| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // MakeFunc implementation. |
| |
| package reflect |
| |
| import ( |
| "internal/abi" |
| "unsafe" |
| ) |
| |
| // makeFuncImpl is the closure value implementing the function |
| // returned by MakeFunc. |
| // The first three words of this type must be kept in sync with |
| // methodValue and runtime.reflectMethodValue. |
| // Any changes should be reflected in all three. |
| type makeFuncImpl struct { |
| makeFuncCtxt |
| ftyp *funcType |
| fn func([]Value) []Value |
| } |
| |
| // MakeFunc returns a new function of the given Type |
| // that wraps the function fn. When called, that new function |
| // does the following: |
| // |
| // - converts its arguments to a slice of Values. |
| // - runs results := fn(args). |
| // - returns the results as a slice of Values, one per formal result. |
| // |
| // The implementation fn can assume that the argument Value slice |
| // has the number and type of arguments given by typ. |
| // If typ describes a variadic function, the final Value is itself |
| // a slice representing the variadic arguments, as in the |
| // body of a variadic function. The result Value slice returned by fn |
| // must have the number and type of results given by typ. |
| // |
| // The Value.Call method allows the caller to invoke a typed function |
| // in terms of Values; in contrast, MakeFunc allows the caller to implement |
| // a typed function in terms of Values. |
| // |
| // The Examples section of the documentation includes an illustration |
| // of how to use MakeFunc to build a swap function for different types. |
| func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value { |
| if typ.Kind() != Func { |
| panic("reflect: call of MakeFunc with non-Func type") |
| } |
| |
| t := typ.common() |
| ftyp := (*funcType)(unsafe.Pointer(t)) |
| |
| code := abi.FuncPCABI0(makeFuncStub) |
| |
| // makeFuncImpl contains a stack map for use by the runtime |
| _, _, abid := funcLayout(ftyp, nil) |
| |
| impl := &makeFuncImpl{ |
| makeFuncCtxt: makeFuncCtxt{ |
| fn: code, |
| stack: abid.stackPtrs, |
| argLen: abid.stackCallArgsSize, |
| regPtrs: abid.inRegPtrs, |
| }, |
| ftyp: ftyp, |
| fn: fn, |
| } |
| |
| return Value{t, unsafe.Pointer(impl), flag(Func)} |
| } |
| |
| // makeFuncStub is an assembly function that is the code half of |
| // the function returned from MakeFunc. It expects a *callReflectFunc |
| // as its context register, and its job is to invoke callReflect(ctxt, frame) |
| // where ctxt is the context register and frame is a pointer to the first |
| // word in the passed-in argument frame. |
| func makeFuncStub() |
| |
| // The first 3 words of this type must be kept in sync with |
| // makeFuncImpl and runtime.reflectMethodValue. |
| // Any changes should be reflected in all three. |
| type methodValue struct { |
| makeFuncCtxt |
| method int |
| rcvr Value |
| } |
| |
| // makeMethodValue converts v from the rcvr+method index representation |
| // of a method value to an actual method func value, which is |
| // basically the receiver value with a special bit set, into a true |
| // func value - a value holding an actual func. The output is |
| // semantically equivalent to the input as far as the user of package |
| // reflect can tell, but the true func representation can be handled |
| // by code like Convert and Interface and Assign. |
| func makeMethodValue(op string, v Value) Value { |
| if v.flag&flagMethod == 0 { |
| panic("reflect: internal error: invalid use of makeMethodValue") |
| } |
| |
| // Ignoring the flagMethod bit, v describes the receiver, not the method type. |
| fl := v.flag & (flagRO | flagAddr | flagIndir) |
| fl |= flag(v.typ().Kind()) |
| rcvr := Value{v.typ(), v.ptr, fl} |
| |
| // v.Type returns the actual type of the method value. |
| ftyp := (*funcType)(unsafe.Pointer(v.Type().(*rtype))) |
| |
| code := methodValueCallCodePtr() |
| |
| // methodValue contains a stack map for use by the runtime |
| _, _, abid := funcLayout(ftyp, nil) |
| fv := &methodValue{ |
| makeFuncCtxt: makeFuncCtxt{ |
| fn: code, |
| stack: abid.stackPtrs, |
| argLen: abid.stackCallArgsSize, |
| regPtrs: abid.inRegPtrs, |
| }, |
| method: int(v.flag) >> flagMethodShift, |
| rcvr: rcvr, |
| } |
| |
| // Cause panic if method is not appropriate. |
| // The panic would still happen during the call if we omit this, |
| // but we want Interface() and other operations to fail early. |
| methodReceiver(op, fv.rcvr, fv.method) |
| |
| return Value{ftyp.Common(), unsafe.Pointer(fv), v.flag&flagRO | flag(Func)} |
| } |
| |
| func methodValueCallCodePtr() uintptr { |
| return abi.FuncPCABI0(methodValueCall) |
| } |
| |
| // methodValueCall is an assembly function that is the code half of |
| // the function returned from makeMethodValue. It expects a *methodValue |
| // as its context register, and its job is to invoke callMethod(ctxt, frame) |
| // where ctxt is the context register and frame is a pointer to the first |
| // word in the passed-in argument frame. |
| func methodValueCall() |
| |
| // This structure must be kept in sync with runtime.reflectMethodValue. |
| // Any changes should be reflected in all both. |
| type makeFuncCtxt struct { |
| fn uintptr |
| stack *bitVector // ptrmap for both stack args and results |
| argLen uintptr // just args |
| regPtrs abi.IntArgRegBitmap |
| } |
| |
| // moveMakeFuncArgPtrs uses ctxt.regPtrs to copy integer pointer arguments |
| // in args.Ints to args.Ptrs where the GC can see them. |
| // |
| // This is similar to what reflectcallmove does in the runtime, except |
| // that happens on the return path, whereas this happens on the call path. |
| // |
| // nosplit because pointers are being held in uintptr slots in args, so |
| // having our stack scanned now could lead to accidentally freeing |
| // memory. |
| // |
| //go:nosplit |
| func moveMakeFuncArgPtrs(ctxt *makeFuncCtxt, args *abi.RegArgs) { |
| for i, arg := range args.Ints { |
| // Avoid write barriers! Because our write barrier enqueues what |
| // was there before, we might enqueue garbage. |
| if ctxt.regPtrs.Get(i) { |
| *(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = arg |
| } else { |
| // We *must* zero this space ourselves because it's defined in |
| // assembly code and the GC will scan these pointers. Otherwise, |
| // there will be garbage here. |
| *(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = 0 |
| } |
| } |
| } |