| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package color |
| |
| // RGBToYCbCr converts an RGB triple to a Y'CbCr triple. |
| func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) { |
| // The JFIF specification says: |
| // Y' = 0.2990*R + 0.5870*G + 0.1140*B |
| // Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128 |
| // Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128 |
| // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. |
| r1 := int(r) |
| g1 := int(g) |
| b1 := int(b) |
| yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16 |
| cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16 |
| cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16 |
| if yy < 0 { |
| yy = 0 |
| } else if yy > 0xff { |
| yy = 0xff |
| } |
| if cb < 0 { |
| cb = 0 |
| } else if cb > 0xff { |
| cb = 0xff |
| } |
| if cr < 0 { |
| cr = 0 |
| } else if cr > 0xff { |
| cr = 0xff |
| } |
| return uint8(yy), uint8(cb), uint8(cr) |
| } |
| |
| // YCbCrToRGB converts a Y'CbCr triple to an RGB triple. |
| func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) { |
| // The JFIF specification says: |
| // R = Y' + 1.40200*(Cr-128) |
| // G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128) |
| // B = Y' + 1.77200*(Cb-128) |
| // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. |
| yy1 := int(y)<<16 + 1<<15 |
| cb1 := int(cb) - 128 |
| cr1 := int(cr) - 128 |
| r := (yy1 + 91881*cr1) >> 16 |
| g := (yy1 - 22554*cb1 - 46802*cr1) >> 16 |
| b := (yy1 + 116130*cb1) >> 16 |
| if r < 0 { |
| r = 0 |
| } else if r > 0xff { |
| r = 0xff |
| } |
| if g < 0 { |
| g = 0 |
| } else if g > 0xff { |
| g = 0xff |
| } |
| if b < 0 { |
| b = 0 |
| } else if b > 0xff { |
| b = 0xff |
| } |
| return uint8(r), uint8(g), uint8(b) |
| } |
| |
| // YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for |
| // one luma and two chroma components. |
| // |
| // JPEG, VP8, the MPEG family and other codecs use this color model. Such |
| // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly |
| // speaking, the term YUV applies only to analog video signals, and Y' (luma) |
| // is Y (luminance) after applying gamma correction. |
| // |
| // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly |
| // different formulae for converting between the two. This package follows |
| // the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf. |
| type YCbCr struct { |
| Y, Cb, Cr uint8 |
| } |
| |
| func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) { |
| // This code is a copy of the YCbCrToRGB function above, except that it |
| // returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a |
| // subtle difference between doing this and having YCbCr satisfy the Color |
| // interface by first converting to an RGBA. The latter loses some |
| // information by going to and from 8 bits per channel. |
| // |
| // For example, this code: |
| // const y, cb, cr = 0x7f, 0x7f, 0x7f |
| // r, g, b := color.YCbCrToRGB(y, cb, cr) |
| // r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA() |
| // r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA() |
| // fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0) |
| // fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1) |
| // prints: |
| // 0x7e19 0x808e 0x7dba |
| // 0x7e7e 0x8080 0x7d7d |
| |
| yy1 := int(c.Y)<<16 + 1<<15 |
| cb1 := int(c.Cb) - 128 |
| cr1 := int(c.Cr) - 128 |
| r := (yy1 + 91881*cr1) >> 8 |
| g := (yy1 - 22554*cb1 - 46802*cr1) >> 8 |
| b := (yy1 + 116130*cb1) >> 8 |
| if r < 0 { |
| r = 0 |
| } else if r > 0xffff { |
| r = 0xffff |
| } |
| if g < 0 { |
| g = 0 |
| } else if g > 0xffff { |
| g = 0xffff |
| } |
| if b < 0 { |
| b = 0 |
| } else if b > 0xffff { |
| b = 0xffff |
| } |
| return uint32(r), uint32(g), uint32(b), 0xffff |
| } |
| |
| // YCbCrModel is the Model for Y'CbCr colors. |
| var YCbCrModel Model = ModelFunc(yCbCrModel) |
| |
| func yCbCrModel(c Color) Color { |
| if _, ok := c.(YCbCr); ok { |
| return c |
| } |
| r, g, b, _ := c.RGBA() |
| y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) |
| return YCbCr{y, u, v} |
| } |
| |
| // RGBToCMYK converts an RGB triple to a CMYK quadruple. |
| func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) { |
| rr := uint32(r) |
| gg := uint32(g) |
| bb := uint32(b) |
| w := rr |
| if w < gg { |
| w = gg |
| } |
| if w < bb { |
| w = bb |
| } |
| if w == 0 { |
| return 0, 0, 0, 0xff |
| } |
| c := (w - rr) * 0xff / w |
| m := (w - gg) * 0xff / w |
| y := (w - bb) * 0xff / w |
| return uint8(c), uint8(m), uint8(y), uint8(0xff - w) |
| } |
| |
| // CMYKToRGB converts a CMYK quadruple to an RGB triple. |
| func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) { |
| w := uint32(0xffff - uint32(k)*0x101) |
| r := uint32(0xffff-uint32(c)*0x101) * w / 0xffff |
| g := uint32(0xffff-uint32(m)*0x101) * w / 0xffff |
| b := uint32(0xffff-uint32(y)*0x101) * w / 0xffff |
| return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8) |
| } |
| |
| // CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan, |
| // magenta, yellow and black. |
| // |
| // It is not associated with any particular color profile. |
| type CMYK struct { |
| C, M, Y, K uint8 |
| } |
| |
| func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) { |
| // This code is a copy of the CMYKToRGB function above, except that it |
| // returns values in the range [0, 0xffff] instead of [0, 0xff]. |
| |
| w := uint32(0xffff - uint32(c.K)*0x101) |
| r := uint32(0xffff-uint32(c.C)*0x101) * w / 0xffff |
| g := uint32(0xffff-uint32(c.M)*0x101) * w / 0xffff |
| b := uint32(0xffff-uint32(c.Y)*0x101) * w / 0xffff |
| return uint32(r), uint32(g), uint32(b), 0xffff |
| } |
| |
| // CMYKModel is the Model for CMYK colors. |
| var CMYKModel Model = ModelFunc(cmykModel) |
| |
| func cmykModel(c Color) Color { |
| if _, ok := c.(CMYK); ok { |
| return c |
| } |
| r, g, b, _ := c.RGBA() |
| cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8)) |
| return CMYK{cc, mm, yy, kk} |
| } |