |
| MOVOU -48(AX)(CX*1), X1 |
| MOVOU -32(AX)(CX*1), X2 |
| MOVOU -16(AX)(CX*1), X3 |
| |
| // scramble state once |
| AESENC X6, X0 |
| AESENC runtime·aeskeysched+16(SB), X1 |
| AESENC runtime·aeskeysched+32(SB), X2 |
| AESENC runtime·aeskeysched+48(SB), X3 |
| |
| // compute number of remaining 64-byte blocks |
| DECL CX |
| SHRL $6, CX |
| |
| aesloop: |
| // scramble state, xor in a block |
| MOVOU (AX), X4 |
| MOVOU 16(AX), X5 |
| AESENC X4, X0 |
| AESENC X5, X1 |
| MOVOU 32(AX), X4 |
| MOVOU 48(AX), X5 |
| AESENC X4, X2 |
| AESENC X5, X3 |
| |
| // scramble state |
| AESENC X7, X0 |
| AESENC X7, X1 |
| AESENC X7, X2 |
| AESENC X7, X3 |
| |
| ADDL $64, AX |
| DECL CX |
| JNE aesloop |
| |
| // 2 more scrambles to finish |
| AESENC X7, X0 |
| AESENC X7, X1 |
| AESENC X7, X2 |
| AESENC X7, X3 |
| AESENC X7, X0 |
| AESENC X7, X1 |
| AESENC X7, X2 |
| AESENC X7, X3 |
| |
| PXOR X2, X0 |
| PXOR X3, X1 |
| PXOR X1, X0 |
| MOVL X0, (DX) |
| RET |
| |
| TEXT runtime·aeshash32(SB),NOSPLIT,$0-12 |
| MOVL p+0(FP), AX // ptr to data |
| MOVL h+4(FP), X0 // seed |
| PINSRD $1, (AX), X0 // data |
| AESENC runtime·aeskeysched+0(SB), X0 |
| AESENC runtime·aeskeysched+16(SB), X0 |
| AESENC runtime·aeskeysched+32(SB), X0 |
| MOVL X0, ret+8(FP) |
| RET |
| |
| TEXT runtime·aeshash64(SB),NOSPLIT,$0-12 |
| MOVL p+0(FP), AX // ptr to data |
| MOVQ (AX), X0 // data |
| PINSRD $2, h+4(FP), X0 // seed |
| AESENC runtime·aeskeysched+0(SB), X0 |
| AESENC runtime·aeskeysched+16(SB), X0 |
| AESENC runtime·aeskeysched+32(SB), X0 |
| MOVL X0, ret+8(FP) |
| RET |
| |
| // simple mask to get rid of data in the high part of the register. |
| DATA masks<>+0x00(SB)/4, $0x00000000 |
| DATA masks<>+0x04(SB)/4, $0x00000000 |
| DATA masks<>+0x08(SB)/4, $0x00000000 |
| DATA masks<>+0x0c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x10(SB)/4, $0x000000ff |
| DATA masks<>+0x14(SB)/4, $0x00000000 |
| DATA masks<>+0x18(SB)/4, $0x00000000 |
| DATA masks<>+0x1c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x20(SB)/4, $0x0000ffff |
| DATA masks<>+0x24(SB)/4, $0x00000000 |
| DATA masks<>+0x28(SB)/4, $0x00000000 |
| DATA masks<>+0x2c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x30(SB)/4, $0x00ffffff |
| DATA masks<>+0x34(SB)/4, $0x00000000 |
| DATA masks<>+0x38(SB)/4, $0x00000000 |
| DATA masks<>+0x3c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x40(SB)/4, $0xffffffff |
| DATA masks<>+0x44(SB)/4, $0x00000000 |
| DATA masks<>+0x48(SB)/4, $0x00000000 |
| DATA masks<>+0x4c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x50(SB)/4, $0xffffffff |
| DATA masks<>+0x54(SB)/4, $0x000000ff |
| DATA masks<>+0x58(SB)/4, $0x00000000 |
| DATA masks<>+0x5c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x60(SB)/4, $0xffffffff |
| DATA masks<>+0x64(SB)/4, $0x0000ffff |
| DATA masks<>+0x68(SB)/4, $0x00000000 |
| DATA masks<>+0x6c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x70(SB)/4, $0xffffffff |
| DATA masks<>+0x74(SB)/4, $0x00ffffff |
| DATA masks<>+0x78(SB)/4, $0x00000000 |
| DATA masks<>+0x7c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x80(SB)/4, $0xffffffff |
| DATA masks<>+0x84(SB)/4, $0xffffffff |
| DATA masks<>+0x88(SB)/4, $0x00000000 |
| DATA masks<>+0x8c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0x90(SB)/4, $0xffffffff |
| DATA masks<>+0x94(SB)/4, $0xffffffff |
| DATA masks<>+0x98(SB)/4, $0x000000ff |
| DATA masks<>+0x9c(SB)/4, $0x00000000 |
| |
| DATA masks<>+0xa0(SB)/4, $0xffffffff |
| DATA masks<>+0xa4(SB)/4, $0xffffffff |
| DATA masks<>+0xa8(SB)/4, $0x0000ffff |
| DATA masks<>+0xac(SB)/4, $0x00000000 |
| |
| DATA masks<>+0xb0(SB)/4, $0xffffffff |
| DATA masks<>+0xb4(SB)/4, $0xffffffff |
| DATA masks<>+0xb8(SB)/4, $0x00ffffff |
| DATA masks<>+0xbc(SB)/4, $0x00000000 |
| |
| DATA masks<>+0xc0(SB)/4, $0xffffffff |
| DATA masks<>+0xc4(SB)/4, $0xffffffff |
| DATA masks<>+0xc8(SB)/4, $0xffffffff |
| DATA masks<>+0xcc(SB)/4, $0x00000000 |
| |
| DATA masks<>+0xd0(SB)/4, $0xffffffff |
| DATA masks<>+0xd4(SB)/4, $0xffffffff |
| DATA masks<>+0xd8(SB)/4, $0xffffffff |
| DATA masks<>+0xdc(SB)/4, $0x000000ff |
| |
| DATA masks<>+0xe0(SB)/4, $0xffffffff |
| DATA masks<>+0xe4(SB)/4, $0xffffffff |
| DATA masks<>+0xe8(SB)/4, $0xffffffff |
| DATA masks<>+0xec(SB)/4, $0x0000ffff |
| |
| DATA masks<>+0xf0(SB)/4, $0xffffffff |
| DATA masks<>+0xf4(SB)/4, $0xffffffff |
| DATA masks<>+0xf8(SB)/4, $0xffffffff |
| DATA masks<>+0xfc(SB)/4, $0x00ffffff |
| |
| GLOBL masks<>(SB),RODATA,$256 |
| |
| // these are arguments to pshufb. They move data down from |
| // the high bytes of the register to the low bytes of the register. |
| // index is how many bytes to move. |
| DATA shifts<>+0x00(SB)/4, $0x00000000 |
| DATA shifts<>+0x04(SB)/4, $0x00000000 |
| DATA shifts<>+0x08(SB)/4, $0x00000000 |
| DATA shifts<>+0x0c(SB)/4, $0x00000000 |
| |
| DATA shifts<>+0x10(SB)/4, $0xffffff0f |
| DATA shifts<>+0x14(SB)/4, $0xffffffff |
| DATA shifts<>+0x18(SB)/4, $0xffffffff |
| DATA shifts<>+0x1c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0x20(SB)/4, $0xffff0f0e |
| DATA shifts<>+0x24(SB)/4, $0xffffffff |
| DATA shifts<>+0x28(SB)/4, $0xffffffff |
| DATA shifts<>+0x2c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0x30(SB)/4, $0xff0f0e0d |
| DATA shifts<>+0x34(SB)/4, $0xffffffff |
| DATA shifts<>+0x38(SB)/4, $0xffffffff |
| DATA shifts<>+0x3c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0x40(SB)/4, $0x0f0e0d0c |
| DATA shifts<>+0x44(SB)/4, $0xffffffff |
| DATA shifts<>+0x48(SB)/4, $0xffffffff |
| DATA shifts<>+0x4c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0x50(SB)/4, $0x0e0d0c0b |
| DATA shifts<>+0x54(SB)/4, $0xffffff0f |
| DATA shifts<>+0x58(SB)/4, $0xffffffff |
| DATA shifts<>+0x5c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0x60(SB)/4, $0x0d0c0b0a |
| DATA shifts<>+0x64(SB)/4, $0xffff0f0e |
| DATA shifts<>+0x68(SB)/4, $0xffffffff |
| DATA shifts<>+0x6c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0x70(SB)/4, $0x0c0b0a09 |
| DATA shifts<>+0x74(SB)/4, $0xff0f0e0d |
| DATA shifts<>+0x78(SB)/4, $0xffffffff |
| DATA shifts<>+0x7c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0x80(SB)/4, $0x0b0a0908 |
| DATA shifts<>+0x84(SB)/4, $0x0f0e0d0c |
| DATA shifts<>+0x88(SB)/4, $0xffffffff |
| DATA shifts<>+0x8c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0x90(SB)/4, $0x0a090807 |
| DATA shifts<>+0x94(SB)/4, $0x0e0d0c0b |
| DATA shifts<>+0x98(SB)/4, $0xffffff0f |
| DATA shifts<>+0x9c(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0xa0(SB)/4, $0x09080706 |
| DATA shifts<>+0xa4(SB)/4, $0x0d0c0b0a |
| DATA shifts<>+0xa8(SB)/4, $0xffff0f0e |
| DATA shifts<>+0xac(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0xb0(SB)/4, $0x08070605 |
| DATA shifts<>+0xb4(SB)/4, $0x0c0b0a09 |
| DATA shifts<>+0xb8(SB)/4, $0xff0f0e0d |
| DATA shifts<>+0xbc(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0xc0(SB)/4, $0x07060504 |
| DATA shifts<>+0xc4(SB)/4, $0x0b0a0908 |
| DATA shifts<>+0xc8(SB)/4, $0x0f0e0d0c |
| DATA shifts<>+0xcc(SB)/4, $0xffffffff |
| |
| DATA shifts<>+0xd0(SB)/4, $0x06050403 |
| DATA shifts<>+0xd4(SB)/4, $0x0a090807 |
| DATA shifts<>+0xd8(SB)/4, $0x0e0d0c0b |
| DATA shifts<>+0xdc(SB)/4, $0xffffff0f |
| |
| DATA shifts<>+0xe0(SB)/4, $0x05040302 |
| DATA shifts<>+0xe4(SB)/4, $0x09080706 |
| DATA shifts<>+0xe8(SB)/4, $0x0d0c0b0a |
| DATA shifts<>+0xec(SB)/4, $0xffff0f0e |
| |
| DATA shifts<>+0xf0(SB)/4, $0x04030201 |
| DATA shifts<>+0xf4(SB)/4, $0x08070605 |
| DATA shifts<>+0xf8(SB)/4, $0x0c0b0a09 |
| DATA shifts<>+0xfc(SB)/4, $0xff0f0e0d |
| |
| GLOBL shifts<>(SB),RODATA,$256 |
| |
| TEXT runtime·memeq(SB),NOSPLIT,$0-13 |
| MOVL a+0(FP), SI |
| MOVL b+4(FP), DI |
| MOVL size+8(FP), BX |
| LEAL ret+12(FP), AX |
| JMP runtime·memeqbody(SB) |
| |
| // memequal_varlen(a, b unsafe.Pointer) bool |
| TEXT runtime·memequal_varlen(SB),NOSPLIT,$0-9 |
| MOVL a+0(FP), SI |
| MOVL b+4(FP), DI |
| CMPL SI, DI |
| JEQ eq |
| MOVL 4(DX), BX // compiler stores size at offset 4 in the closure |
| LEAL ret+8(FP), AX |
| JMP runtime·memeqbody(SB) |
| eq: |
| MOVB $1, ret+8(FP) |
| RET |
| |
| // eqstring tests whether two strings are equal. |
| // The compiler guarantees that strings passed |
| // to eqstring have equal length. |
| // See runtime_test.go:eqstring_generic for |
| // equivalent Go code. |
| TEXT runtime·eqstring(SB),NOSPLIT,$0-17 |
| MOVL s1str+0(FP), SI |
| MOVL s2str+8(FP), DI |
| CMPL SI, DI |
| JEQ same |
| MOVL s1len+4(FP), BX |
| LEAL v+16(FP), AX |
| JMP runtime·memeqbody(SB) |
| same: |
| MOVB $1, v+16(FP) |
| RET |
| |
| TEXT bytes·Equal(SB),NOSPLIT,$0-25 |
| MOVL a_len+4(FP), BX |
| MOVL b_len+16(FP), CX |
| CMPL BX, CX |
| JNE eqret |
| MOVL a+0(FP), SI |
| MOVL b+12(FP), DI |
| LEAL ret+24(FP), AX |
| JMP runtime·memeqbody(SB) |
| eqret: |
| MOVB $0, ret+24(FP) |
| RET |
| |
| // a in SI |
| // b in DI |
| // count in BX |
| // address of result byte in AX |
| TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 |
| CMPL BX, $4 |
| JB small |
| |
| // 64 bytes at a time using xmm registers |
| hugeloop: |
| CMPL BX, $64 |
| JB bigloop |
| TESTL $0x4000000, runtime·cpuid_edx(SB) // check for sse2 |
| JE bigloop |
| MOVOU (SI), X0 |
| MOVOU (DI), X1 |
| MOVOU 16(SI), X2 |
| MOVOU 16(DI), X3 |
| MOVOU 32(SI), X4 |
| MOVOU 32(DI), X5 |
| MOVOU 48(SI), X6 |
| MOVOU 48(DI), X7 |
| PCMPEQB X1, X0 |
| PCMPEQB X3, X2 |
| PCMPEQB X5, X4 |
| PCMPEQB X7, X6 |
| PAND X2, X0 |
| PAND X6, X4 |
| PAND X4, X0 |
| PMOVMSKB X0, DX |
| ADDL $64, SI |
| ADDL $64, DI |
| SUBL $64, BX |
| CMPL DX, $0xffff |
| JEQ hugeloop |
| MOVB $0, (AX) |
| RET |
| |
| // 4 bytes at a time using 32-bit register |
| bigloop: |
| CMPL BX, $4 |
| JBE leftover |
| MOVL (SI), CX |
| MOVL (DI), DX |
| ADDL $4, SI |
| ADDL $4, DI |
| SUBL $4, BX |
| CMPL CX, DX |
| JEQ bigloop |
| MOVB $0, (AX) |
| RET |
| |
| // remaining 0-4 bytes |
| leftover: |
| MOVL -4(SI)(BX*1), CX |
| MOVL -4(DI)(BX*1), DX |
| CMPL CX, DX |
| SETEQ (AX) |
| RET |
| |
| small: |
| CMPL BX, $0 |
| JEQ equal |
| |
| LEAL 0(BX*8), CX |
| NEGL CX |
| |
| MOVL SI, DX |
| CMPB DX, $0xfc |
| JA si_high |
| |
| // load at SI won't cross a page boundary. |
| MOVL (SI), SI |
| JMP si_finish |
| si_high: |
| // address ends in 111111xx. Load up to bytes we want, move to correct position. |
| MOVL -4(SI)(BX*1), SI |
| SHRL CX, SI |
| si_finish: |
| |
| // same for DI. |
| MOVL DI, DX |
| CMPB DX, $0xfc |
| JA di_high |
| MOVL (DI), DI |
| JMP di_finish |
| di_high: |
| MOVL -4(DI)(BX*1), DI |
| SHRL CX, DI |
| di_finish: |
| |
| SUBL SI, DI |
| SHLL CX, DI |
| equal: |
| SETEQ (AX) |
| RET |
| |
| TEXT runtime·cmpstring(SB),NOSPLIT,$0-20 |
| MOVL s1_base+0(FP), SI |
| MOVL s1_len+4(FP), BX |
| MOVL s2_base+8(FP), DI |
| MOVL s2_len+12(FP), DX |
| LEAL ret+16(FP), AX |
| JMP runtime·cmpbody(SB) |
| |
| TEXT bytes·Compare(SB),NOSPLIT,$0-28 |
| MOVL s1+0(FP), SI |
| MOVL s1+4(FP), BX |
| MOVL s2+12(FP), DI |
| MOVL s2+16(FP), DX |
| LEAL ret+24(FP), AX |
| JMP runtime·cmpbody(SB) |
| |
| TEXT bytes·IndexByte(SB),NOSPLIT,$0-20 |
| MOVL s+0(FP), SI |
| MOVL s_len+4(FP), CX |
| MOVB c+12(FP), AL |
| MOVL SI, DI |
| CLD; REPN; SCASB |
| JZ 3(PC) |
| MOVL $-1, ret+16(FP) |
| RET |
| SUBL SI, DI |
| SUBL $1, DI |
| MOVL DI, ret+16(FP) |
| RET |
| |
| TEXT strings·IndexByte(SB),NOSPLIT,$0-16 |
| MOVL s+0(FP), SI |
| MOVL s_len+4(FP), CX |
| MOVB c+8(FP), AL |
| MOVL SI, DI |
| CLD; REPN; SCASB |
| JZ 3(PC) |
| MOVL $-1, ret+12(FP) |
| RET |
| SUBL SI, DI |
| SUBL $1, DI |
| MOVL DI, ret+12(FP) |
| RET |
| |
| // input: |
| // SI = a |
| // DI = b |
| // BX = alen |
| // DX = blen |
| // AX = address of return word (set to 1/0/-1) |
| TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 |
| MOVL DX, BP |
| SUBL BX, DX // DX = blen-alen |
| CMOVLGT BX, BP // BP = min(alen, blen) |
| CMPL SI, DI |
| JEQ allsame |
| CMPL BP, $4 |
| JB small |
| TESTL $0x4000000, runtime·cpuid_edx(SB) // check for sse2 |
| JE mediumloop |
| largeloop: |
| CMPL BP, $16 |
| JB mediumloop |
| MOVOU (SI), X0 |
| MOVOU (DI), X1 |
| PCMPEQB X0, X1 |
| PMOVMSKB X1, BX |
| XORL $0xffff, BX // convert EQ to NE |
| JNE diff16 // branch if at least one byte is not equal |
| ADDL $16, SI |
| ADDL $16, DI |
| SUBL $16, BP |
| JMP largeloop |
| |
| diff16: |
| BSFL BX, BX // index of first byte that differs |
| XORL DX, DX |
| MOVB (SI)(BX*1), CX |
| CMPB CX, (DI)(BX*1) |
| SETHI DX |
| LEAL -1(DX*2), DX // convert 1/0 to +1/-1 |
| MOVL DX, (AX) |
| RET |
| |
| mediumloop: |
| CMPL BP, $4 |
| JBE _0through4 |
| MOVL (SI), BX |
| MOVL (DI), CX |
| CMPL BX, CX |
| JNE diff4 |
| ADDL $4, SI |
| ADDL $4, DI |
| SUBL $4, BP |
| JMP mediumloop |
| |
| _0through4: |
| MOVL -4(SI)(BP*1), BX |
| MOVL -4(DI)(BP*1), CX |
| CMPL BX, CX |
| JEQ allsame |
| |
| diff4: |
| BSWAPL BX // reverse order of bytes |
| BSWAPL CX |
| XORL BX, CX // find bit differences |
| BSRL CX, CX // index of highest bit difference |
| SHRL CX, BX // move a's bit to bottom |
| ANDL $1, BX // mask bit |
| LEAL -1(BX*2), BX // 1/0 => +1/-1 |
| MOVL BX, (AX) |
| RET |
| |
| // 0-3 bytes in common |
| small: |
| LEAL (BP*8), CX |
| NEGL CX |
| JEQ allsame |
| |
| // load si |
| CMPB SI, $0xfc |
| JA si_high |
| MOVL (SI), SI |
| JMP si_finish |
| si_high: |
| MOVL -4(SI)(BP*1), SI |
| SHRL CX, SI |
| si_finish: |
| SHLL CX, SI |
| |
| // same for di |
| CMPB DI, $0xfc |
| JA di_high |
| MOVL (DI), DI |
| JMP di_finish |
| di_high: |
| MOVL -4(DI)(BP*1), DI |
| SHRL CX, DI |
| di_finish: |
| SHLL CX, DI |
| |
| BSWAPL SI // reverse order of bytes |
| BSWAPL DI |
| XORL SI, DI // find bit differences |
| JEQ allsame |
| BSRL DI, CX // index of highest bit difference |
| SHRL CX, SI // move a's bit to bottom |
| ANDL $1, SI // mask bit |
| LEAL -1(SI*2), BX // 1/0 => +1/-1 |
| MOVL BX, (AX) |
| RET |
| |
| // all the bytes in common are the same, so we just need |
| // to compare the lengths. |
| allsame: |
| XORL BX, BX |
| XORL CX, CX |
| TESTL DX, DX |
| SETLT BX // 1 if alen > blen |
| SETEQ CX // 1 if alen == blen |
| LEAL -1(CX)(BX*2), BX // 1,0,-1 result |
| MOVL BX, (AX) |
| RET |
| |
| TEXT runtime·fastrand1(SB), NOSPLIT, $0-4 |
| get_tls(CX) |
| MOVL g(CX), AX |
| MOVL g_m(AX), AX |
| MOVL m_fastrand(AX), DX |
| ADDL DX, DX |
| MOVL DX, BX |
| XORL $0x88888eef, DX |
| CMOVLMI BX, DX |
| MOVL DX, m_fastrand(AX) |
| MOVL DX, ret+0(FP) |
| RET |
| |
| TEXT runtime·return0(SB), NOSPLIT, $0 |
| MOVL $0, AX |
| RET |
| |
| // Called from cgo wrappers, this function returns g->m->curg.stack.hi. |
| // Must obey the gcc calling convention. |
| TEXT _cgo_topofstack(SB),NOSPLIT,$0 |
| get_tls(CX) |
| MOVL g(CX), AX |
| MOVL g_m(AX), AX |
| MOVL m_curg(AX), AX |
| MOVL (g_stack+stack_hi)(AX), AX |
| RET |
| |
| // The top-most function running on a goroutine |
| // returns to goexit+PCQuantum. |
| TEXT runtime·goexit(SB),NOSPLIT,$0-0 |
| BYTE $0x90 // NOP |
| CALL runtime·goexit1(SB) // does not return |
| // traceback from goexit1 must hit code range of goexit |
| BYTE $0x90 // NOP |
| |
| TEXT runtime·prefetcht0(SB),NOSPLIT,$0-4 |
| MOVL addr+0(FP), AX |
| PREFETCHT0 (AX) |
| RET |
| |
| TEXT runtime·prefetcht1(SB),NOSPLIT,$0-4 |
| MOVL addr+0(FP), AX |
| PREFETCHT1 (AX) |
| RET |
| |
| |
| TEXT runtime·prefetcht2(SB),NOSPLIT,$0-4 |
| MOVL addr+0(FP), AX |
| PREFETCHT2 (AX) |
| RET |
| |
| TEXT runtime·prefetchnta(SB),NOSPLIT,$0-4 |
| MOVL addr+0(FP), AX |
| PREFETCHNTA (AX) |
| RET |