|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | #include "go_asm.h" | 
|  | #include "go_tls.h" | 
|  | #include "funcdata.h" | 
|  | #include "textflag.h" | 
|  |  | 
|  | // _rt0_amd64 is common startup code for most amd64 systems when using | 
|  | // internal linking. This is the entry point for the program from the | 
|  | // kernel for an ordinary -buildmode=exe program. The stack holds the | 
|  | // number of arguments and the C-style argv. | 
|  | TEXT _rt0_amd64(SB),NOSPLIT,$-8 | 
|  | MOVQ	0(SP), DI	// argc | 
|  | LEAQ	8(SP), SI	// argv | 
|  | JMP	runtime·rt0_go(SB) | 
|  |  | 
|  | // main is common startup code for most amd64 systems when using | 
|  | // external linking. The C startup code will call the symbol "main" | 
|  | // passing argc and argv in the usual C ABI registers DI and SI. | 
|  | TEXT main(SB),NOSPLIT,$-8 | 
|  | JMP	runtime·rt0_go(SB) | 
|  |  | 
|  | // _rt0_amd64_lib is common startup code for most amd64 systems when | 
|  | // using -buildmode=c-archive or -buildmode=c-shared. The linker will | 
|  | // arrange to invoke this function as a global constructor (for | 
|  | // c-archive) or when the shared library is loaded (for c-shared). | 
|  | // We expect argc and argv to be passed in the usual C ABI registers | 
|  | // DI and SI. | 
|  | TEXT _rt0_amd64_lib(SB),NOSPLIT,$0x50 | 
|  | // Align stack per ELF ABI requirements. | 
|  | MOVQ	SP, AX | 
|  | ANDQ	$~15, SP | 
|  | // Save C ABI callee-saved registers, as caller may need them. | 
|  | MOVQ	BX, 0x10(SP) | 
|  | MOVQ	BP, 0x18(SP) | 
|  | MOVQ	R12, 0x20(SP) | 
|  | MOVQ	R13, 0x28(SP) | 
|  | MOVQ	R14, 0x30(SP) | 
|  | MOVQ	R15, 0x38(SP) | 
|  | MOVQ	AX, 0x40(SP) | 
|  |  | 
|  | MOVQ	DI, _rt0_amd64_lib_argc<>(SB) | 
|  | MOVQ	SI, _rt0_amd64_lib_argv<>(SB) | 
|  |  | 
|  | // Synchronous initialization. | 
|  | CALL	runtime·libpreinit(SB) | 
|  |  | 
|  | // Create a new thread to finish Go runtime initialization. | 
|  | MOVQ	_cgo_sys_thread_create(SB), AX | 
|  | TESTQ	AX, AX | 
|  | JZ	nocgo | 
|  | MOVQ	$_rt0_amd64_lib_go(SB), DI | 
|  | MOVQ	$0, SI | 
|  | CALL	AX | 
|  | JMP	restore | 
|  |  | 
|  | nocgo: | 
|  | MOVQ	$0x800000, 0(SP)		// stacksize | 
|  | MOVQ	$_rt0_amd64_lib_go(SB), AX | 
|  | MOVQ	AX, 8(SP)			// fn | 
|  | CALL	runtime·newosproc0(SB) | 
|  |  | 
|  | restore: | 
|  | MOVQ	0x10(SP), BX | 
|  | MOVQ	0x18(SP), BP | 
|  | MOVQ	0x20(SP), R12 | 
|  | MOVQ	0x28(SP), R13 | 
|  | MOVQ	0x30(SP), R14 | 
|  | MOVQ	0x38(SP), R15 | 
|  | MOVQ	0x40(SP), SP | 
|  | RET | 
|  |  | 
|  | // _rt0_amd64_lib_go initializes the Go runtime. | 
|  | // This is started in a separate thread by _rt0_amd64_lib. | 
|  | TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0 | 
|  | MOVQ	_rt0_amd64_lib_argc<>(SB), DI | 
|  | MOVQ	_rt0_amd64_lib_argv<>(SB), SI | 
|  | JMP	runtime·rt0_go(SB) | 
|  |  | 
|  | DATA _rt0_amd64_lib_argc<>(SB)/8, $0 | 
|  | GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8 | 
|  | DATA _rt0_amd64_lib_argv<>(SB)/8, $0 | 
|  | GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8 | 
|  |  | 
|  | TEXT runtime·rt0_go(SB),NOSPLIT,$0 | 
|  | // copy arguments forward on an even stack | 
|  | MOVQ	DI, AX		// argc | 
|  | MOVQ	SI, BX		// argv | 
|  | SUBQ	$(4*8+7), SP		// 2args 2auto | 
|  | ANDQ	$~15, SP | 
|  | MOVQ	AX, 16(SP) | 
|  | MOVQ	BX, 24(SP) | 
|  |  | 
|  | // create istack out of the given (operating system) stack. | 
|  | // _cgo_init may update stackguard. | 
|  | MOVQ	$runtime·g0(SB), DI | 
|  | LEAQ	(-64*1024+104)(SP), BX | 
|  | MOVQ	BX, g_stackguard0(DI) | 
|  | MOVQ	BX, g_stackguard1(DI) | 
|  | MOVQ	BX, (g_stack+stack_lo)(DI) | 
|  | MOVQ	SP, (g_stack+stack_hi)(DI) | 
|  |  | 
|  | // find out information about the processor we're on | 
|  | MOVL	$0, AX | 
|  | CPUID | 
|  | MOVL	AX, SI | 
|  | CMPL	AX, $0 | 
|  | JE	nocpuinfo | 
|  |  | 
|  | // Figure out how to serialize RDTSC. | 
|  | // On Intel processors LFENCE is enough. AMD requires MFENCE. | 
|  | // Don't know about the rest, so let's do MFENCE. | 
|  | CMPL	BX, $0x756E6547  // "Genu" | 
|  | JNE	notintel | 
|  | CMPL	DX, $0x49656E69  // "ineI" | 
|  | JNE	notintel | 
|  | CMPL	CX, $0x6C65746E  // "ntel" | 
|  | JNE	notintel | 
|  | MOVB	$1, runtime·isIntel(SB) | 
|  | MOVB	$1, runtime·lfenceBeforeRdtsc(SB) | 
|  | notintel: | 
|  |  | 
|  | // Load EAX=1 cpuid flags | 
|  | MOVL	$1, AX | 
|  | CPUID | 
|  | MOVL	AX, runtime·processorVersionInfo(SB) | 
|  |  | 
|  | nocpuinfo: | 
|  | // if there is an _cgo_init, call it. | 
|  | MOVQ	_cgo_init(SB), AX | 
|  | TESTQ	AX, AX | 
|  | JZ	needtls | 
|  | // g0 already in DI | 
|  | MOVQ	DI, CX	// Win64 uses CX for first parameter | 
|  | MOVQ	$setg_gcc<>(SB), SI | 
|  | CALL	AX | 
|  |  | 
|  | // update stackguard after _cgo_init | 
|  | MOVQ	$runtime·g0(SB), CX | 
|  | MOVQ	(g_stack+stack_lo)(CX), AX | 
|  | ADDQ	$const__StackGuard, AX | 
|  | MOVQ	AX, g_stackguard0(CX) | 
|  | MOVQ	AX, g_stackguard1(CX) | 
|  |  | 
|  | #ifndef GOOS_windows | 
|  | JMP ok | 
|  | #endif | 
|  | needtls: | 
|  | #ifdef GOOS_plan9 | 
|  | // skip TLS setup on Plan 9 | 
|  | JMP ok | 
|  | #endif | 
|  | #ifdef GOOS_solaris | 
|  | // skip TLS setup on Solaris | 
|  | JMP ok | 
|  | #endif | 
|  | #ifdef GOOS_darwin | 
|  | // skip TLS setup on Darwin | 
|  | JMP ok | 
|  | #endif | 
|  |  | 
|  | LEAQ	runtime·m0+m_tls(SB), DI | 
|  | CALL	runtime·settls(SB) | 
|  |  | 
|  | // store through it, to make sure it works | 
|  | get_tls(BX) | 
|  | MOVQ	$0x123, g(BX) | 
|  | MOVQ	runtime·m0+m_tls(SB), AX | 
|  | CMPQ	AX, $0x123 | 
|  | JEQ 2(PC) | 
|  | CALL	runtime·abort(SB) | 
|  | ok: | 
|  | // set the per-goroutine and per-mach "registers" | 
|  | get_tls(BX) | 
|  | LEAQ	runtime·g0(SB), CX | 
|  | MOVQ	CX, g(BX) | 
|  | LEAQ	runtime·m0(SB), AX | 
|  |  | 
|  | // save m->g0 = g0 | 
|  | MOVQ	CX, m_g0(AX) | 
|  | // save m0 to g0->m | 
|  | MOVQ	AX, g_m(CX) | 
|  |  | 
|  | CLD				// convention is D is always left cleared | 
|  | CALL	runtime·check(SB) | 
|  |  | 
|  | MOVL	16(SP), AX		// copy argc | 
|  | MOVL	AX, 0(SP) | 
|  | MOVQ	24(SP), AX		// copy argv | 
|  | MOVQ	AX, 8(SP) | 
|  | CALL	runtime·args(SB) | 
|  | CALL	runtime·osinit(SB) | 
|  | CALL	runtime·schedinit(SB) | 
|  |  | 
|  | // create a new goroutine to start program | 
|  | MOVQ	$runtime·mainPC(SB), AX		// entry | 
|  | PUSHQ	AX | 
|  | PUSHQ	$0			// arg size | 
|  | CALL	runtime·newproc(SB) | 
|  | POPQ	AX | 
|  | POPQ	AX | 
|  |  | 
|  | // start this M | 
|  | CALL	runtime·mstart(SB) | 
|  |  | 
|  | CALL	runtime·abort(SB)	// mstart should never return | 
|  | RET | 
|  |  | 
|  | // Prevent dead-code elimination of debugCallV1, which is | 
|  | // intended to be called by debuggers. | 
|  | MOVQ	$runtime·debugCallV1(SB), AX | 
|  | RET | 
|  |  | 
|  | DATA	runtime·mainPC+0(SB)/8,$runtime·main(SB) | 
|  | GLOBL	runtime·mainPC(SB),RODATA,$8 | 
|  |  | 
|  | TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 | 
|  | BYTE	$0xcc | 
|  | RET | 
|  |  | 
|  | TEXT runtime·asminit(SB),NOSPLIT,$0-0 | 
|  | // No per-thread init. | 
|  | RET | 
|  |  | 
|  | /* | 
|  | *  go-routine | 
|  | */ | 
|  |  | 
|  | // func gosave(buf *gobuf) | 
|  | // save state in Gobuf; setjmp | 
|  | TEXT runtime·gosave(SB), NOSPLIT, $0-8 | 
|  | MOVQ	buf+0(FP), AX		// gobuf | 
|  | LEAQ	buf+0(FP), BX		// caller's SP | 
|  | MOVQ	BX, gobuf_sp(AX) | 
|  | MOVQ	0(SP), BX		// caller's PC | 
|  | MOVQ	BX, gobuf_pc(AX) | 
|  | MOVQ	$0, gobuf_ret(AX) | 
|  | MOVQ	BP, gobuf_bp(AX) | 
|  | // Assert ctxt is zero. See func save. | 
|  | MOVQ	gobuf_ctxt(AX), BX | 
|  | TESTQ	BX, BX | 
|  | JZ	2(PC) | 
|  | CALL	runtime·badctxt(SB) | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), BX | 
|  | MOVQ	BX, gobuf_g(AX) | 
|  | RET | 
|  |  | 
|  | // func gogo(buf *gobuf) | 
|  | // restore state from Gobuf; longjmp | 
|  | TEXT runtime·gogo(SB), NOSPLIT, $16-8 | 
|  | MOVQ	buf+0(FP), BX		// gobuf | 
|  | MOVQ	gobuf_g(BX), DX | 
|  | MOVQ	0(DX), CX		// make sure g != nil | 
|  | get_tls(CX) | 
|  | MOVQ	DX, g(CX) | 
|  | MOVQ	gobuf_sp(BX), SP	// restore SP | 
|  | MOVQ	gobuf_ret(BX), AX | 
|  | MOVQ	gobuf_ctxt(BX), DX | 
|  | MOVQ	gobuf_bp(BX), BP | 
|  | MOVQ	$0, gobuf_sp(BX)	// clear to help garbage collector | 
|  | MOVQ	$0, gobuf_ret(BX) | 
|  | MOVQ	$0, gobuf_ctxt(BX) | 
|  | MOVQ	$0, gobuf_bp(BX) | 
|  | MOVQ	gobuf_pc(BX), BX | 
|  | JMP	BX | 
|  |  | 
|  | // func mcall(fn func(*g)) | 
|  | // Switch to m->g0's stack, call fn(g). | 
|  | // Fn must never return. It should gogo(&g->sched) | 
|  | // to keep running g. | 
|  | TEXT runtime·mcall(SB), NOSPLIT, $0-8 | 
|  | MOVQ	fn+0(FP), DI | 
|  |  | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), AX	// save state in g->sched | 
|  | MOVQ	0(SP), BX	// caller's PC | 
|  | MOVQ	BX, (g_sched+gobuf_pc)(AX) | 
|  | LEAQ	fn+0(FP), BX	// caller's SP | 
|  | MOVQ	BX, (g_sched+gobuf_sp)(AX) | 
|  | MOVQ	AX, (g_sched+gobuf_g)(AX) | 
|  | MOVQ	BP, (g_sched+gobuf_bp)(AX) | 
|  |  | 
|  | // switch to m->g0 & its stack, call fn | 
|  | MOVQ	g(CX), BX | 
|  | MOVQ	g_m(BX), BX | 
|  | MOVQ	m_g0(BX), SI | 
|  | CMPQ	SI, AX	// if g == m->g0 call badmcall | 
|  | JNE	3(PC) | 
|  | MOVQ	$runtime·badmcall(SB), AX | 
|  | JMP	AX | 
|  | MOVQ	SI, g(CX)	// g = m->g0 | 
|  | MOVQ	(g_sched+gobuf_sp)(SI), SP	// sp = m->g0->sched.sp | 
|  | PUSHQ	AX | 
|  | MOVQ	DI, DX | 
|  | MOVQ	0(DI), DI | 
|  | CALL	DI | 
|  | POPQ	AX | 
|  | MOVQ	$runtime·badmcall2(SB), AX | 
|  | JMP	AX | 
|  | RET | 
|  |  | 
|  | // systemstack_switch is a dummy routine that systemstack leaves at the bottom | 
|  | // of the G stack. We need to distinguish the routine that | 
|  | // lives at the bottom of the G stack from the one that lives | 
|  | // at the top of the system stack because the one at the top of | 
|  | // the system stack terminates the stack walk (see topofstack()). | 
|  | TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 | 
|  | RET | 
|  |  | 
|  | // func systemstack(fn func()) | 
|  | TEXT runtime·systemstack(SB), NOSPLIT, $0-8 | 
|  | MOVQ	fn+0(FP), DI	// DI = fn | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), AX	// AX = g | 
|  | MOVQ	g_m(AX), BX	// BX = m | 
|  |  | 
|  | CMPQ	AX, m_gsignal(BX) | 
|  | JEQ	noswitch | 
|  |  | 
|  | MOVQ	m_g0(BX), DX	// DX = g0 | 
|  | CMPQ	AX, DX | 
|  | JEQ	noswitch | 
|  |  | 
|  | CMPQ	AX, m_curg(BX) | 
|  | JNE	bad | 
|  |  | 
|  | // switch stacks | 
|  | // save our state in g->sched. Pretend to | 
|  | // be systemstack_switch if the G stack is scanned. | 
|  | MOVQ	$runtime·systemstack_switch(SB), SI | 
|  | MOVQ	SI, (g_sched+gobuf_pc)(AX) | 
|  | MOVQ	SP, (g_sched+gobuf_sp)(AX) | 
|  | MOVQ	AX, (g_sched+gobuf_g)(AX) | 
|  | MOVQ	BP, (g_sched+gobuf_bp)(AX) | 
|  |  | 
|  | // switch to g0 | 
|  | MOVQ	DX, g(CX) | 
|  | MOVQ	(g_sched+gobuf_sp)(DX), BX | 
|  | // make it look like mstart called systemstack on g0, to stop traceback | 
|  | SUBQ	$8, BX | 
|  | MOVQ	$runtime·mstart(SB), DX | 
|  | MOVQ	DX, 0(BX) | 
|  | MOVQ	BX, SP | 
|  |  | 
|  | // call target function | 
|  | MOVQ	DI, DX | 
|  | MOVQ	0(DI), DI | 
|  | CALL	DI | 
|  |  | 
|  | // switch back to g | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), AX | 
|  | MOVQ	g_m(AX), BX | 
|  | MOVQ	m_curg(BX), AX | 
|  | MOVQ	AX, g(CX) | 
|  | MOVQ	(g_sched+gobuf_sp)(AX), SP | 
|  | MOVQ	$0, (g_sched+gobuf_sp)(AX) | 
|  | RET | 
|  |  | 
|  | noswitch: | 
|  | // already on m stack; tail call the function | 
|  | // Using a tail call here cleans up tracebacks since we won't stop | 
|  | // at an intermediate systemstack. | 
|  | MOVQ	DI, DX | 
|  | MOVQ	0(DI), DI | 
|  | JMP	DI | 
|  |  | 
|  | bad: | 
|  | // Bad: g is not gsignal, not g0, not curg. What is it? | 
|  | MOVQ	$runtime·badsystemstack(SB), AX | 
|  | CALL	AX | 
|  | INT	$3 | 
|  |  | 
|  |  | 
|  | /* | 
|  | * support for morestack | 
|  | */ | 
|  |  | 
|  | // Called during function prolog when more stack is needed. | 
|  | // | 
|  | // The traceback routines see morestack on a g0 as being | 
|  | // the top of a stack (for example, morestack calling newstack | 
|  | // calling the scheduler calling newm calling gc), so we must | 
|  | // record an argument size. For that purpose, it has no arguments. | 
|  | TEXT runtime·morestack(SB),NOSPLIT,$0-0 | 
|  | // Cannot grow scheduler stack (m->g0). | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), BX | 
|  | MOVQ	g_m(BX), BX | 
|  | MOVQ	m_g0(BX), SI | 
|  | CMPQ	g(CX), SI | 
|  | JNE	3(PC) | 
|  | CALL	runtime·badmorestackg0(SB) | 
|  | CALL	runtime·abort(SB) | 
|  |  | 
|  | // Cannot grow signal stack (m->gsignal). | 
|  | MOVQ	m_gsignal(BX), SI | 
|  | CMPQ	g(CX), SI | 
|  | JNE	3(PC) | 
|  | CALL	runtime·badmorestackgsignal(SB) | 
|  | CALL	runtime·abort(SB) | 
|  |  | 
|  | // Called from f. | 
|  | // Set m->morebuf to f's caller. | 
|  | MOVQ	8(SP), AX	// f's caller's PC | 
|  | MOVQ	AX, (m_morebuf+gobuf_pc)(BX) | 
|  | LEAQ	16(SP), AX	// f's caller's SP | 
|  | MOVQ	AX, (m_morebuf+gobuf_sp)(BX) | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), SI | 
|  | MOVQ	SI, (m_morebuf+gobuf_g)(BX) | 
|  |  | 
|  | // Set g->sched to context in f. | 
|  | MOVQ	0(SP), AX // f's PC | 
|  | MOVQ	AX, (g_sched+gobuf_pc)(SI) | 
|  | MOVQ	SI, (g_sched+gobuf_g)(SI) | 
|  | LEAQ	8(SP), AX // f's SP | 
|  | MOVQ	AX, (g_sched+gobuf_sp)(SI) | 
|  | MOVQ	BP, (g_sched+gobuf_bp)(SI) | 
|  | MOVQ	DX, (g_sched+gobuf_ctxt)(SI) | 
|  |  | 
|  | // Call newstack on m->g0's stack. | 
|  | MOVQ	m_g0(BX), BX | 
|  | MOVQ	BX, g(CX) | 
|  | MOVQ	(g_sched+gobuf_sp)(BX), SP | 
|  | CALL	runtime·newstack(SB) | 
|  | CALL	runtime·abort(SB)	// crash if newstack returns | 
|  | RET | 
|  |  | 
|  | // morestack but not preserving ctxt. | 
|  | TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0 | 
|  | MOVL	$0, DX | 
|  | JMP	runtime·morestack(SB) | 
|  |  | 
|  | // reflectcall: call a function with the given argument list | 
|  | // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). | 
|  | // we don't have variable-sized frames, so we use a small number | 
|  | // of constant-sized-frame functions to encode a few bits of size in the pc. | 
|  | // Caution: ugly multiline assembly macros in your future! | 
|  |  | 
|  | #define DISPATCH(NAME,MAXSIZE)		\ | 
|  | CMPQ	CX, $MAXSIZE;		\ | 
|  | JA	3(PC);			\ | 
|  | MOVQ	$NAME(SB), AX;		\ | 
|  | JMP	AX | 
|  | // Note: can't just "JMP NAME(SB)" - bad inlining results. | 
|  |  | 
|  | TEXT ·reflectcall(SB), NOSPLIT, $0-32 | 
|  | MOVLQZX argsize+24(FP), CX | 
|  | DISPATCH(runtime·call32, 32) | 
|  | DISPATCH(runtime·call64, 64) | 
|  | DISPATCH(runtime·call128, 128) | 
|  | DISPATCH(runtime·call256, 256) | 
|  | DISPATCH(runtime·call512, 512) | 
|  | DISPATCH(runtime·call1024, 1024) | 
|  | DISPATCH(runtime·call2048, 2048) | 
|  | DISPATCH(runtime·call4096, 4096) | 
|  | DISPATCH(runtime·call8192, 8192) | 
|  | DISPATCH(runtime·call16384, 16384) | 
|  | DISPATCH(runtime·call32768, 32768) | 
|  | DISPATCH(runtime·call65536, 65536) | 
|  | DISPATCH(runtime·call131072, 131072) | 
|  | DISPATCH(runtime·call262144, 262144) | 
|  | DISPATCH(runtime·call524288, 524288) | 
|  | DISPATCH(runtime·call1048576, 1048576) | 
|  | DISPATCH(runtime·call2097152, 2097152) | 
|  | DISPATCH(runtime·call4194304, 4194304) | 
|  | DISPATCH(runtime·call8388608, 8388608) | 
|  | DISPATCH(runtime·call16777216, 16777216) | 
|  | DISPATCH(runtime·call33554432, 33554432) | 
|  | DISPATCH(runtime·call67108864, 67108864) | 
|  | DISPATCH(runtime·call134217728, 134217728) | 
|  | DISPATCH(runtime·call268435456, 268435456) | 
|  | DISPATCH(runtime·call536870912, 536870912) | 
|  | DISPATCH(runtime·call1073741824, 1073741824) | 
|  | MOVQ	$runtime·badreflectcall(SB), AX | 
|  | JMP	AX | 
|  |  | 
|  | #define CALLFN(NAME,MAXSIZE)			\ | 
|  | TEXT NAME(SB), WRAPPER, $MAXSIZE-32;		\ | 
|  | NO_LOCAL_POINTERS;			\ | 
|  | /* copy arguments to stack */		\ | 
|  | MOVQ	argptr+16(FP), SI;		\ | 
|  | MOVLQZX argsize+24(FP), CX;		\ | 
|  | MOVQ	SP, DI;				\ | 
|  | REP;MOVSB;				\ | 
|  | /* call function */			\ | 
|  | MOVQ	f+8(FP), DX;			\ | 
|  | PCDATA  $PCDATA_StackMapIndex, $0;	\ | 
|  | CALL	(DX);				\ | 
|  | /* copy return values back */		\ | 
|  | MOVQ	argtype+0(FP), DX;		\ | 
|  | MOVQ	argptr+16(FP), DI;		\ | 
|  | MOVLQZX	argsize+24(FP), CX;		\ | 
|  | MOVLQZX	retoffset+28(FP), BX;		\ | 
|  | MOVQ	SP, SI;				\ | 
|  | ADDQ	BX, DI;				\ | 
|  | ADDQ	BX, SI;				\ | 
|  | SUBQ	BX, CX;				\ | 
|  | CALL	callRet<>(SB);			\ | 
|  | RET | 
|  |  | 
|  | // callRet copies return values back at the end of call*. This is a | 
|  | // separate function so it can allocate stack space for the arguments | 
|  | // to reflectcallmove. It does not follow the Go ABI; it expects its | 
|  | // arguments in registers. | 
|  | TEXT callRet<>(SB), NOSPLIT, $32-0 | 
|  | NO_LOCAL_POINTERS | 
|  | MOVQ	DX, 0(SP) | 
|  | MOVQ	DI, 8(SP) | 
|  | MOVQ	SI, 16(SP) | 
|  | MOVQ	CX, 24(SP) | 
|  | CALL	runtime·reflectcallmove(SB) | 
|  | RET | 
|  |  | 
|  | CALLFN(·call32, 32) | 
|  | CALLFN(·call64, 64) | 
|  | CALLFN(·call128, 128) | 
|  | CALLFN(·call256, 256) | 
|  | CALLFN(·call512, 512) | 
|  | CALLFN(·call1024, 1024) | 
|  | CALLFN(·call2048, 2048) | 
|  | CALLFN(·call4096, 4096) | 
|  | CALLFN(·call8192, 8192) | 
|  | CALLFN(·call16384, 16384) | 
|  | CALLFN(·call32768, 32768) | 
|  | CALLFN(·call65536, 65536) | 
|  | CALLFN(·call131072, 131072) | 
|  | CALLFN(·call262144, 262144) | 
|  | CALLFN(·call524288, 524288) | 
|  | CALLFN(·call1048576, 1048576) | 
|  | CALLFN(·call2097152, 2097152) | 
|  | CALLFN(·call4194304, 4194304) | 
|  | CALLFN(·call8388608, 8388608) | 
|  | CALLFN(·call16777216, 16777216) | 
|  | CALLFN(·call33554432, 33554432) | 
|  | CALLFN(·call67108864, 67108864) | 
|  | CALLFN(·call134217728, 134217728) | 
|  | CALLFN(·call268435456, 268435456) | 
|  | CALLFN(·call536870912, 536870912) | 
|  | CALLFN(·call1073741824, 1073741824) | 
|  |  | 
|  | TEXT runtime·procyield(SB),NOSPLIT,$0-0 | 
|  | MOVL	cycles+0(FP), AX | 
|  | again: | 
|  | PAUSE | 
|  | SUBL	$1, AX | 
|  | JNZ	again | 
|  | RET | 
|  |  | 
|  |  | 
|  | TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 | 
|  | // Stores are already ordered on x86, so this is just a | 
|  | // compile barrier. | 
|  | RET | 
|  |  | 
|  | // func jmpdefer(fv *funcval, argp uintptr) | 
|  | // argp is a caller SP. | 
|  | // called from deferreturn. | 
|  | // 1. pop the caller | 
|  | // 2. sub 5 bytes from the callers return | 
|  | // 3. jmp to the argument | 
|  | TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16 | 
|  | MOVQ	fv+0(FP), DX	// fn | 
|  | MOVQ	argp+8(FP), BX	// caller sp | 
|  | LEAQ	-8(BX), SP	// caller sp after CALL | 
|  | MOVQ	-8(SP), BP	// restore BP as if deferreturn returned (harmless if framepointers not in use) | 
|  | SUBQ	$5, (SP)	// return to CALL again | 
|  | MOVQ	0(DX), BX | 
|  | JMP	BX	// but first run the deferred function | 
|  |  | 
|  | // Save state of caller into g->sched. Smashes R8, R9. | 
|  | TEXT gosave<>(SB),NOSPLIT,$0 | 
|  | get_tls(R8) | 
|  | MOVQ	g(R8), R8 | 
|  | MOVQ	0(SP), R9 | 
|  | MOVQ	R9, (g_sched+gobuf_pc)(R8) | 
|  | LEAQ	8(SP), R9 | 
|  | MOVQ	R9, (g_sched+gobuf_sp)(R8) | 
|  | MOVQ	$0, (g_sched+gobuf_ret)(R8) | 
|  | MOVQ	BP, (g_sched+gobuf_bp)(R8) | 
|  | // Assert ctxt is zero. See func save. | 
|  | MOVQ	(g_sched+gobuf_ctxt)(R8), R9 | 
|  | TESTQ	R9, R9 | 
|  | JZ	2(PC) | 
|  | CALL	runtime·badctxt(SB) | 
|  | RET | 
|  |  | 
|  | // func asmcgocall(fn, arg unsafe.Pointer) int32 | 
|  | // Call fn(arg) on the scheduler stack, | 
|  | // aligned appropriately for the gcc ABI. | 
|  | // See cgocall.go for more details. | 
|  | TEXT ·asmcgocall(SB),NOSPLIT,$0-20 | 
|  | MOVQ	fn+0(FP), AX | 
|  | MOVQ	arg+8(FP), BX | 
|  |  | 
|  | MOVQ	SP, DX | 
|  |  | 
|  | // Figure out if we need to switch to m->g0 stack. | 
|  | // We get called to create new OS threads too, and those | 
|  | // come in on the m->g0 stack already. | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), R8 | 
|  | CMPQ	R8, $0 | 
|  | JEQ	nosave | 
|  | MOVQ	g_m(R8), R8 | 
|  | MOVQ	m_g0(R8), SI | 
|  | MOVQ	g(CX), DI | 
|  | CMPQ	SI, DI | 
|  | JEQ	nosave | 
|  | MOVQ	m_gsignal(R8), SI | 
|  | CMPQ	SI, DI | 
|  | JEQ	nosave | 
|  |  | 
|  | // Switch to system stack. | 
|  | MOVQ	m_g0(R8), SI | 
|  | CALL	gosave<>(SB) | 
|  | MOVQ	SI, g(CX) | 
|  | MOVQ	(g_sched+gobuf_sp)(SI), SP | 
|  |  | 
|  | // Now on a scheduling stack (a pthread-created stack). | 
|  | // Make sure we have enough room for 4 stack-backed fast-call | 
|  | // registers as per windows amd64 calling convention. | 
|  | SUBQ	$64, SP | 
|  | ANDQ	$~15, SP	// alignment for gcc ABI | 
|  | MOVQ	DI, 48(SP)	// save g | 
|  | MOVQ	(g_stack+stack_hi)(DI), DI | 
|  | SUBQ	DX, DI | 
|  | MOVQ	DI, 40(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback) | 
|  | MOVQ	BX, DI		// DI = first argument in AMD64 ABI | 
|  | MOVQ	BX, CX		// CX = first argument in Win64 | 
|  | CALL	AX | 
|  |  | 
|  | // Restore registers, g, stack pointer. | 
|  | get_tls(CX) | 
|  | MOVQ	48(SP), DI | 
|  | MOVQ	(g_stack+stack_hi)(DI), SI | 
|  | SUBQ	40(SP), SI | 
|  | MOVQ	DI, g(CX) | 
|  | MOVQ	SI, SP | 
|  |  | 
|  | MOVL	AX, ret+16(FP) | 
|  | RET | 
|  |  | 
|  | nosave: | 
|  | // Running on a system stack, perhaps even without a g. | 
|  | // Having no g can happen during thread creation or thread teardown | 
|  | // (see needm/dropm on Solaris, for example). | 
|  | // This code is like the above sequence but without saving/restoring g | 
|  | // and without worrying about the stack moving out from under us | 
|  | // (because we're on a system stack, not a goroutine stack). | 
|  | // The above code could be used directly if already on a system stack, | 
|  | // but then the only path through this code would be a rare case on Solaris. | 
|  | // Using this code for all "already on system stack" calls exercises it more, | 
|  | // which should help keep it correct. | 
|  | SUBQ	$64, SP | 
|  | ANDQ	$~15, SP | 
|  | MOVQ	$0, 48(SP)		// where above code stores g, in case someone looks during debugging | 
|  | MOVQ	DX, 40(SP)	// save original stack pointer | 
|  | MOVQ	BX, DI		// DI = first argument in AMD64 ABI | 
|  | MOVQ	BX, CX		// CX = first argument in Win64 | 
|  | CALL	AX | 
|  | MOVQ	40(SP), SI	// restore original stack pointer | 
|  | MOVQ	SI, SP | 
|  | MOVL	AX, ret+16(FP) | 
|  | RET | 
|  |  | 
|  | // func cgocallback(fn, frame unsafe.Pointer, framesize, ctxt uintptr) | 
|  | // Turn the fn into a Go func (by taking its address) and call | 
|  | // cgocallback_gofunc. | 
|  | TEXT runtime·cgocallback(SB),NOSPLIT,$32-32 | 
|  | LEAQ	fn+0(FP), AX | 
|  | MOVQ	AX, 0(SP) | 
|  | MOVQ	frame+8(FP), AX | 
|  | MOVQ	AX, 8(SP) | 
|  | MOVQ	framesize+16(FP), AX | 
|  | MOVQ	AX, 16(SP) | 
|  | MOVQ	ctxt+24(FP), AX | 
|  | MOVQ	AX, 24(SP) | 
|  | MOVQ	$runtime·cgocallback_gofunc(SB), AX | 
|  | CALL	AX | 
|  | RET | 
|  |  | 
|  | // func cgocallback_gofunc(fn, frame, framesize, ctxt uintptr) | 
|  | // See cgocall.go for more details. | 
|  | TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32 | 
|  | NO_LOCAL_POINTERS | 
|  |  | 
|  | // If g is nil, Go did not create the current thread. | 
|  | // Call needm to obtain one m for temporary use. | 
|  | // In this case, we're running on the thread stack, so there's | 
|  | // lots of space, but the linker doesn't know. Hide the call from | 
|  | // the linker analysis by using an indirect call through AX. | 
|  | get_tls(CX) | 
|  | #ifdef GOOS_windows | 
|  | MOVL	$0, BX | 
|  | CMPQ	CX, $0 | 
|  | JEQ	2(PC) | 
|  | #endif | 
|  | MOVQ	g(CX), BX | 
|  | CMPQ	BX, $0 | 
|  | JEQ	needm | 
|  | MOVQ	g_m(BX), BX | 
|  | MOVQ	BX, R8 // holds oldm until end of function | 
|  | JMP	havem | 
|  | needm: | 
|  | MOVQ	$0, 0(SP) | 
|  | MOVQ	$runtime·needm(SB), AX | 
|  | CALL	AX | 
|  | MOVQ	0(SP), R8 | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), BX | 
|  | MOVQ	g_m(BX), BX | 
|  |  | 
|  | // Set m->sched.sp = SP, so that if a panic happens | 
|  | // during the function we are about to execute, it will | 
|  | // have a valid SP to run on the g0 stack. | 
|  | // The next few lines (after the havem label) | 
|  | // will save this SP onto the stack and then write | 
|  | // the same SP back to m->sched.sp. That seems redundant, | 
|  | // but if an unrecovered panic happens, unwindm will | 
|  | // restore the g->sched.sp from the stack location | 
|  | // and then systemstack will try to use it. If we don't set it here, | 
|  | // that restored SP will be uninitialized (typically 0) and | 
|  | // will not be usable. | 
|  | MOVQ	m_g0(BX), SI | 
|  | MOVQ	SP, (g_sched+gobuf_sp)(SI) | 
|  |  | 
|  | havem: | 
|  | // Now there's a valid m, and we're running on its m->g0. | 
|  | // Save current m->g0->sched.sp on stack and then set it to SP. | 
|  | // Save current sp in m->g0->sched.sp in preparation for | 
|  | // switch back to m->curg stack. | 
|  | // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). | 
|  | MOVQ	m_g0(BX), SI | 
|  | MOVQ	(g_sched+gobuf_sp)(SI), AX | 
|  | MOVQ	AX, 0(SP) | 
|  | MOVQ	SP, (g_sched+gobuf_sp)(SI) | 
|  |  | 
|  | // Switch to m->curg stack and call runtime.cgocallbackg. | 
|  | // Because we are taking over the execution of m->curg | 
|  | // but *not* resuming what had been running, we need to | 
|  | // save that information (m->curg->sched) so we can restore it. | 
|  | // We can restore m->curg->sched.sp easily, because calling | 
|  | // runtime.cgocallbackg leaves SP unchanged upon return. | 
|  | // To save m->curg->sched.pc, we push it onto the stack. | 
|  | // This has the added benefit that it looks to the traceback | 
|  | // routine like cgocallbackg is going to return to that | 
|  | // PC (because the frame we allocate below has the same | 
|  | // size as cgocallback_gofunc's frame declared above) | 
|  | // so that the traceback will seamlessly trace back into | 
|  | // the earlier calls. | 
|  | // | 
|  | // In the new goroutine, 8(SP) holds the saved R8. | 
|  | MOVQ	m_curg(BX), SI | 
|  | MOVQ	SI, g(CX) | 
|  | MOVQ	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI | 
|  | MOVQ	(g_sched+gobuf_pc)(SI), BX | 
|  | MOVQ	BX, -8(DI) | 
|  | // Compute the size of the frame, including return PC and, if | 
|  | // GOEXPERIMENT=framepointer, the saved base pointer | 
|  | MOVQ	ctxt+24(FP), BX | 
|  | LEAQ	fv+0(FP), AX | 
|  | SUBQ	SP, AX | 
|  | SUBQ	AX, DI | 
|  | MOVQ	DI, SP | 
|  |  | 
|  | MOVQ	R8, 8(SP) | 
|  | MOVQ	BX, 0(SP) | 
|  | CALL	runtime·cgocallbackg(SB) | 
|  | MOVQ	8(SP), R8 | 
|  |  | 
|  | // Compute the size of the frame again. FP and SP have | 
|  | // completely different values here than they did above, | 
|  | // but only their difference matters. | 
|  | LEAQ	fv+0(FP), AX | 
|  | SUBQ	SP, AX | 
|  |  | 
|  | // Restore g->sched (== m->curg->sched) from saved values. | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), SI | 
|  | MOVQ	SP, DI | 
|  | ADDQ	AX, DI | 
|  | MOVQ	-8(DI), BX | 
|  | MOVQ	BX, (g_sched+gobuf_pc)(SI) | 
|  | MOVQ	DI, (g_sched+gobuf_sp)(SI) | 
|  |  | 
|  | // Switch back to m->g0's stack and restore m->g0->sched.sp. | 
|  | // (Unlike m->curg, the g0 goroutine never uses sched.pc, | 
|  | // so we do not have to restore it.) | 
|  | MOVQ	g(CX), BX | 
|  | MOVQ	g_m(BX), BX | 
|  | MOVQ	m_g0(BX), SI | 
|  | MOVQ	SI, g(CX) | 
|  | MOVQ	(g_sched+gobuf_sp)(SI), SP | 
|  | MOVQ	0(SP), AX | 
|  | MOVQ	AX, (g_sched+gobuf_sp)(SI) | 
|  |  | 
|  | // If the m on entry was nil, we called needm above to borrow an m | 
|  | // for the duration of the call. Since the call is over, return it with dropm. | 
|  | CMPQ	R8, $0 | 
|  | JNE 3(PC) | 
|  | MOVQ	$runtime·dropm(SB), AX | 
|  | CALL	AX | 
|  |  | 
|  | // Done! | 
|  | RET | 
|  |  | 
|  | // func setg(gg *g) | 
|  | // set g. for use by needm. | 
|  | TEXT runtime·setg(SB), NOSPLIT, $0-8 | 
|  | MOVQ	gg+0(FP), BX | 
|  | #ifdef GOOS_windows | 
|  | CMPQ	BX, $0 | 
|  | JNE	settls | 
|  | MOVQ	$0, 0x28(GS) | 
|  | RET | 
|  | settls: | 
|  | MOVQ	g_m(BX), AX | 
|  | LEAQ	m_tls(AX), AX | 
|  | MOVQ	AX, 0x28(GS) | 
|  | #endif | 
|  | get_tls(CX) | 
|  | MOVQ	BX, g(CX) | 
|  | RET | 
|  |  | 
|  | // void setg_gcc(G*); set g called from gcc. | 
|  | TEXT setg_gcc<>(SB),NOSPLIT,$0 | 
|  | get_tls(AX) | 
|  | MOVQ	DI, g(AX) | 
|  | RET | 
|  |  | 
|  | TEXT runtime·abort(SB),NOSPLIT,$0-0 | 
|  | INT	$3 | 
|  | loop: | 
|  | JMP	loop | 
|  |  | 
|  | // check that SP is in range [g->stack.lo, g->stack.hi) | 
|  | TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), AX | 
|  | CMPQ	(g_stack+stack_hi)(AX), SP | 
|  | JHI	2(PC) | 
|  | CALL	runtime·abort(SB) | 
|  | CMPQ	SP, (g_stack+stack_lo)(AX) | 
|  | JHI	2(PC) | 
|  | CALL	runtime·abort(SB) | 
|  | RET | 
|  |  | 
|  | // func cputicks() int64 | 
|  | TEXT runtime·cputicks(SB),NOSPLIT,$0-0 | 
|  | CMPB	runtime·lfenceBeforeRdtsc(SB), $1 | 
|  | JNE	mfence | 
|  | LFENCE | 
|  | JMP	done | 
|  | mfence: | 
|  | MFENCE | 
|  | done: | 
|  | RDTSC | 
|  | SHLQ	$32, DX | 
|  | ADDQ	DX, AX | 
|  | MOVQ	AX, ret+0(FP) | 
|  | RET | 
|  |  | 
|  | // func aeshash(p unsafe.Pointer, h, s uintptr) uintptr | 
|  | // hash function using AES hardware instructions | 
|  | TEXT runtime·aeshash(SB),NOSPLIT,$0-32 | 
|  | MOVQ	p+0(FP), AX	// ptr to data | 
|  | MOVQ	s+16(FP), CX	// size | 
|  | LEAQ	ret+24(FP), DX | 
|  | JMP	runtime·aeshashbody(SB) | 
|  |  | 
|  | // func aeshashstr(p unsafe.Pointer, h uintptr) uintptr | 
|  | TEXT runtime·aeshashstr(SB),NOSPLIT,$0-24 | 
|  | MOVQ	p+0(FP), AX	// ptr to string struct | 
|  | MOVQ	8(AX), CX	// length of string | 
|  | MOVQ	(AX), AX	// string data | 
|  | LEAQ	ret+16(FP), DX | 
|  | JMP	runtime·aeshashbody(SB) | 
|  |  | 
|  | // AX: data | 
|  | // CX: length | 
|  | // DX: address to put return value | 
|  | TEXT runtime·aeshashbody(SB),NOSPLIT,$0-0 | 
|  | // Fill an SSE register with our seeds. | 
|  | MOVQ	h+8(FP), X0			// 64 bits of per-table hash seed | 
|  | PINSRW	$4, CX, X0			// 16 bits of length | 
|  | PSHUFHW $0, X0, X0			// repeat length 4 times total | 
|  | MOVO	X0, X1				// save unscrambled seed | 
|  | PXOR	runtime·aeskeysched(SB), X0	// xor in per-process seed | 
|  | AESENC	X0, X0				// scramble seed | 
|  |  | 
|  | CMPQ	CX, $16 | 
|  | JB	aes0to15 | 
|  | JE	aes16 | 
|  | CMPQ	CX, $32 | 
|  | JBE	aes17to32 | 
|  | CMPQ	CX, $64 | 
|  | JBE	aes33to64 | 
|  | CMPQ	CX, $128 | 
|  | JBE	aes65to128 | 
|  | JMP	aes129plus | 
|  |  | 
|  | aes0to15: | 
|  | TESTQ	CX, CX | 
|  | JE	aes0 | 
|  |  | 
|  | ADDQ	$16, AX | 
|  | TESTW	$0xff0, AX | 
|  | JE	endofpage | 
|  |  | 
|  | // 16 bytes loaded at this address won't cross | 
|  | // a page boundary, so we can load it directly. | 
|  | MOVOU	-16(AX), X1 | 
|  | ADDQ	CX, CX | 
|  | MOVQ	$masks<>(SB), AX | 
|  | PAND	(AX)(CX*8), X1 | 
|  | final1: | 
|  | PXOR	X0, X1	// xor data with seed | 
|  | AESENC	X1, X1	// scramble combo 3 times | 
|  | AESENC	X1, X1 | 
|  | AESENC	X1, X1 | 
|  | MOVQ	X1, (DX) | 
|  | RET | 
|  |  | 
|  | endofpage: | 
|  | // address ends in 1111xxxx. Might be up against | 
|  | // a page boundary, so load ending at last byte. | 
|  | // Then shift bytes down using pshufb. | 
|  | MOVOU	-32(AX)(CX*1), X1 | 
|  | ADDQ	CX, CX | 
|  | MOVQ	$shifts<>(SB), AX | 
|  | PSHUFB	(AX)(CX*8), X1 | 
|  | JMP	final1 | 
|  |  | 
|  | aes0: | 
|  | // Return scrambled input seed | 
|  | AESENC	X0, X0 | 
|  | MOVQ	X0, (DX) | 
|  | RET | 
|  |  | 
|  | aes16: | 
|  | MOVOU	(AX), X1 | 
|  | JMP	final1 | 
|  |  | 
|  | aes17to32: | 
|  | // make second starting seed | 
|  | PXOR	runtime·aeskeysched+16(SB), X1 | 
|  | AESENC	X1, X1 | 
|  |  | 
|  | // load data to be hashed | 
|  | MOVOU	(AX), X2 | 
|  | MOVOU	-16(AX)(CX*1), X3 | 
|  |  | 
|  | // xor with seed | 
|  | PXOR	X0, X2 | 
|  | PXOR	X1, X3 | 
|  |  | 
|  | // scramble 3 times | 
|  | AESENC	X2, X2 | 
|  | AESENC	X3, X3 | 
|  | AESENC	X2, X2 | 
|  | AESENC	X3, X3 | 
|  | AESENC	X2, X2 | 
|  | AESENC	X3, X3 | 
|  |  | 
|  | // combine results | 
|  | PXOR	X3, X2 | 
|  | MOVQ	X2, (DX) | 
|  | RET | 
|  |  | 
|  | aes33to64: | 
|  | // make 3 more starting seeds | 
|  | MOVO	X1, X2 | 
|  | MOVO	X1, X3 | 
|  | PXOR	runtime·aeskeysched+16(SB), X1 | 
|  | PXOR	runtime·aeskeysched+32(SB), X2 | 
|  | PXOR	runtime·aeskeysched+48(SB), X3 | 
|  | AESENC	X1, X1 | 
|  | AESENC	X2, X2 | 
|  | AESENC	X3, X3 | 
|  |  | 
|  | MOVOU	(AX), X4 | 
|  | MOVOU	16(AX), X5 | 
|  | MOVOU	-32(AX)(CX*1), X6 | 
|  | MOVOU	-16(AX)(CX*1), X7 | 
|  |  | 
|  | PXOR	X0, X4 | 
|  | PXOR	X1, X5 | 
|  | PXOR	X2, X6 | 
|  | PXOR	X3, X7 | 
|  |  | 
|  | AESENC	X4, X4 | 
|  | AESENC	X5, X5 | 
|  | AESENC	X6, X6 | 
|  | AESENC	X7, X7 | 
|  |  | 
|  | AESENC	X4, X4 | 
|  | AESENC	X5, X5 | 
|  | AESENC	X6, X6 | 
|  | AESENC	X7, X7 | 
|  |  | 
|  | AESENC	X4, X4 | 
|  | AESENC	X5, X5 | 
|  | AESENC	X6, X6 | 
|  | AESENC	X7, X7 | 
|  |  | 
|  | PXOR	X6, X4 | 
|  | PXOR	X7, X5 | 
|  | PXOR	X5, X4 | 
|  | MOVQ	X4, (DX) | 
|  | RET | 
|  |  | 
|  | aes65to128: | 
|  | // make 7 more starting seeds | 
|  | MOVO	X1, X2 | 
|  | MOVO	X1, X3 | 
|  | MOVO	X1, X4 | 
|  | MOVO	X1, X5 | 
|  | MOVO	X1, X6 | 
|  | MOVO	X1, X7 | 
|  | PXOR	runtime·aeskeysched+16(SB), X1 | 
|  | PXOR	runtime·aeskeysched+32(SB), X2 | 
|  | PXOR	runtime·aeskeysched+48(SB), X3 | 
|  | PXOR	runtime·aeskeysched+64(SB), X4 | 
|  | PXOR	runtime·aeskeysched+80(SB), X5 | 
|  | PXOR	runtime·aeskeysched+96(SB), X6 | 
|  | PXOR	runtime·aeskeysched+112(SB), X7 | 
|  | AESENC	X1, X1 | 
|  | AESENC	X2, X2 | 
|  | AESENC	X3, X3 | 
|  | AESENC	X4, X4 | 
|  | AESENC	X5, X5 | 
|  | AESENC	X6, X6 | 
|  | AESENC	X7, X7 | 
|  |  | 
|  | // load data | 
|  | MOVOU	(AX), X8 | 
|  | MOVOU	16(AX), X9 | 
|  | MOVOU	32(AX), X10 | 
|  | MOVOU	48(AX), X11 | 
|  | MOVOU	-64(AX)(CX*1), X12 | 
|  | MOVOU	-48(AX)(CX*1), X13 | 
|  | MOVOU	-32(AX)(CX*1), X14 | 
|  | MOVOU	-16(AX)(CX*1), X15 | 
|  |  | 
|  | // xor with seed | 
|  | PXOR	X0, X8 | 
|  | PXOR	X1, X9 | 
|  | PXOR	X2, X10 | 
|  | PXOR	X3, X11 | 
|  | PXOR	X4, X12 | 
|  | PXOR	X5, X13 | 
|  | PXOR	X6, X14 | 
|  | PXOR	X7, X15 | 
|  |  | 
|  | // scramble 3 times | 
|  | AESENC	X8, X8 | 
|  | AESENC	X9, X9 | 
|  | AESENC	X10, X10 | 
|  | AESENC	X11, X11 | 
|  | AESENC	X12, X12 | 
|  | AESENC	X13, X13 | 
|  | AESENC	X14, X14 | 
|  | AESENC	X15, X15 | 
|  |  | 
|  | AESENC	X8, X8 | 
|  | AESENC	X9, X9 | 
|  | AESENC	X10, X10 | 
|  | AESENC	X11, X11 | 
|  | AESENC	X12, X12 | 
|  | AESENC	X13, X13 | 
|  | AESENC	X14, X14 | 
|  | AESENC	X15, X15 | 
|  |  | 
|  | AESENC	X8, X8 | 
|  | AESENC	X9, X9 | 
|  | AESENC	X10, X10 | 
|  | AESENC	X11, X11 | 
|  | AESENC	X12, X12 | 
|  | AESENC	X13, X13 | 
|  | AESENC	X14, X14 | 
|  | AESENC	X15, X15 | 
|  |  | 
|  | // combine results | 
|  | PXOR	X12, X8 | 
|  | PXOR	X13, X9 | 
|  | PXOR	X14, X10 | 
|  | PXOR	X15, X11 | 
|  | PXOR	X10, X8 | 
|  | PXOR	X11, X9 | 
|  | PXOR	X9, X8 | 
|  | MOVQ	X8, (DX) | 
|  | RET | 
|  |  | 
|  | aes129plus: | 
|  | // make 7 more starting seeds | 
|  | MOVO	X1, X2 | 
|  | MOVO	X1, X3 | 
|  | MOVO	X1, X4 | 
|  | MOVO	X1, X5 | 
|  | MOVO	X1, X6 | 
|  | MOVO	X1, X7 | 
|  | PXOR	runtime·aeskeysched+16(SB), X1 | 
|  | PXOR	runtime·aeskeysched+32(SB), X2 | 
|  | PXOR	runtime·aeskeysched+48(SB), X3 | 
|  | PXOR	runtime·aeskeysched+64(SB), X4 | 
|  | PXOR	runtime·aeskeysched+80(SB), X5 | 
|  | PXOR	runtime·aeskeysched+96(SB), X6 | 
|  | PXOR	runtime·aeskeysched+112(SB), X7 | 
|  | AESENC	X1, X1 | 
|  | AESENC	X2, X2 | 
|  | AESENC	X3, X3 | 
|  | AESENC	X4, X4 | 
|  | AESENC	X5, X5 | 
|  | AESENC	X6, X6 | 
|  | AESENC	X7, X7 | 
|  |  | 
|  | // start with last (possibly overlapping) block | 
|  | MOVOU	-128(AX)(CX*1), X8 | 
|  | MOVOU	-112(AX)(CX*1), X9 | 
|  | MOVOU	-96(AX)(CX*1), X10 | 
|  | MOVOU	-80(AX)(CX*1), X11 | 
|  | MOVOU	-64(AX)(CX*1), X12 | 
|  | MOVOU	-48(AX)(CX*1), X13 | 
|  | MOVOU	-32(AX)(CX*1), X14 | 
|  | MOVOU	-16(AX)(CX*1), X15 | 
|  |  | 
|  | // xor in seed | 
|  | PXOR	X0, X8 | 
|  | PXOR	X1, X9 | 
|  | PXOR	X2, X10 | 
|  | PXOR	X3, X11 | 
|  | PXOR	X4, X12 | 
|  | PXOR	X5, X13 | 
|  | PXOR	X6, X14 | 
|  | PXOR	X7, X15 | 
|  |  | 
|  | // compute number of remaining 128-byte blocks | 
|  | DECQ	CX | 
|  | SHRQ	$7, CX | 
|  |  | 
|  | aesloop: | 
|  | // scramble state | 
|  | AESENC	X8, X8 | 
|  | AESENC	X9, X9 | 
|  | AESENC	X10, X10 | 
|  | AESENC	X11, X11 | 
|  | AESENC	X12, X12 | 
|  | AESENC	X13, X13 | 
|  | AESENC	X14, X14 | 
|  | AESENC	X15, X15 | 
|  |  | 
|  | // scramble state, xor in a block | 
|  | MOVOU	(AX), X0 | 
|  | MOVOU	16(AX), X1 | 
|  | MOVOU	32(AX), X2 | 
|  | MOVOU	48(AX), X3 | 
|  | AESENC	X0, X8 | 
|  | AESENC	X1, X9 | 
|  | AESENC	X2, X10 | 
|  | AESENC	X3, X11 | 
|  | MOVOU	64(AX), X4 | 
|  | MOVOU	80(AX), X5 | 
|  | MOVOU	96(AX), X6 | 
|  | MOVOU	112(AX), X7 | 
|  | AESENC	X4, X12 | 
|  | AESENC	X5, X13 | 
|  | AESENC	X6, X14 | 
|  | AESENC	X7, X15 | 
|  |  | 
|  | ADDQ	$128, AX | 
|  | DECQ	CX | 
|  | JNE	aesloop | 
|  |  | 
|  | // 3 more scrambles to finish | 
|  | AESENC	X8, X8 | 
|  | AESENC	X9, X9 | 
|  | AESENC	X10, X10 | 
|  | AESENC	X11, X11 | 
|  | AESENC	X12, X12 | 
|  | AESENC	X13, X13 | 
|  | AESENC	X14, X14 | 
|  | AESENC	X15, X15 | 
|  | AESENC	X8, X8 | 
|  | AESENC	X9, X9 | 
|  | AESENC	X10, X10 | 
|  | AESENC	X11, X11 | 
|  | AESENC	X12, X12 | 
|  | AESENC	X13, X13 | 
|  | AESENC	X14, X14 | 
|  | AESENC	X15, X15 | 
|  | AESENC	X8, X8 | 
|  | AESENC	X9, X9 | 
|  | AESENC	X10, X10 | 
|  | AESENC	X11, X11 | 
|  | AESENC	X12, X12 | 
|  | AESENC	X13, X13 | 
|  | AESENC	X14, X14 | 
|  | AESENC	X15, X15 | 
|  |  | 
|  | PXOR	X12, X8 | 
|  | PXOR	X13, X9 | 
|  | PXOR	X14, X10 | 
|  | PXOR	X15, X11 | 
|  | PXOR	X10, X8 | 
|  | PXOR	X11, X9 | 
|  | PXOR	X9, X8 | 
|  | MOVQ	X8, (DX) | 
|  | RET | 
|  |  | 
|  | // func aeshash32(p unsafe.Pointer, h uintptr) uintptr | 
|  | TEXT runtime·aeshash32(SB),NOSPLIT,$0-24 | 
|  | MOVQ	p+0(FP), AX	// ptr to data | 
|  | MOVQ	h+8(FP), X0	// seed | 
|  | PINSRD	$2, (AX), X0	// data | 
|  | AESENC	runtime·aeskeysched+0(SB), X0 | 
|  | AESENC	runtime·aeskeysched+16(SB), X0 | 
|  | AESENC	runtime·aeskeysched+32(SB), X0 | 
|  | MOVQ	X0, ret+16(FP) | 
|  | RET | 
|  |  | 
|  | // func aeshash64(p unsafe.Pointer, h uintptr) uintptr | 
|  | TEXT runtime·aeshash64(SB),NOSPLIT,$0-24 | 
|  | MOVQ	p+0(FP), AX	// ptr to data | 
|  | MOVQ	h+8(FP), X0	// seed | 
|  | PINSRQ	$1, (AX), X0	// data | 
|  | AESENC	runtime·aeskeysched+0(SB), X0 | 
|  | AESENC	runtime·aeskeysched+16(SB), X0 | 
|  | AESENC	runtime·aeskeysched+32(SB), X0 | 
|  | MOVQ	X0, ret+16(FP) | 
|  | RET | 
|  |  | 
|  | // simple mask to get rid of data in the high part of the register. | 
|  | DATA masks<>+0x00(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x08(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x10(SB)/8, $0x00000000000000ff | 
|  | DATA masks<>+0x18(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x20(SB)/8, $0x000000000000ffff | 
|  | DATA masks<>+0x28(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x30(SB)/8, $0x0000000000ffffff | 
|  | DATA masks<>+0x38(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x40(SB)/8, $0x00000000ffffffff | 
|  | DATA masks<>+0x48(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x50(SB)/8, $0x000000ffffffffff | 
|  | DATA masks<>+0x58(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff | 
|  | DATA masks<>+0x68(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff | 
|  | DATA masks<>+0x78(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x80(SB)/8, $0xffffffffffffffff | 
|  | DATA masks<>+0x88(SB)/8, $0x0000000000000000 | 
|  | DATA masks<>+0x90(SB)/8, $0xffffffffffffffff | 
|  | DATA masks<>+0x98(SB)/8, $0x00000000000000ff | 
|  | DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff | 
|  | DATA masks<>+0xa8(SB)/8, $0x000000000000ffff | 
|  | DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff | 
|  | DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff | 
|  | DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff | 
|  | DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff | 
|  | DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff | 
|  | DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff | 
|  | DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff | 
|  | DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff | 
|  | DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff | 
|  | DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff | 
|  | GLOBL masks<>(SB),RODATA,$256 | 
|  |  | 
|  | // func checkASM() bool | 
|  | TEXT ·checkASM(SB),NOSPLIT,$0-1 | 
|  | // check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte | 
|  | MOVQ	$masks<>(SB), AX | 
|  | MOVQ	$shifts<>(SB), BX | 
|  | ORQ	BX, AX | 
|  | TESTQ	$15, AX | 
|  | SETEQ	ret+0(FP) | 
|  | RET | 
|  |  | 
|  | // these are arguments to pshufb. They move data down from | 
|  | // the high bytes of the register to the low bytes of the register. | 
|  | // index is how many bytes to move. | 
|  | DATA shifts<>+0x00(SB)/8, $0x0000000000000000 | 
|  | DATA shifts<>+0x08(SB)/8, $0x0000000000000000 | 
|  | DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f | 
|  | DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff | 
|  | DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e | 
|  | DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff | 
|  | DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d | 
|  | DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff | 
|  | DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c | 
|  | DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff | 
|  | DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b | 
|  | DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff | 
|  | DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a | 
|  | DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff | 
|  | DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09 | 
|  | DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff | 
|  | DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908 | 
|  | DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff | 
|  | DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807 | 
|  | DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f | 
|  | DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706 | 
|  | DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e | 
|  | DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605 | 
|  | DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d | 
|  | DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504 | 
|  | DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c | 
|  | DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403 | 
|  | DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b | 
|  | DATA shifts<>+0xe0(SB)/8, $0x0908070605040302 | 
|  | DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a | 
|  | DATA shifts<>+0xf0(SB)/8, $0x0807060504030201 | 
|  | DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09 | 
|  | GLOBL shifts<>(SB),RODATA,$256 | 
|  |  | 
|  | TEXT runtime·return0(SB), NOSPLIT, $0 | 
|  | MOVL	$0, AX | 
|  | RET | 
|  |  | 
|  |  | 
|  | // Called from cgo wrappers, this function returns g->m->curg.stack.hi. | 
|  | // Must obey the gcc calling convention. | 
|  | TEXT _cgo_topofstack(SB),NOSPLIT,$0 | 
|  | get_tls(CX) | 
|  | MOVQ	g(CX), AX | 
|  | MOVQ	g_m(AX), AX | 
|  | MOVQ	m_curg(AX), AX | 
|  | MOVQ	(g_stack+stack_hi)(AX), AX | 
|  | RET | 
|  |  | 
|  | // The top-most function running on a goroutine | 
|  | // returns to goexit+PCQuantum. | 
|  | TEXT runtime·goexit(SB),NOSPLIT,$0-0 | 
|  | BYTE	$0x90	// NOP | 
|  | CALL	runtime·goexit1(SB)	// does not return | 
|  | // traceback from goexit1 must hit code range of goexit | 
|  | BYTE	$0x90	// NOP | 
|  |  | 
|  | // This is called from .init_array and follows the platform, not Go, ABI. | 
|  | TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 | 
|  | PUSHQ	R15 // The access to global variables below implicitly uses R15, which is callee-save | 
|  | MOVQ	runtime·lastmoduledatap(SB), AX | 
|  | MOVQ	DI, moduledata_next(AX) | 
|  | MOVQ	DI, runtime·lastmoduledatap(SB) | 
|  | POPQ	R15 | 
|  | RET | 
|  |  | 
|  | // gcWriteBarrier performs a heap pointer write and informs the GC. | 
|  | // | 
|  | // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: | 
|  | // - DI is the destination of the write | 
|  | // - AX is the value being written at DI | 
|  | // It clobbers FLAGS. It does not clobber any general-purpose registers, | 
|  | // but may clobber others (e.g., SSE registers). | 
|  | TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$120 | 
|  | // Save the registers clobbered by the fast path. This is slightly | 
|  | // faster than having the caller spill these. | 
|  | MOVQ	R14, 104(SP) | 
|  | MOVQ	R13, 112(SP) | 
|  | // TODO: Consider passing g.m.p in as an argument so they can be shared | 
|  | // across a sequence of write barriers. | 
|  | get_tls(R13) | 
|  | MOVQ	g(R13), R13 | 
|  | MOVQ	g_m(R13), R13 | 
|  | MOVQ	m_p(R13), R13 | 
|  | MOVQ	(p_wbBuf+wbBuf_next)(R13), R14 | 
|  | // Increment wbBuf.next position. | 
|  | LEAQ	16(R14), R14 | 
|  | MOVQ	R14, (p_wbBuf+wbBuf_next)(R13) | 
|  | CMPQ	R14, (p_wbBuf+wbBuf_end)(R13) | 
|  | // Record the write. | 
|  | MOVQ	AX, -16(R14)	// Record value | 
|  | // Note: This turns bad pointer writes into bad | 
|  | // pointer reads, which could be confusing. We could avoid | 
|  | // reading from obviously bad pointers, which would | 
|  | // take care of the vast majority of these. We could | 
|  | // patch this up in the signal handler, or use XCHG to | 
|  | // combine the read and the write. | 
|  | MOVQ	(DI), R13 | 
|  | MOVQ	R13, -8(R14)	// Record *slot | 
|  | // Is the buffer full? (flags set in CMPQ above) | 
|  | JEQ	flush | 
|  | ret: | 
|  | MOVQ	104(SP), R14 | 
|  | MOVQ	112(SP), R13 | 
|  | // Do the write. | 
|  | MOVQ	AX, (DI) | 
|  | RET | 
|  |  | 
|  | flush: | 
|  | // Save all general purpose registers since these could be | 
|  | // clobbered by wbBufFlush and were not saved by the caller. | 
|  | // It is possible for wbBufFlush to clobber other registers | 
|  | // (e.g., SSE registers), but the compiler takes care of saving | 
|  | // those in the caller if necessary. This strikes a balance | 
|  | // with registers that are likely to be used. | 
|  | // | 
|  | // We don't have type information for these, but all code under | 
|  | // here is NOSPLIT, so nothing will observe these. | 
|  | // | 
|  | // TODO: We could strike a different balance; e.g., saving X0 | 
|  | // and not saving GP registers that are less likely to be used. | 
|  | MOVQ	DI, 0(SP)	// Also first argument to wbBufFlush | 
|  | MOVQ	AX, 8(SP)	// Also second argument to wbBufFlush | 
|  | MOVQ	BX, 16(SP) | 
|  | MOVQ	CX, 24(SP) | 
|  | MOVQ	DX, 32(SP) | 
|  | // DI already saved | 
|  | MOVQ	SI, 40(SP) | 
|  | MOVQ	BP, 48(SP) | 
|  | MOVQ	R8, 56(SP) | 
|  | MOVQ	R9, 64(SP) | 
|  | MOVQ	R10, 72(SP) | 
|  | MOVQ	R11, 80(SP) | 
|  | MOVQ	R12, 88(SP) | 
|  | // R13 already saved | 
|  | // R14 already saved | 
|  | MOVQ	R15, 96(SP) | 
|  |  | 
|  | // This takes arguments DI and AX | 
|  | CALL	runtime·wbBufFlush(SB) | 
|  |  | 
|  | MOVQ	0(SP), DI | 
|  | MOVQ	8(SP), AX | 
|  | MOVQ	16(SP), BX | 
|  | MOVQ	24(SP), CX | 
|  | MOVQ	32(SP), DX | 
|  | MOVQ	40(SP), SI | 
|  | MOVQ	48(SP), BP | 
|  | MOVQ	56(SP), R8 | 
|  | MOVQ	64(SP), R9 | 
|  | MOVQ	72(SP), R10 | 
|  | MOVQ	80(SP), R11 | 
|  | MOVQ	88(SP), R12 | 
|  | MOVQ	96(SP), R15 | 
|  | JMP	ret | 
|  |  | 
|  | DATA	debugCallFrameTooLarge<>+0x00(SB)/8, $"call fra" | 
|  | DATA	debugCallFrameTooLarge<>+0x08(SB)/8, $"me too l" | 
|  | DATA	debugCallFrameTooLarge<>+0x10(SB)/4, $"arge" | 
|  | GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $0x14	// Size duplicated below | 
|  |  | 
|  | // debugCallV1 is the entry point for debugger-injected function | 
|  | // calls on running goroutines. It informs the runtime that a | 
|  | // debug call has been injected and creates a call frame for the | 
|  | // debugger to fill in. | 
|  | // | 
|  | // To inject a function call, a debugger should: | 
|  | // 1. Check that the goroutine is in state _Grunning and that | 
|  | //    there are at least 256 bytes free on the stack. | 
|  | // 2. Push the current PC on the stack (updating SP). | 
|  | // 3. Write the desired argument frame size at SP-16 (using the SP | 
|  | //    after step 2). | 
|  | // 4. Save all machine registers (including flags and XMM reigsters) | 
|  | //    so they can be restored later by the debugger. | 
|  | // 5. Set the PC to debugCallV1 and resume execution. | 
|  | // | 
|  | // If the goroutine is in state _Grunnable, then it's not generally | 
|  | // safe to inject a call because it may return out via other runtime | 
|  | // operations. Instead, the debugger should unwind the stack to find | 
|  | // the return to non-runtime code, add a temporary breakpoint there, | 
|  | // and inject the call once that breakpoint is hit. | 
|  | // | 
|  | // If the goroutine is in any other state, it's not safe to inject a call. | 
|  | // | 
|  | // This function communicates back to the debugger by setting RAX and | 
|  | // invoking INT3 to raise a breakpoint signal. See the comments in the | 
|  | // implementation for the protocol the debugger is expected to | 
|  | // follow. InjectDebugCall in the runtime tests demonstrates this protocol. | 
|  | // | 
|  | // The debugger must ensure that any pointers passed to the function | 
|  | // obey escape analysis requirements. Specifically, it must not pass | 
|  | // a stack pointer to an escaping argument. debugCallV1 cannot check | 
|  | // this invariant. | 
|  | TEXT runtime·debugCallV1(SB),NOSPLIT,$152-0 | 
|  | // Save all registers that may contain pointers in GC register | 
|  | // map order (see ssa.registersAMD64). This makes it possible | 
|  | // to copy the stack while updating pointers currently held in | 
|  | // registers, and for the GC to find roots in registers. | 
|  | // | 
|  | // We can't do anything that might clobber any of these | 
|  | // registers before this. | 
|  | MOVQ	R15, r15-(14*8+8)(SP) | 
|  | MOVQ	R14, r14-(13*8+8)(SP) | 
|  | MOVQ	R13, r13-(12*8+8)(SP) | 
|  | MOVQ	R12, r12-(11*8+8)(SP) | 
|  | MOVQ	R11, r11-(10*8+8)(SP) | 
|  | MOVQ	R10, r10-(9*8+8)(SP) | 
|  | MOVQ	R9, r9-(8*8+8)(SP) | 
|  | MOVQ	R8, r8-(7*8+8)(SP) | 
|  | MOVQ	DI, di-(6*8+8)(SP) | 
|  | MOVQ	SI, si-(5*8+8)(SP) | 
|  | MOVQ	BP, bp-(4*8+8)(SP) | 
|  | MOVQ	BX, bx-(3*8+8)(SP) | 
|  | MOVQ	DX, dx-(2*8+8)(SP) | 
|  | // Save the frame size before we clobber it. Either of the last | 
|  | // saves could clobber this depending on whether there's a saved BP. | 
|  | MOVQ	frameSize-24(FP), DX	// aka -16(RSP) before prologue | 
|  | MOVQ	CX, cx-(1*8+8)(SP) | 
|  | MOVQ	AX, ax-(0*8+8)(SP) | 
|  |  | 
|  | // Save the argument frame size. | 
|  | MOVQ	DX, frameSize-128(SP) | 
|  |  | 
|  | // Perform a safe-point check. | 
|  | MOVQ	retpc-8(FP), AX	// Caller's PC | 
|  | MOVQ	AX, 0(SP) | 
|  | CALL	runtime·debugCallCheck(SB) | 
|  | MOVQ	8(SP), AX | 
|  | TESTQ	AX, AX | 
|  | JZ	good | 
|  | // The safety check failed. Put the reason string at the top | 
|  | // of the stack. | 
|  | MOVQ	AX, 0(SP) | 
|  | MOVQ	16(SP), AX | 
|  | MOVQ	AX, 8(SP) | 
|  | // Set AX to 8 and invoke INT3. The debugger should get the | 
|  | // reason a call can't be injected from the top of the stack | 
|  | // and resume execution. | 
|  | MOVQ	$8, AX | 
|  | BYTE	$0xcc | 
|  | JMP	restore | 
|  |  | 
|  | good: | 
|  | // Registers are saved and it's safe to make a call. | 
|  | // Open up a call frame, moving the stack if necessary. | 
|  | // | 
|  | // Once the frame is allocated, this will set AX to 0 and | 
|  | // invoke INT3. The debugger should write the argument | 
|  | // frame for the call at SP, push the trapping PC on the | 
|  | // stack, set the PC to the function to call, set RCX to point | 
|  | // to the closure (if a closure call), and resume execution. | 
|  | // | 
|  | // If the function returns, this will set AX to 1 and invoke | 
|  | // INT3. The debugger can then inspect any return value saved | 
|  | // on the stack at SP and resume execution again. | 
|  | // | 
|  | // If the function panics, this will set AX to 2 and invoke INT3. | 
|  | // The interface{} value of the panic will be at SP. The debugger | 
|  | // can inspect the panic value and resume execution again. | 
|  | #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\ | 
|  | CMPQ	AX, $MAXSIZE;			\ | 
|  | JA	5(PC);				\ | 
|  | MOVQ	$NAME(SB), AX;			\ | 
|  | MOVQ	AX, 0(SP);			\ | 
|  | CALL	runtime·debugCallWrap(SB);	\ | 
|  | JMP	restore | 
|  |  | 
|  | MOVQ	frameSize-128(SP), AX | 
|  | DEBUG_CALL_DISPATCH(debugCall32<>, 32) | 
|  | DEBUG_CALL_DISPATCH(debugCall64<>, 64) | 
|  | DEBUG_CALL_DISPATCH(debugCall128<>, 128) | 
|  | DEBUG_CALL_DISPATCH(debugCall256<>, 256) | 
|  | DEBUG_CALL_DISPATCH(debugCall512<>, 512) | 
|  | DEBUG_CALL_DISPATCH(debugCall1024<>, 1024) | 
|  | DEBUG_CALL_DISPATCH(debugCall2048<>, 2048) | 
|  | DEBUG_CALL_DISPATCH(debugCall4096<>, 4096) | 
|  | DEBUG_CALL_DISPATCH(debugCall8192<>, 8192) | 
|  | DEBUG_CALL_DISPATCH(debugCall16384<>, 16384) | 
|  | DEBUG_CALL_DISPATCH(debugCall32768<>, 32768) | 
|  | DEBUG_CALL_DISPATCH(debugCall65536<>, 65536) | 
|  | // The frame size is too large. Report the error. | 
|  | MOVQ	$debugCallFrameTooLarge<>(SB), AX | 
|  | MOVQ	AX, 0(SP) | 
|  | MOVQ	$0x14, 8(SP) | 
|  | MOVQ	$8, AX | 
|  | BYTE	$0xcc | 
|  | JMP	restore | 
|  |  | 
|  | restore: | 
|  | // Calls and failures resume here. | 
|  | // | 
|  | // Set AX to 16 and invoke INT3. The debugger should restore | 
|  | // all registers except RIP and RSP and resume execution. | 
|  | MOVQ	$16, AX | 
|  | BYTE	$0xcc | 
|  | // We must not modify flags after this point. | 
|  |  | 
|  | // Restore pointer-containing registers, which may have been | 
|  | // modified from the debugger's copy by stack copying. | 
|  | MOVQ	ax-(0*8+8)(SP), AX | 
|  | MOVQ	cx-(1*8+8)(SP), CX | 
|  | MOVQ	dx-(2*8+8)(SP), DX | 
|  | MOVQ	bx-(3*8+8)(SP), BX | 
|  | MOVQ	bp-(4*8+8)(SP), BP | 
|  | MOVQ	si-(5*8+8)(SP), SI | 
|  | MOVQ	di-(6*8+8)(SP), DI | 
|  | MOVQ	r8-(7*8+8)(SP), R8 | 
|  | MOVQ	r9-(8*8+8)(SP), R9 | 
|  | MOVQ	r10-(9*8+8)(SP), R10 | 
|  | MOVQ	r11-(10*8+8)(SP), R11 | 
|  | MOVQ	r12-(11*8+8)(SP), R12 | 
|  | MOVQ	r13-(12*8+8)(SP), R13 | 
|  | MOVQ	r14-(13*8+8)(SP), R14 | 
|  | MOVQ	r15-(14*8+8)(SP), R15 | 
|  |  | 
|  | RET | 
|  |  | 
|  | #define DEBUG_CALL_FN(NAME,MAXSIZE)		\ | 
|  | TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\ | 
|  | NO_LOCAL_POINTERS;			\ | 
|  | MOVQ	$0, AX;				\ | 
|  | BYTE	$0xcc;				\ | 
|  | MOVQ	$1, AX;				\ | 
|  | BYTE	$0xcc;				\ | 
|  | RET | 
|  | DEBUG_CALL_FN(debugCall32<>, 32) | 
|  | DEBUG_CALL_FN(debugCall64<>, 64) | 
|  | DEBUG_CALL_FN(debugCall128<>, 128) | 
|  | DEBUG_CALL_FN(debugCall256<>, 256) | 
|  | DEBUG_CALL_FN(debugCall512<>, 512) | 
|  | DEBUG_CALL_FN(debugCall1024<>, 1024) | 
|  | DEBUG_CALL_FN(debugCall2048<>, 2048) | 
|  | DEBUG_CALL_FN(debugCall4096<>, 4096) | 
|  | DEBUG_CALL_FN(debugCall8192<>, 8192) | 
|  | DEBUG_CALL_FN(debugCall16384<>, 16384) | 
|  | DEBUG_CALL_FN(debugCall32768<>, 32768) | 
|  | DEBUG_CALL_FN(debugCall65536<>, 65536) | 
|  |  | 
|  | // func debugCallPanicked(val interface{}) | 
|  | TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16 | 
|  | // Copy the panic value to the top of stack. | 
|  | MOVQ	val_type+0(FP), AX | 
|  | MOVQ	AX, 0(SP) | 
|  | MOVQ	val_data+8(FP), AX | 
|  | MOVQ	AX, 8(SP) | 
|  | MOVQ	$2, AX | 
|  | BYTE	$0xcc | 
|  | RET |