| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| //go:build s390x |
| |
| package elliptic |
| |
| import ( |
| "crypto/subtle" |
| "internal/cpu" |
| "math/big" |
| "unsafe" |
| ) |
| |
| const ( |
| offsetS390xHasVX = unsafe.Offsetof(cpu.S390X.HasVX) |
| offsetS390xHasVE1 = unsafe.Offsetof(cpu.S390X.HasVXE) |
| ) |
| |
| type p256CurveFast struct { |
| *CurveParams |
| } |
| |
| type p256Point struct { |
| x [32]byte |
| y [32]byte |
| z [32]byte |
| } |
| |
| var ( |
| p256 Curve |
| p256PreFast *[37][64]p256Point |
| ) |
| |
| //go:noescape |
| func p256MulInternalTrampolineSetup() |
| |
| //go:noescape |
| func p256SqrInternalTrampolineSetup() |
| |
| //go:noescape |
| func p256MulInternalVX() |
| |
| //go:noescape |
| func p256MulInternalVMSL() |
| |
| //go:noescape |
| func p256SqrInternalVX() |
| |
| //go:noescape |
| func p256SqrInternalVMSL() |
| |
| func initP256Arch() { |
| if cpu.S390X.HasVX { |
| p256 = p256CurveFast{p256Params} |
| initTable() |
| return |
| } |
| |
| // No vector support, use pure Go implementation. |
| p256 = p256Curve{p256Params} |
| return |
| } |
| |
| func (curve p256CurveFast) Params() *CurveParams { |
| return curve.CurveParams |
| } |
| |
| // Functions implemented in p256_asm_s390x.s |
| // Montgomery multiplication modulo P256 |
| // |
| //go:noescape |
| func p256SqrAsm(res, in1 []byte) |
| |
| //go:noescape |
| func p256MulAsm(res, in1, in2 []byte) |
| |
| // Montgomery square modulo P256 |
| func p256Sqr(res, in []byte) { |
| p256SqrAsm(res, in) |
| } |
| |
| // Montgomery multiplication by 1 |
| // |
| //go:noescape |
| func p256FromMont(res, in []byte) |
| |
| // iff cond == 1 val <- -val |
| // |
| //go:noescape |
| func p256NegCond(val *p256Point, cond int) |
| |
| // if cond == 0 res <- b; else res <- a |
| // |
| //go:noescape |
| func p256MovCond(res, a, b *p256Point, cond int) |
| |
| // Constant time table access |
| // |
| //go:noescape |
| func p256Select(point *p256Point, table []p256Point, idx int) |
| |
| //go:noescape |
| func p256SelectBase(point *p256Point, table []p256Point, idx int) |
| |
| // Montgomery multiplication modulo Ord(G) |
| // |
| //go:noescape |
| func p256OrdMul(res, in1, in2 []byte) |
| |
| // Montgomery square modulo Ord(G), repeated n times |
| func p256OrdSqr(res, in []byte, n int) { |
| copy(res, in) |
| for i := 0; i < n; i += 1 { |
| p256OrdMul(res, res, res) |
| } |
| } |
| |
| // Point add with P2 being affine point |
| // If sign == 1 -> P2 = -P2 |
| // If sel == 0 -> P3 = P1 |
| // if zero == 0 -> P3 = P2 |
| // |
| //go:noescape |
| func p256PointAddAffineAsm(P3, P1, P2 *p256Point, sign, sel, zero int) |
| |
| // Point add |
| // |
| //go:noescape |
| func p256PointAddAsm(P3, P1, P2 *p256Point) int |
| |
| //go:noescape |
| func p256PointDoubleAsm(P3, P1 *p256Point) |
| |
| func (curve p256CurveFast) Inverse(k *big.Int) *big.Int { |
| if k.Cmp(p256Params.N) >= 0 { |
| // This should never happen. |
| reducedK := new(big.Int).Mod(k, p256Params.N) |
| k = reducedK |
| } |
| |
| // table will store precomputed powers of x. The 32 bytes at index |
| // i store x^(i+1). |
| var table [15][32]byte |
| |
| x := fromBig(k) |
| // This code operates in the Montgomery domain where R = 2^256 mod n |
| // and n is the order of the scalar field. (See initP256 for the |
| // value.) Elements in the Montgomery domain take the form a×R and |
| // multiplication of x and y in the calculates (x × y × R^-1) mod n. RR |
| // is R×R mod n thus the Montgomery multiplication x and RR gives x×R, |
| // i.e. converts x into the Montgomery domain. Stored in BigEndian form |
| RR := []byte{0x66, 0xe1, 0x2d, 0x94, 0xf3, 0xd9, 0x56, 0x20, 0x28, 0x45, 0xb2, 0x39, 0x2b, 0x6b, 0xec, 0x59, |
| 0x46, 0x99, 0x79, 0x9c, 0x49, 0xbd, 0x6f, 0xa6, 0x83, 0x24, 0x4c, 0x95, 0xbe, 0x79, 0xee, 0xa2} |
| |
| p256OrdMul(table[0][:], x, RR) |
| |
| // Prepare the table, no need in constant time access, because the |
| // power is not a secret. (Entry 0 is never used.) |
| for i := 2; i < 16; i += 2 { |
| p256OrdSqr(table[i-1][:], table[(i/2)-1][:], 1) |
| p256OrdMul(table[i][:], table[i-1][:], table[0][:]) |
| } |
| |
| copy(x, table[14][:]) // f |
| |
| p256OrdSqr(x[0:32], x[0:32], 4) |
| p256OrdMul(x[0:32], x[0:32], table[14][:]) // ff |
| t := make([]byte, 32) |
| copy(t, x) |
| |
| p256OrdSqr(x, x, 8) |
| p256OrdMul(x, x, t) // ffff |
| copy(t, x) |
| |
| p256OrdSqr(x, x, 16) |
| p256OrdMul(x, x, t) // ffffffff |
| copy(t, x) |
| |
| p256OrdSqr(x, x, 64) // ffffffff0000000000000000 |
| p256OrdMul(x, x, t) // ffffffff00000000ffffffff |
| p256OrdSqr(x, x, 32) // ffffffff00000000ffffffff00000000 |
| p256OrdMul(x, x, t) // ffffffff00000000ffffffffffffffff |
| |
| // Remaining 32 windows |
| expLo := [32]byte{0xb, 0xc, 0xe, 0x6, 0xf, 0xa, 0xa, 0xd, 0xa, 0x7, 0x1, 0x7, 0x9, 0xe, 0x8, 0x4, |
| 0xf, 0x3, 0xb, 0x9, 0xc, 0xa, 0xc, 0x2, 0xf, 0xc, 0x6, 0x3, 0x2, 0x5, 0x4, 0xf} |
| for i := 0; i < 32; i++ { |
| p256OrdSqr(x, x, 4) |
| p256OrdMul(x, x, table[expLo[i]-1][:]) |
| } |
| |
| // Multiplying by one in the Montgomery domain converts a Montgomery |
| // value out of the domain. |
| one := []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} |
| p256OrdMul(x, x, one) |
| |
| return new(big.Int).SetBytes(x) |
| } |
| |
| // fromBig converts a *big.Int into a format used by this code. |
| func fromBig(big *big.Int) []byte { |
| // This could be done a lot more efficiently... |
| res := big.Bytes() |
| if 32 == len(res) { |
| return res |
| } |
| t := make([]byte, 32) |
| offset := 32 - len(res) |
| for i := len(res) - 1; i >= 0; i-- { |
| t[i+offset] = res[i] |
| } |
| return t |
| } |
| |
| // p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar |
| // is equal or greater than the order of the group, it's reduced modulo that order. |
| func p256GetMultiplier(in []byte) []byte { |
| n := new(big.Int).SetBytes(in) |
| |
| if n.Cmp(p256Params.N) >= 0 { |
| n.Mod(n, p256Params.N) |
| } |
| return fromBig(n) |
| } |
| |
| // p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the |
| // underlying field of the curve. (See initP256 for the value.) Thus rr here is |
| // R×R mod p. See comment in Inverse about how this is used. |
| var rr = []byte{0x00, 0x00, 0x00, 0x04, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, |
| 0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03} |
| |
| // (This is one, in the Montgomery domain.) |
| var one = []byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01} |
| |
| func maybeReduceModP(in *big.Int) *big.Int { |
| if in.Cmp(p256Params.P) < 0 { |
| return in |
| } |
| return new(big.Int).Mod(in, p256Params.P) |
| } |
| |
| func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) { |
| var r1, r2 p256Point |
| scalarReduced := p256GetMultiplier(baseScalar) |
| r1IsInfinity := scalarIsZero(scalarReduced) |
| r1.p256BaseMult(scalarReduced) |
| |
| copy(r2.x[:], fromBig(maybeReduceModP(bigX))) |
| copy(r2.y[:], fromBig(maybeReduceModP(bigY))) |
| copy(r2.z[:], one) |
| p256MulAsm(r2.x[:], r2.x[:], rr[:]) |
| p256MulAsm(r2.y[:], r2.y[:], rr[:]) |
| |
| scalarReduced = p256GetMultiplier(scalar) |
| r2IsInfinity := scalarIsZero(scalarReduced) |
| r2.p256ScalarMult(p256GetMultiplier(scalar)) |
| |
| var sum, double p256Point |
| pointsEqual := p256PointAddAsm(&sum, &r1, &r2) |
| p256PointDoubleAsm(&double, &r1) |
| p256MovCond(&sum, &double, &sum, pointsEqual) |
| p256MovCond(&sum, &r1, &sum, r2IsInfinity) |
| p256MovCond(&sum, &r2, &sum, r1IsInfinity) |
| return sum.p256PointToAffine() |
| } |
| |
| func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) { |
| var r p256Point |
| r.p256BaseMult(p256GetMultiplier(scalar)) |
| return r.p256PointToAffine() |
| } |
| |
| func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { |
| var r p256Point |
| copy(r.x[:], fromBig(maybeReduceModP(bigX))) |
| copy(r.y[:], fromBig(maybeReduceModP(bigY))) |
| copy(r.z[:], one) |
| p256MulAsm(r.x[:], r.x[:], rr[:]) |
| p256MulAsm(r.y[:], r.y[:], rr[:]) |
| r.p256ScalarMult(p256GetMultiplier(scalar)) |
| return r.p256PointToAffine() |
| } |
| |
| // scalarIsZero returns 1 if scalar represents the zero value, and zero |
| // otherwise. |
| func scalarIsZero(scalar []byte) int { |
| b := byte(0) |
| for _, s := range scalar { |
| b |= s |
| } |
| return subtle.ConstantTimeByteEq(b, 0) |
| } |
| |
| func (p *p256Point) p256PointToAffine() (x, y *big.Int) { |
| zInv := make([]byte, 32) |
| zInvSq := make([]byte, 32) |
| |
| p256Inverse(zInv, p.z[:]) |
| p256Sqr(zInvSq, zInv) |
| p256MulAsm(zInv, zInv, zInvSq) |
| |
| p256MulAsm(zInvSq, p.x[:], zInvSq) |
| p256MulAsm(zInv, p.y[:], zInv) |
| |
| p256FromMont(zInvSq, zInvSq) |
| p256FromMont(zInv, zInv) |
| |
| return new(big.Int).SetBytes(zInvSq), new(big.Int).SetBytes(zInv) |
| } |
| |
| // p256Inverse sets out to in^-1 mod p. |
| func p256Inverse(out, in []byte) { |
| var stack [6 * 32]byte |
| p2 := stack[32*0 : 32*0+32] |
| p4 := stack[32*1 : 32*1+32] |
| p8 := stack[32*2 : 32*2+32] |
| p16 := stack[32*3 : 32*3+32] |
| p32 := stack[32*4 : 32*4+32] |
| |
| p256Sqr(out, in) |
| p256MulAsm(p2, out, in) // 3*p |
| |
| p256Sqr(out, p2) |
| p256Sqr(out, out) |
| p256MulAsm(p4, out, p2) // f*p |
| |
| p256Sqr(out, p4) |
| p256Sqr(out, out) |
| p256Sqr(out, out) |
| p256Sqr(out, out) |
| p256MulAsm(p8, out, p4) // ff*p |
| |
| p256Sqr(out, p8) |
| |
| for i := 0; i < 7; i++ { |
| p256Sqr(out, out) |
| } |
| p256MulAsm(p16, out, p8) // ffff*p |
| |
| p256Sqr(out, p16) |
| for i := 0; i < 15; i++ { |
| p256Sqr(out, out) |
| } |
| p256MulAsm(p32, out, p16) // ffffffff*p |
| |
| p256Sqr(out, p32) |
| |
| for i := 0; i < 31; i++ { |
| p256Sqr(out, out) |
| } |
| p256MulAsm(out, out, in) |
| |
| for i := 0; i < 32*4; i++ { |
| p256Sqr(out, out) |
| } |
| p256MulAsm(out, out, p32) |
| |
| for i := 0; i < 32; i++ { |
| p256Sqr(out, out) |
| } |
| p256MulAsm(out, out, p32) |
| |
| for i := 0; i < 16; i++ { |
| p256Sqr(out, out) |
| } |
| p256MulAsm(out, out, p16) |
| |
| for i := 0; i < 8; i++ { |
| p256Sqr(out, out) |
| } |
| p256MulAsm(out, out, p8) |
| |
| p256Sqr(out, out) |
| p256Sqr(out, out) |
| p256Sqr(out, out) |
| p256Sqr(out, out) |
| p256MulAsm(out, out, p4) |
| |
| p256Sqr(out, out) |
| p256Sqr(out, out) |
| p256MulAsm(out, out, p2) |
| |
| p256Sqr(out, out) |
| p256Sqr(out, out) |
| p256MulAsm(out, out, in) |
| } |
| |
| func boothW5(in uint) (int, int) { |
| var s uint = ^((in >> 5) - 1) |
| var d uint = (1 << 6) - in - 1 |
| d = (d & s) | (in & (^s)) |
| d = (d >> 1) + (d & 1) |
| return int(d), int(s & 1) |
| } |
| |
| func boothW7(in uint) (int, int) { |
| var s uint = ^((in >> 7) - 1) |
| var d uint = (1 << 8) - in - 1 |
| d = (d & s) | (in & (^s)) |
| d = (d >> 1) + (d & 1) |
| return int(d), int(s & 1) |
| } |
| |
| func initTable() { |
| p256PreFast = new([37][64]p256Point) //z coordinate not used |
| basePoint := p256Point{ |
| x: [32]byte{0x18, 0x90, 0x5f, 0x76, 0xa5, 0x37, 0x55, 0xc6, 0x79, 0xfb, 0x73, 0x2b, 0x77, 0x62, 0x25, 0x10, |
| 0x75, 0xba, 0x95, 0xfc, 0x5f, 0xed, 0xb6, 0x01, 0x79, 0xe7, 0x30, 0xd4, 0x18, 0xa9, 0x14, 0x3c}, //(p256.x*2^256)%p |
| y: [32]byte{0x85, 0x71, 0xff, 0x18, 0x25, 0x88, 0x5d, 0x85, 0xd2, 0xe8, 0x86, 0x88, 0xdd, 0x21, 0xf3, 0x25, |
| 0x8b, 0x4a, 0xb8, 0xe4, 0xba, 0x19, 0xe4, 0x5c, 0xdd, 0xf2, 0x53, 0x57, 0xce, 0x95, 0x56, 0x0a}, //(p256.y*2^256)%p |
| z: [32]byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, //(p256.z*2^256)%p |
| } |
| |
| t1 := new(p256Point) |
| t2 := new(p256Point) |
| *t2 = basePoint |
| |
| zInv := make([]byte, 32) |
| zInvSq := make([]byte, 32) |
| for j := 0; j < 64; j++ { |
| *t1 = *t2 |
| for i := 0; i < 37; i++ { |
| // The window size is 7 so we need to double 7 times. |
| if i != 0 { |
| for k := 0; k < 7; k++ { |
| p256PointDoubleAsm(t1, t1) |
| } |
| } |
| // Convert the point to affine form. (Its values are |
| // still in Montgomery form however.) |
| p256Inverse(zInv, t1.z[:]) |
| p256Sqr(zInvSq, zInv) |
| p256MulAsm(zInv, zInv, zInvSq) |
| |
| p256MulAsm(t1.x[:], t1.x[:], zInvSq) |
| p256MulAsm(t1.y[:], t1.y[:], zInv) |
| |
| copy(t1.z[:], basePoint.z[:]) |
| // Update the table entry |
| copy(p256PreFast[i][j].x[:], t1.x[:]) |
| copy(p256PreFast[i][j].y[:], t1.y[:]) |
| } |
| if j == 0 { |
| p256PointDoubleAsm(t2, &basePoint) |
| } else { |
| p256PointAddAsm(t2, t2, &basePoint) |
| } |
| } |
| } |
| |
| func (p *p256Point) p256BaseMult(scalar []byte) { |
| wvalue := (uint(scalar[31]) << 1) & 0xff |
| sel, sign := boothW7(uint(wvalue)) |
| p256SelectBase(p, p256PreFast[0][:], sel) |
| p256NegCond(p, sign) |
| |
| copy(p.z[:], one[:]) |
| var t0 p256Point |
| |
| copy(t0.z[:], one[:]) |
| |
| index := uint(6) |
| zero := sel |
| |
| for i := 1; i < 37; i++ { |
| if index < 247 { |
| wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0xff |
| } else { |
| wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0xff |
| } |
| index += 7 |
| sel, sign = boothW7(uint(wvalue)) |
| p256SelectBase(&t0, p256PreFast[i][:], sel) |
| p256PointAddAffineAsm(p, p, &t0, sign, sel, zero) |
| zero |= sel |
| } |
| } |
| |
| func (p *p256Point) p256ScalarMult(scalar []byte) { |
| // precomp is a table of precomputed points that stores powers of p |
| // from p^1 to p^16. |
| var precomp [16]p256Point |
| var t0, t1, t2, t3 p256Point |
| |
| // Prepare the table |
| *&precomp[0] = *p |
| |
| p256PointDoubleAsm(&t0, p) |
| p256PointDoubleAsm(&t1, &t0) |
| p256PointDoubleAsm(&t2, &t1) |
| p256PointDoubleAsm(&t3, &t2) |
| *&precomp[1] = t0 // 2 |
| *&precomp[3] = t1 // 4 |
| *&precomp[7] = t2 // 8 |
| *&precomp[15] = t3 // 16 |
| |
| p256PointAddAsm(&t0, &t0, p) |
| p256PointAddAsm(&t1, &t1, p) |
| p256PointAddAsm(&t2, &t2, p) |
| *&precomp[2] = t0 // 3 |
| *&precomp[4] = t1 // 5 |
| *&precomp[8] = t2 // 9 |
| |
| p256PointDoubleAsm(&t0, &t0) |
| p256PointDoubleAsm(&t1, &t1) |
| *&precomp[5] = t0 // 6 |
| *&precomp[9] = t1 // 10 |
| |
| p256PointAddAsm(&t2, &t0, p) |
| p256PointAddAsm(&t1, &t1, p) |
| *&precomp[6] = t2 // 7 |
| *&precomp[10] = t1 // 11 |
| |
| p256PointDoubleAsm(&t0, &t0) |
| p256PointDoubleAsm(&t2, &t2) |
| *&precomp[11] = t0 // 12 |
| *&precomp[13] = t2 // 14 |
| |
| p256PointAddAsm(&t0, &t0, p) |
| p256PointAddAsm(&t2, &t2, p) |
| *&precomp[12] = t0 // 13 |
| *&precomp[14] = t2 // 15 |
| |
| // Start scanning the window from top bit |
| index := uint(254) |
| var sel, sign int |
| |
| wvalue := (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f |
| sel, _ = boothW5(uint(wvalue)) |
| p256Select(p, precomp[:], sel) |
| zero := sel |
| |
| for index > 4 { |
| index -= 5 |
| p256PointDoubleAsm(p, p) |
| p256PointDoubleAsm(p, p) |
| p256PointDoubleAsm(p, p) |
| p256PointDoubleAsm(p, p) |
| p256PointDoubleAsm(p, p) |
| |
| if index < 247 { |
| wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0x3f |
| } else { |
| wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f |
| } |
| |
| sel, sign = boothW5(uint(wvalue)) |
| |
| p256Select(&t0, precomp[:], sel) |
| p256NegCond(&t0, sign) |
| p256PointAddAsm(&t1, p, &t0) |
| p256MovCond(&t1, &t1, p, sel) |
| p256MovCond(p, &t1, &t0, zero) |
| zero |= sel |
| } |
| |
| p256PointDoubleAsm(p, p) |
| p256PointDoubleAsm(p, p) |
| p256PointDoubleAsm(p, p) |
| p256PointDoubleAsm(p, p) |
| p256PointDoubleAsm(p, p) |
| |
| wvalue = (uint(scalar[31]) << 1) & 0x3f |
| sel, sign = boothW5(uint(wvalue)) |
| |
| p256Select(&t0, precomp[:], sel) |
| p256NegCond(&t0, sign) |
| p256PointAddAsm(&t1, p, &t0) |
| p256MovCond(&t1, &t1, p, sel) |
| p256MovCond(p, &t1, &t0, zero) |
| } |