blob: a17899dcf00b35ef155cb31b2f772b7510c1a4ef [file] [log] [blame]
// Inferno utils/5l/asm.c
// http://code.google.com/p/inferno-os/source/browse/utils/5l/asm.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package main
import (
"cmd/internal/ld"
"cmd/internal/obj"
"encoding/binary"
"fmt"
"log"
)
func gentext() {}
func needlib(name string) int {
if name[0] == '\x00' {
return 0
}
/* reuse hash code in symbol table */
p := fmt.Sprintf(".dynlib.%s", name)
s := ld.Linklookup(ld.Ctxt, p, 0)
if s.Type == 0 {
s.Type = 100 // avoid SDATA, etc.
return 1
}
return 0
}
func adddynrela(rel *ld.LSym, s *ld.LSym, r *ld.Reloc) {
log.Fatalf("adddynrela not implemented")
}
func adddynrel(s *ld.LSym, r *ld.Reloc) {
log.Fatalf("adddynrel not implemented")
}
func elfreloc1(r *ld.Reloc, sectoff int64) int {
ld.Thearch.Vput(uint64(sectoff))
elfsym := r.Xsym.Elfsym
switch r.Type {
default:
return -1
case obj.R_ADDR:
switch r.Siz {
case 4:
ld.Thearch.Vput(ld.R_AARCH64_ABS32 | uint64(elfsym)<<32)
case 8:
ld.Thearch.Vput(ld.R_AARCH64_ABS64 | uint64(elfsym)<<32)
default:
return -1
}
case obj.R_ADDRARM64:
// two relocations: R_AARCH64_ADR_PREL_PG_HI21 and R_AARCH64_ADD_ABS_LO12_NC
ld.Thearch.Vput(ld.R_AARCH64_ADR_PREL_PG_HI21 | uint64(elfsym)<<32)
ld.Thearch.Vput(uint64(r.Xadd))
ld.Thearch.Vput(uint64(sectoff + 4))
ld.Thearch.Vput(ld.R_AARCH64_ADD_ABS_LO12_NC | uint64(elfsym)<<32)
case obj.R_CALLARM64:
if r.Siz != 4 {
return -1
}
ld.Thearch.Vput(ld.R_AARCH64_CALL26 | uint64(elfsym)<<32)
}
ld.Thearch.Vput(uint64(r.Xadd))
return 0
}
func elfsetupplt() {
// TODO(aram)
return
}
func machoreloc1(r *ld.Reloc, sectoff int64) int {
var v uint32
rs := r.Xsym
// ld64 has a bug handling MACHO_ARM64_RELOC_UNSIGNED with !extern relocation.
// see cmd/internal/ld/data.go for details. The workarond is that don't use !extern
// UNSIGNED relocation at all.
if rs.Type == obj.SHOSTOBJ || r.Type == obj.R_CALLARM64 || r.Type == obj.R_ADDRARM64 || r.Type == obj.R_ADDR {
if rs.Dynid < 0 {
ld.Diag("reloc %d to non-macho symbol %s type=%d", r.Type, rs.Name, rs.Type)
return -1
}
v = uint32(rs.Dynid)
v |= 1 << 27 // external relocation
} else {
v = uint32((rs.Sect.(*ld.Section)).Extnum)
if v == 0 {
ld.Diag("reloc %d to symbol %s in non-macho section %s type=%d", r.Type, rs.Name, (rs.Sect.(*ld.Section)).Name, rs.Type)
return -1
}
}
switch r.Type {
default:
return -1
case obj.R_ADDR:
v |= ld.MACHO_ARM64_RELOC_UNSIGNED << 28
case obj.R_CALLARM64:
if r.Xadd != 0 {
ld.Diag("ld64 doesn't allow BR26 reloc with non-zero addend: %s+%d", rs.Name, r.Xadd)
}
v |= 1 << 24 // pc-relative bit
v |= ld.MACHO_ARM64_RELOC_BRANCH26 << 28
case obj.R_ADDRARM64:
r.Siz = 4
// Two relocation entries: MACHO_ARM64_RELOC_PAGEOFF12 MACHO_ARM64_RELOC_PAGE21
// if r.Xadd is non-zero, add two MACHO_ARM64_RELOC_ADDEND.
if r.Xadd != 0 {
ld.Thearch.Lput(uint32(sectoff + 4))
ld.Thearch.Lput((ld.MACHO_ARM64_RELOC_ADDEND << 28) | (2 << 25) | uint32(r.Xadd&0xffffff))
}
ld.Thearch.Lput(uint32(sectoff + 4))
ld.Thearch.Lput(v | (ld.MACHO_ARM64_RELOC_PAGEOFF12 << 28) | (2 << 25))
if r.Xadd != 0 {
ld.Thearch.Lput(uint32(sectoff))
ld.Thearch.Lput((ld.MACHO_ARM64_RELOC_ADDEND << 28) | (2 << 25) | uint32(r.Xadd&0xffffff))
}
v |= 1 << 24 // pc-relative bit
v |= ld.MACHO_ARM64_RELOC_PAGE21 << 28
}
switch r.Siz {
default:
return -1
case 1:
v |= 0 << 25
case 2:
v |= 1 << 25
case 4:
v |= 2 << 25
case 8:
v |= 3 << 25
}
ld.Thearch.Lput(uint32(sectoff))
ld.Thearch.Lput(v)
return 0
}
func archreloc(r *ld.Reloc, s *ld.LSym, val *int64) int {
if ld.Linkmode == ld.LinkExternal {
switch r.Type {
default:
return -1
case obj.R_ADDRARM64:
r.Done = 0
// set up addend for eventual relocation via outer symbol.
rs := r.Sym
r.Xadd = r.Add
for rs.Outer != nil {
r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer)
rs = rs.Outer
}
if rs.Type != obj.SHOSTOBJ && rs.Sect == nil {
ld.Diag("missing section for %s", rs.Name)
}
r.Xsym = rs
// the first instruction is always at the lower address, this is endian neutral;
// but note that o0 and o1 should still use the target endian.
o0 := ld.Thelinkarch.ByteOrder.Uint32(s.P[r.Off : r.Off+4])
o1 := ld.Thelinkarch.ByteOrder.Uint32(s.P[r.Off+4 : r.Off+8])
// Note: ld64 currently has a bug that any non-zero addend for BR26 relocation
// will make the linking fail because it thinks the code is not PIC even though
// the BR26 relocation should be fully resolved at link time.
// That is the reason why the next if block is disabled. When the bug in ld64
// is fixed, we can enable this block and also enable duff's device in cmd/7g.
if false && ld.HEADTYPE == obj.Hdarwin {
// Mach-O wants the addend to be encoded in the instruction
// Note that although Mach-O supports ARM64_RELOC_ADDEND, it
// can only encode 24-bit of signed addend, but the instructions
// supports 33-bit of signed addend, so we always encode the
// addend in place.
o0 |= (uint32((r.Xadd>>12)&3) << 29) | (uint32((r.Xadd>>12>>2)&0x7ffff) << 5)
o1 |= uint32(r.Xadd&0xfff) << 10
r.Xadd = 0
}
// when laid out, the instruction order must always be o1, o2.
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
*val = int64(o0)<<32 | int64(o1)
} else {
*val = int64(o1)<<32 | int64(o0)
}
return 0
case obj.R_CALLARM64:
r.Done = 0
r.Xsym = r.Sym
*val = int64(0xfc000000 & uint32(r.Add))
r.Xadd = int64((uint32(r.Add) &^ 0xfc000000) * 4)
r.Add = 0
return 0
}
}
switch r.Type {
case obj.R_CONST:
*val = r.Add
return 0
case obj.R_GOTOFF:
*val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ld.Linklookup(ld.Ctxt, ".got", 0))
return 0
case obj.R_ADDRARM64:
t := ld.Symaddr(r.Sym) + r.Add - ((s.Value + int64(r.Off)) &^ 0xfff)
if t >= 1<<32 || t < -1<<32 {
ld.Diag("program too large, address relocation distance = %d", t)
}
// the first instruction is always at the lower address, this is endian neutral;
// but note that o0 and o1 should still use the target endian.
o0 := ld.Thelinkarch.ByteOrder.Uint32(s.P[r.Off : r.Off+4])
o1 := ld.Thelinkarch.ByteOrder.Uint32(s.P[r.Off+4 : r.Off+8])
o0 |= (uint32((t>>12)&3) << 29) | (uint32((t>>12>>2)&0x7ffff) << 5)
o1 |= uint32(t&0xfff) << 10
// when laid out, the instruction order must always be o1, o2.
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
*val = int64(o0)<<32 | int64(o1)
} else {
*val = int64(o1)<<32 | int64(o0)
}
return 0
case obj.R_CALLARM64:
*val = int64((0xfc000000 & uint32(r.Add)) | uint32((ld.Symaddr(r.Sym)+r.Add*4-(s.Value+int64(r.Off)))/4))
return 0
}
return -1
}
func archrelocvariant(r *ld.Reloc, s *ld.LSym, t int64) int64 {
log.Fatalf("unexpected relocation variant")
return -1
}
func adddynsym(ctxt *ld.Link, s *ld.LSym) {
// TODO(minux): implement when needed.
}
func adddynlib(lib string) {
if needlib(lib) == 0 {
return
}
if ld.Iself {
s := ld.Linklookup(ld.Ctxt, ".dynstr", 0)
if s.Size == 0 {
ld.Addstring(s, "")
}
ld.Elfwritedynent(ld.Linklookup(ld.Ctxt, ".dynamic", 0), ld.DT_NEEDED, uint64(ld.Addstring(s, lib)))
} else if ld.HEADTYPE == obj.Hdarwin {
ld.Machoadddynlib(lib)
} else {
ld.Diag("adddynlib: unsupported binary format")
}
}
func asmb() {
if ld.Debug['v'] != 0 {
fmt.Fprintf(&ld.Bso, "%5.2f asmb\n", obj.Cputime())
}
ld.Bso.Flush()
if ld.Iself {
ld.Asmbelfsetup()
}
sect := ld.Segtext.Sect
ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff))
ld.Codeblk(int64(sect.Vaddr), int64(sect.Length))
for sect = sect.Next; sect != nil; sect = sect.Next {
ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff))
ld.Datblk(int64(sect.Vaddr), int64(sect.Length))
}
if ld.Segrodata.Filelen > 0 {
if ld.Debug['v'] != 0 {
fmt.Fprintf(&ld.Bso, "%5.2f rodatblk\n", obj.Cputime())
}
ld.Bso.Flush()
ld.Cseek(int64(ld.Segrodata.Fileoff))
ld.Datblk(int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen))
}
if ld.Debug['v'] != 0 {
fmt.Fprintf(&ld.Bso, "%5.2f datblk\n", obj.Cputime())
}
ld.Bso.Flush()
ld.Cseek(int64(ld.Segdata.Fileoff))
ld.Datblk(int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen))
machlink := uint32(0)
if ld.HEADTYPE == obj.Hdarwin {
if ld.Debug['v'] != 0 {
fmt.Fprintf(&ld.Bso, "%5.2f dwarf\n", obj.Cputime())
}
if ld.Debug['w'] == 0 { // TODO(minux): enable DWARF Support
dwarfoff := uint32(ld.Rnd(int64(uint64(ld.HEADR)+ld.Segtext.Length), int64(ld.INITRND)) + ld.Rnd(int64(ld.Segdata.Filelen), int64(ld.INITRND)))
ld.Cseek(int64(dwarfoff))
ld.Segdwarf.Fileoff = uint64(ld.Cpos())
ld.Dwarfemitdebugsections()
ld.Segdwarf.Filelen = uint64(ld.Cpos()) - ld.Segdwarf.Fileoff
}
machlink = uint32(ld.Domacholink())
}
/* output symbol table */
ld.Symsize = 0
ld.Lcsize = 0
symo := uint32(0)
if ld.Debug['s'] == 0 {
// TODO: rationalize
if ld.Debug['v'] != 0 {
fmt.Fprintf(&ld.Bso, "%5.2f sym\n", obj.Cputime())
}
ld.Bso.Flush()
switch ld.HEADTYPE {
default:
if ld.Iself {
symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen)
symo = uint32(ld.Rnd(int64(symo), int64(ld.INITRND)))
}
case obj.Hplan9:
symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen)
case obj.Hdarwin:
symo = uint32(ld.Rnd(int64(uint64(ld.HEADR)+ld.Segtext.Filelen), int64(ld.INITRND)) + ld.Rnd(int64(ld.Segdata.Filelen), int64(ld.INITRND)) + int64(machlink))
}
ld.Cseek(int64(symo))
switch ld.HEADTYPE {
default:
if ld.Iself {
if ld.Debug['v'] != 0 {
fmt.Fprintf(&ld.Bso, "%5.2f elfsym\n", obj.Cputime())
}
ld.Asmelfsym()
ld.Cflush()
ld.Cwrite(ld.Elfstrdat)
if ld.Debug['v'] != 0 {
fmt.Fprintf(&ld.Bso, "%5.2f dwarf\n", obj.Cputime())
}
ld.Dwarfemitdebugsections()
if ld.Linkmode == ld.LinkExternal {
ld.Elfemitreloc()
}
}
case obj.Hplan9:
ld.Asmplan9sym()
ld.Cflush()
sym := ld.Linklookup(ld.Ctxt, "pclntab", 0)
if sym != nil {
ld.Lcsize = int32(len(sym.P))
for i := 0; int32(i) < ld.Lcsize; i++ {
ld.Cput(uint8(sym.P[i]))
}
ld.Cflush()
}
case obj.Hdarwin:
if ld.Linkmode == ld.LinkExternal {
ld.Machoemitreloc()
}
}
}
ld.Ctxt.Cursym = nil
if ld.Debug['v'] != 0 {
fmt.Fprintf(&ld.Bso, "%5.2f header\n", obj.Cputime())
}
ld.Bso.Flush()
ld.Cseek(0)
switch ld.HEADTYPE {
default:
case obj.Hplan9: /* plan 9 */
ld.Thearch.Lput(0x647) /* magic */
ld.Thearch.Lput(uint32(ld.Segtext.Filelen)) /* sizes */
ld.Thearch.Lput(uint32(ld.Segdata.Filelen))
ld.Thearch.Lput(uint32(ld.Segdata.Length - ld.Segdata.Filelen))
ld.Thearch.Lput(uint32(ld.Symsize)) /* nsyms */
ld.Thearch.Lput(uint32(ld.Entryvalue())) /* va of entry */
ld.Thearch.Lput(0)
ld.Thearch.Lput(uint32(ld.Lcsize))
case obj.Hlinux,
obj.Hfreebsd,
obj.Hnetbsd,
obj.Hopenbsd,
obj.Hnacl:
ld.Asmbelf(int64(symo))
case obj.Hdarwin:
ld.Asmbmacho()
}
ld.Cflush()
if ld.Debug['c'] != 0 {
fmt.Printf("textsize=%d\n", ld.Segtext.Filelen)
fmt.Printf("datsize=%d\n", ld.Segdata.Filelen)
fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen)
fmt.Printf("symsize=%d\n", ld.Symsize)
fmt.Printf("lcsize=%d\n", ld.Lcsize)
fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize))
}
}