| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package elliptic |
| |
| import ( |
| "crypto/elliptic/internal/nistec" |
| "crypto/rand" |
| "math/big" |
| ) |
| |
| // p521Curve is a Curve implementation based on nistec.P521Point. |
| // |
| // It's a wrapper that exposes the big.Int-based Curve interface and encodes the |
| // legacy idiosyncrasies it requires, such as invalid and infinity point |
| // handling. |
| // |
| // To interact with the nistec package, points are encoded into and decoded from |
| // properly formatted byte slices. All big.Int use is limited to this package. |
| // Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, |
| // so the overhead is acceptable. |
| type p521Curve struct { |
| params *CurveParams |
| } |
| |
| var p521 p521Curve |
| var _ Curve = p521 |
| |
| func initP521() { |
| p521.params = &CurveParams{ |
| Name: "P-521", |
| BitSize: 521, |
| // FIPS 186-4, section D.1.2.5 |
| P: bigFromDecimal("68647976601306097149819007990813932172694353001433" + |
| "0540939446345918554318339765605212255964066145455497729631139148" + |
| "0858037121987999716643812574028291115057151"), |
| N: bigFromDecimal("68647976601306097149819007990813932172694353001433" + |
| "0540939446345918554318339765539424505774633321719753296399637136" + |
| "3321113864768612440380340372808892707005449"), |
| B: bigFromHex("0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8" + |
| "b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef" + |
| "451fd46b503f00"), |
| Gx: bigFromHex("00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f8" + |
| "28af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf9" + |
| "7e7e31c2e5bd66"), |
| Gy: bigFromHex("011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817" + |
| "afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088" + |
| "be94769fd16650"), |
| } |
| } |
| |
| func (curve p521Curve) Params() *CurveParams { |
| return curve.params |
| } |
| |
| func (curve p521Curve) IsOnCurve(x, y *big.Int) bool { |
| // IsOnCurve is documented to reject (0, 0), the conventional point at |
| // infinity, which however is accepted by p521PointFromAffine. |
| if x.Sign() == 0 && y.Sign() == 0 { |
| return false |
| } |
| _, ok := p521PointFromAffine(x, y) |
| return ok |
| } |
| |
| func p521PointFromAffine(x, y *big.Int) (p *nistec.P521Point, ok bool) { |
| // (0, 0) is by convention the point at infinity, which can't be represented |
| // in affine coordinates. Marshal incorrectly encodes it as an uncompressed |
| // point, which SetBytes would correctly reject. See Issue 37294. |
| if x.Sign() == 0 && y.Sign() == 0 { |
| return nistec.NewP521Point(), true |
| } |
| if x.Sign() < 0 || y.Sign() < 0 { |
| return nil, false |
| } |
| if x.BitLen() > 521 || y.BitLen() > 521 { |
| return nil, false |
| } |
| p, err := nistec.NewP521Point().SetBytes(Marshal(P521(), x, y)) |
| if err != nil { |
| return nil, false |
| } |
| return p, true |
| } |
| |
| func p521PointToAffine(p *nistec.P521Point) (x, y *big.Int) { |
| out := p.Bytes() |
| if len(out) == 1 && out[0] == 0 { |
| // This is the correct encoding of the point at infinity, which |
| // Unmarshal does not support. See Issue 37294. |
| return new(big.Int), new(big.Int) |
| } |
| x, y = Unmarshal(P521(), out) |
| if x == nil { |
| panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") |
| } |
| return x, y |
| } |
| |
| // p521RandomPoint returns a random point on the curve. It's used when Add, |
| // Double, or ScalarMult are fed a point not on the curve, which is undefined |
| // behavior. Originally, we used to do the math on it anyway (which allows |
| // invalid curve attacks) and relied on the caller and Unmarshal to avoid this |
| // happening in the first place. Now, we just can't construct a nistec.P521Point |
| // for an invalid pair of coordinates, because that API is safer. If we panic, |
| // we risk introducing a DoS. If we return nil, we risk a panic. If we return |
| // the input, ecdsa.Verify might fail open. The safest course seems to be to |
| // return a valid, random point, which hopefully won't help the attacker. |
| func p521RandomPoint() (x, y *big.Int) { |
| _, x, y, err := GenerateKey(P521(), rand.Reader) |
| if err != nil { |
| panic("crypto/elliptic: failed to generate random point") |
| } |
| return x, y |
| } |
| |
| func (p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { |
| p1, ok := p521PointFromAffine(x1, y1) |
| if !ok { |
| return p521RandomPoint() |
| } |
| p2, ok := p521PointFromAffine(x2, y2) |
| if !ok { |
| return p521RandomPoint() |
| } |
| return p521PointToAffine(p1.Add(p1, p2)) |
| } |
| |
| func (p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { |
| p, ok := p521PointFromAffine(x1, y1) |
| if !ok { |
| return p521RandomPoint() |
| } |
| return p521PointToAffine(p.Double(p)) |
| } |
| |
| func (p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { |
| p, ok := p521PointFromAffine(Bx, By) |
| if !ok { |
| return p521RandomPoint() |
| } |
| return p521PointToAffine(p.ScalarMult(p, scalar)) |
| } |
| |
| func (p521Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { |
| p := nistec.NewP521Generator() |
| return p521PointToAffine(p.ScalarMult(p, scalar)) |
| } |
| |
| func bigFromDecimal(s string) *big.Int { |
| b, ok := new(big.Int).SetString(s, 10) |
| if !ok { |
| panic("invalid encoding") |
| } |
| return b |
| } |
| |
| func bigFromHex(s string) *big.Int { |
| b, ok := new(big.Int).SetString(s, 16) |
| if !ok { |
| panic("invalid encoding") |
| } |
| return b |
| } |