| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/ssa" |
| "cmd/compile/internal/types" |
| "cmd/internal/dwarf" |
| "cmd/internal/obj" |
| "cmd/internal/objabi" |
| "cmd/internal/src" |
| "cmd/internal/sys" |
| "fmt" |
| "math" |
| "math/rand" |
| "sort" |
| "strings" |
| "sync" |
| "time" |
| ) |
| |
| // "Portable" code generation. |
| |
| var ( |
| nBackendWorkers int // number of concurrent backend workers, set by a compiler flag |
| compilequeue []*Node // functions waiting to be compiled |
| ) |
| |
| func emitptrargsmap() { |
| if Curfn.funcname() == "_" { |
| return |
| } |
| sym := lookup(fmt.Sprintf("%s.args_stackmap", Curfn.funcname())) |
| lsym := sym.Linksym() |
| |
| nptr := int(Curfn.Type.ArgWidth() / int64(Widthptr)) |
| bv := bvalloc(int32(nptr) * 2) |
| nbitmap := 1 |
| if Curfn.Type.NumResults() > 0 { |
| nbitmap = 2 |
| } |
| off := duint32(lsym, 0, uint32(nbitmap)) |
| off = duint32(lsym, off, uint32(bv.n)) |
| |
| if Curfn.IsMethod() { |
| onebitwalktype1(Curfn.Type.Recvs(), 0, bv) |
| } |
| if Curfn.Type.NumParams() > 0 { |
| onebitwalktype1(Curfn.Type.Params(), 0, bv) |
| } |
| off = dbvec(lsym, off, bv) |
| |
| if Curfn.Type.NumResults() > 0 { |
| onebitwalktype1(Curfn.Type.Results(), 0, bv) |
| off = dbvec(lsym, off, bv) |
| } |
| |
| ggloblsym(lsym, int32(off), obj.RODATA|obj.LOCAL) |
| } |
| |
| // cmpstackvarlt reports whether the stack variable a sorts before b. |
| // |
| // Sort the list of stack variables. Autos after anything else, |
| // within autos, unused after used, within used, things with |
| // pointers first, zeroed things first, and then decreasing size. |
| // Because autos are laid out in decreasing addresses |
| // on the stack, pointers first, zeroed things first and decreasing size |
| // really means, in memory, things with pointers needing zeroing at |
| // the top of the stack and increasing in size. |
| // Non-autos sort on offset. |
| func cmpstackvarlt(a, b *Node) bool { |
| if (a.Class() == PAUTO) != (b.Class() == PAUTO) { |
| return b.Class() == PAUTO |
| } |
| |
| if a.Class() != PAUTO { |
| return a.Xoffset < b.Xoffset |
| } |
| |
| if a.Name.Used() != b.Name.Used() { |
| return a.Name.Used() |
| } |
| |
| ap := types.Haspointers(a.Type) |
| bp := types.Haspointers(b.Type) |
| if ap != bp { |
| return ap |
| } |
| |
| ap = a.Name.Needzero() |
| bp = b.Name.Needzero() |
| if ap != bp { |
| return ap |
| } |
| |
| if a.Type.Width != b.Type.Width { |
| return a.Type.Width > b.Type.Width |
| } |
| |
| return a.Sym.Name < b.Sym.Name |
| } |
| |
| // byStackvar implements sort.Interface for []*Node using cmpstackvarlt. |
| type byStackVar []*Node |
| |
| func (s byStackVar) Len() int { return len(s) } |
| func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) } |
| func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] } |
| |
| func (s *ssafn) AllocFrame(f *ssa.Func) { |
| s.stksize = 0 |
| s.stkptrsize = 0 |
| fn := s.curfn.Func |
| |
| // Mark the PAUTO's unused. |
| for _, ln := range fn.Dcl { |
| if ln.Class() == PAUTO { |
| ln.Name.SetUsed(false) |
| } |
| } |
| |
| for _, l := range f.RegAlloc { |
| if ls, ok := l.(ssa.LocalSlot); ok { |
| ls.N.(*Node).Name.SetUsed(true) |
| } |
| } |
| |
| scratchUsed := false |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| if n, ok := v.Aux.(*Node); ok { |
| switch n.Class() { |
| case PPARAM, PPARAMOUT: |
| // Don't modify nodfp; it is a global. |
| if n != nodfp { |
| n.Name.SetUsed(true) |
| } |
| case PAUTO: |
| n.Name.SetUsed(true) |
| } |
| } |
| if !scratchUsed { |
| scratchUsed = v.Op.UsesScratch() |
| } |
| |
| } |
| } |
| |
| if f.Config.NeedsFpScratch && scratchUsed { |
| s.scratchFpMem = tempAt(src.NoXPos, s.curfn, types.Types[TUINT64]) |
| } |
| |
| sort.Sort(byStackVar(fn.Dcl)) |
| |
| // Reassign stack offsets of the locals that are used. |
| for i, n := range fn.Dcl { |
| if n.Op != ONAME || n.Class() != PAUTO { |
| continue |
| } |
| if !n.Name.Used() { |
| fn.Dcl = fn.Dcl[:i] |
| break |
| } |
| |
| dowidth(n.Type) |
| w := n.Type.Width |
| if w >= thearch.MAXWIDTH || w < 0 { |
| Fatalf("bad width") |
| } |
| s.stksize += w |
| s.stksize = Rnd(s.stksize, int64(n.Type.Align)) |
| if types.Haspointers(n.Type) { |
| s.stkptrsize = s.stksize |
| } |
| if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) { |
| s.stksize = Rnd(s.stksize, int64(Widthptr)) |
| } |
| n.Xoffset = -s.stksize |
| } |
| |
| s.stksize = Rnd(s.stksize, int64(Widthreg)) |
| s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg)) |
| } |
| |
| func compile(fn *Node) { |
| Curfn = fn |
| dowidth(fn.Type) |
| |
| if fn.Nbody.Len() == 0 { |
| emitptrargsmap() |
| return |
| } |
| |
| saveerrors() |
| |
| order(fn) |
| if nerrors != 0 { |
| return |
| } |
| |
| walk(fn) |
| if nerrors != 0 { |
| return |
| } |
| if instrumenting { |
| instrument(fn) |
| } |
| |
| // From this point, there should be no uses of Curfn. Enforce that. |
| Curfn = nil |
| |
| // Set up the function's LSym early to avoid data races with the assemblers. |
| fn.Func.initLSym() |
| |
| if compilenow() { |
| compileSSA(fn, 0) |
| } else { |
| compilequeue = append(compilequeue, fn) |
| } |
| } |
| |
| // compilenow reports whether to compile immediately. |
| // If functions are not compiled immediately, |
| // they are enqueued in compilequeue, |
| // which is drained by compileFunctions. |
| func compilenow() bool { |
| return nBackendWorkers == 1 && Debug_compilelater == 0 |
| } |
| |
| const maxStackSize = 1 << 30 |
| |
| // compileSSA builds an SSA backend function, |
| // uses it to generate a plist, |
| // and flushes that plist to machine code. |
| // worker indicates which of the backend workers is doing the processing. |
| func compileSSA(fn *Node, worker int) { |
| f := buildssa(fn, worker) |
| if f.Frontend().(*ssafn).stksize >= maxStackSize { |
| largeStackFramesMu.Lock() |
| largeStackFrames = append(largeStackFrames, fn.Pos) |
| largeStackFramesMu.Unlock() |
| return |
| } |
| pp := newProgs(fn, worker) |
| genssa(f, pp) |
| pp.Flush() |
| // fieldtrack must be called after pp.Flush. See issue 20014. |
| fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack) |
| pp.Free() |
| } |
| |
| func init() { |
| if raceEnabled { |
| rand.Seed(time.Now().UnixNano()) |
| } |
| } |
| |
| // compileFunctions compiles all functions in compilequeue. |
| // It fans out nBackendWorkers to do the work |
| // and waits for them to complete. |
| func compileFunctions() { |
| if len(compilequeue) != 0 { |
| sizeCalculationDisabled = true // not safe to calculate sizes concurrently |
| if raceEnabled { |
| // Randomize compilation order to try to shake out races. |
| tmp := make([]*Node, len(compilequeue)) |
| perm := rand.Perm(len(compilequeue)) |
| for i, v := range perm { |
| tmp[v] = compilequeue[i] |
| } |
| copy(compilequeue, tmp) |
| } else { |
| // Compile the longest functions first, |
| // since they're most likely to be the slowest. |
| // This helps avoid stragglers. |
| obj.SortSlice(compilequeue, func(i, j int) bool { |
| return compilequeue[i].Nbody.Len() > compilequeue[j].Nbody.Len() |
| }) |
| } |
| var wg sync.WaitGroup |
| Ctxt.InParallel = true |
| c := make(chan *Node, nBackendWorkers) |
| for i := 0; i < nBackendWorkers; i++ { |
| wg.Add(1) |
| go func(worker int) { |
| for fn := range c { |
| compileSSA(fn, worker) |
| } |
| wg.Done() |
| }(i) |
| } |
| for _, fn := range compilequeue { |
| c <- fn |
| } |
| close(c) |
| compilequeue = nil |
| wg.Wait() |
| Ctxt.InParallel = false |
| sizeCalculationDisabled = false |
| } |
| } |
| |
| func debuginfo(fnsym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) { |
| fn := curfn.(*Node) |
| debugInfo := fn.Func.DebugInfo |
| fn.Func.DebugInfo = nil |
| if fn.Func.Nname != nil { |
| if expect := fn.Func.Nname.Sym.Linksym(); fnsym != expect { |
| Fatalf("unexpected fnsym: %v != %v", fnsym, expect) |
| } |
| } |
| |
| var automDecls []*Node |
| // Populate Automs for fn. |
| for _, n := range fn.Func.Dcl { |
| if n.Op != ONAME { // might be OTYPE or OLITERAL |
| continue |
| } |
| var name obj.AddrName |
| switch n.Class() { |
| case PAUTO: |
| if !n.Name.Used() { |
| // Text == nil -> generating abstract function |
| if fnsym.Func.Text != nil { |
| Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)") |
| } |
| continue |
| } |
| name = obj.NAME_AUTO |
| case PPARAM, PPARAMOUT: |
| name = obj.NAME_PARAM |
| default: |
| continue |
| } |
| automDecls = append(automDecls, n) |
| gotype := ngotype(n).Linksym() |
| fnsym.Func.Autom = append(fnsym.Func.Autom, &obj.Auto{ |
| Asym: Ctxt.Lookup(n.Sym.Name), |
| Aoffset: int32(n.Xoffset), |
| Name: name, |
| Gotype: gotype, |
| }) |
| } |
| |
| decls, dwarfVars := createDwarfVars(fnsym, debugInfo, automDecls) |
| |
| var varScopes []ScopeID |
| for _, decl := range decls { |
| pos := decl.Pos |
| if decl.Name.Defn != nil && (decl.Name.Captured() || decl.Name.Byval()) { |
| // It's not clear which position is correct for captured variables here: |
| // * decl.Pos is the wrong position for captured variables, in the inner |
| // function, but it is the right position in the outer function. |
| // * decl.Name.Defn is nil for captured variables that were arguments |
| // on the outer function, however the decl.Pos for those seems to be |
| // correct. |
| // * decl.Name.Defn is the "wrong" thing for variables declared in the |
| // header of a type switch, it's their position in the header, rather |
| // than the position of the case statement. In principle this is the |
| // right thing, but here we prefer the latter because it makes each |
| // instance of the header variable local to the lexical block of its |
| // case statement. |
| // This code is probably wrong for type switch variables that are also |
| // captured. |
| pos = decl.Name.Defn.Pos |
| } |
| varScopes = append(varScopes, findScope(fn.Func.Marks, pos)) |
| } |
| |
| scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes) |
| var inlcalls dwarf.InlCalls |
| if genDwarfInline > 0 { |
| inlcalls = assembleInlines(fnsym, fn, dwarfVars) |
| } |
| return scopes, inlcalls |
| } |
| |
| // createSimpleVars creates a DWARF entry for every variable declared in the |
| // function, claiming that they are permanently on the stack. |
| func createSimpleVars(automDecls []*Node) ([]*Node, []*dwarf.Var, map[*Node]bool) { |
| var vars []*dwarf.Var |
| var decls []*Node |
| selected := make(map[*Node]bool) |
| for _, n := range automDecls { |
| if n.IsAutoTmp() { |
| continue |
| } |
| var abbrev int |
| offs := n.Xoffset |
| |
| switch n.Class() { |
| case PAUTO: |
| abbrev = dwarf.DW_ABRV_AUTO |
| if Ctxt.FixedFrameSize() == 0 { |
| offs -= int64(Widthptr) |
| } |
| if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) { |
| offs -= int64(Widthptr) |
| } |
| |
| case PPARAM, PPARAMOUT: |
| abbrev = dwarf.DW_ABRV_PARAM |
| offs += Ctxt.FixedFrameSize() |
| default: |
| Fatalf("createSimpleVars unexpected type %v for node %v", n.Class(), n) |
| } |
| |
| selected[n] = true |
| typename := dwarf.InfoPrefix + typesymname(n.Type) |
| decls = append(decls, n) |
| inlIndex := 0 |
| if genDwarfInline > 1 { |
| if n.InlFormal() || n.InlLocal() { |
| inlIndex = posInlIndex(n.Pos) + 1 |
| if n.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM |
| } |
| } |
| } |
| declpos := Ctxt.InnermostPos(n.Pos) |
| vars = append(vars, &dwarf.Var{ |
| Name: n.Sym.Name, |
| IsReturnValue: n.Class() == PPARAMOUT, |
| IsInlFormal: n.InlFormal(), |
| Abbrev: abbrev, |
| StackOffset: int32(offs), |
| Type: Ctxt.Lookup(typename), |
| DeclFile: declpos.Base().SymFilename(), |
| DeclLine: declpos.Line(), |
| DeclCol: declpos.Col(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| }) |
| } |
| return decls, vars, selected |
| } |
| |
| type varPart struct { |
| varOffset int64 |
| slot ssa.SlotID |
| } |
| |
| func createComplexVars(fnsym *obj.LSym, debugInfo *ssa.FuncDebug, automDecls []*Node) ([]*Node, []*dwarf.Var, map[*Node]bool) { |
| for _, blockDebug := range debugInfo.Blocks { |
| for _, locList := range blockDebug.Variables { |
| for _, loc := range locList.Locations { |
| if loc.StartProg != nil { |
| loc.StartPC = loc.StartProg.Pc |
| } |
| if loc.EndProg != nil { |
| loc.EndPC = loc.EndProg.Pc |
| } else { |
| loc.EndPC = fnsym.Size |
| } |
| if Debug_locationlist == 0 { |
| loc.EndProg = nil |
| loc.StartProg = nil |
| } |
| } |
| } |
| } |
| |
| // Group SSA variables by the user variable they were decomposed from. |
| varParts := map[*Node][]varPart{} |
| ssaVars := make(map[*Node]bool) |
| for slotID, slot := range debugInfo.VarSlots { |
| for slot.SplitOf != nil { |
| slot = slot.SplitOf |
| } |
| n := slot.N.(*Node) |
| ssaVars[n] = true |
| varParts[n] = append(varParts[n], varPart{varOffset(slot), ssa.SlotID(slotID)}) |
| } |
| |
| // Produce a DWARF variable entry for each user variable. |
| // Don't iterate over the map -- that's nondeterministic, and |
| // createComplexVar has side effects. Instead, go by slot. |
| var decls []*Node |
| var vars []*dwarf.Var |
| for _, slot := range debugInfo.VarSlots { |
| for slot.SplitOf != nil { |
| slot = slot.SplitOf |
| } |
| n := slot.N.(*Node) |
| parts := varParts[n] |
| if parts == nil { |
| continue |
| } |
| // Don't work on this variable again, no matter how many slots it has. |
| delete(varParts, n) |
| |
| // Get the order the parts need to be in to represent the memory |
| // of the decomposed user variable. |
| sort.Sort(partsByVarOffset(parts)) |
| |
| if dvar := createComplexVar(debugInfo, n, parts); dvar != nil { |
| decls = append(decls, n) |
| vars = append(vars, dvar) |
| } |
| } |
| |
| return decls, vars, ssaVars |
| } |
| |
| func createDwarfVars(fnsym *obj.LSym, debugInfo *ssa.FuncDebug, automDecls []*Node) ([]*Node, []*dwarf.Var) { |
| // Collect a raw list of DWARF vars. |
| var vars []*dwarf.Var |
| var decls []*Node |
| var selected map[*Node]bool |
| if Ctxt.Flag_locationlists && Ctxt.Flag_optimize && debugInfo != nil { |
| decls, vars, selected = createComplexVars(fnsym, debugInfo, automDecls) |
| } else { |
| decls, vars, selected = createSimpleVars(automDecls) |
| } |
| |
| var dcl []*Node |
| if fnsym.WasInlined() { |
| dcl = preInliningDcls(fnsym) |
| } else { |
| dcl = automDecls |
| } |
| |
| // If optimization is enabled, the list above will typically be |
| // missing some of the original pre-optimization variables in the |
| // function (they may have been promoted to registers, folded into |
| // constants, dead-coded away, etc). Here we add back in entries |
| // for selected missing vars. Note that the recipe below creates a |
| // conservative location. The idea here is that we want to |
| // communicate to the user that "yes, there is a variable named X |
| // in this function, but no, I don't have enough information to |
| // reliably report its contents." |
| for _, n := range dcl { |
| if _, found := selected[n]; found { |
| continue |
| } |
| c := n.Sym.Name[0] |
| if c == '.' || n.Type.IsUntyped() { |
| continue |
| } |
| typename := dwarf.InfoPrefix + typesymname(n.Type) |
| decls = append(decls, n) |
| abbrev := dwarf.DW_ABRV_AUTO_LOCLIST |
| if n.Class() == PPARAM || n.Class() == PPARAMOUT { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } |
| inlIndex := 0 |
| if genDwarfInline > 1 { |
| if n.InlFormal() || n.InlLocal() { |
| inlIndex = posInlIndex(n.Pos) + 1 |
| if n.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } |
| } |
| } |
| declpos := Ctxt.InnermostPos(n.Pos) |
| vars = append(vars, &dwarf.Var{ |
| Name: n.Sym.Name, |
| IsReturnValue: n.Class() == PPARAMOUT, |
| Abbrev: abbrev, |
| StackOffset: int32(n.Xoffset), |
| Type: Ctxt.Lookup(typename), |
| DeclFile: declpos.Base().SymFilename(), |
| DeclLine: declpos.Line(), |
| DeclCol: declpos.Col(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| }) |
| // Append a "deleted auto" entry to the autom list so as to |
| // insure that the type in question is picked up by the linker. |
| // See issue 22941. |
| gotype := ngotype(n).Linksym() |
| fnsym.Func.Autom = append(fnsym.Func.Autom, &obj.Auto{ |
| Asym: Ctxt.Lookup(n.Sym.Name), |
| Aoffset: int32(-1), |
| Name: obj.NAME_DELETED_AUTO, |
| Gotype: gotype, |
| }) |
| |
| } |
| |
| return decls, vars |
| } |
| |
| // Given a function that was inlined at some point during the |
| // compilation, return a sorted list of nodes corresponding to the |
| // autos/locals in that function prior to inlining. If this is a |
| // function that is not local to the package being compiled, then the |
| // names of the variables may have been "versioned" to avoid conflicts |
| // with local vars; disregard this versioning when sorting. |
| func preInliningDcls(fnsym *obj.LSym) []*Node { |
| fn := Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*Node) |
| var dcl, rdcl []*Node |
| if fn.Name.Defn != nil { |
| dcl = fn.Func.Inldcl.Slice() // local function |
| } else { |
| dcl = fn.Func.Dcl // imported function |
| } |
| for _, n := range dcl { |
| c := n.Sym.Name[0] |
| // Avoid reporting "_" parameters, since if there are more tham |
| // one, it can result in a collision later on, as in #23179. |
| if unversion(n.Sym.Name) == "_" || c == '.' || n.Type.IsUntyped() { |
| continue |
| } |
| rdcl = append(rdcl, n) |
| } |
| sort.Sort(byNodeName(rdcl)) |
| return rdcl |
| } |
| |
| func cmpNodeName(a, b *Node) bool { |
| aart := 0 |
| if strings.HasPrefix(a.Sym.Name, "~") { |
| aart = 1 |
| } |
| bart := 0 |
| if strings.HasPrefix(b.Sym.Name, "~") { |
| bart = 1 |
| } |
| if aart != bart { |
| return aart < bart |
| } |
| |
| aname := unversion(a.Sym.Name) |
| bname := unversion(b.Sym.Name) |
| return aname < bname |
| } |
| |
| // byNodeName implements sort.Interface for []*Node using cmpNodeName. |
| type byNodeName []*Node |
| |
| func (s byNodeName) Len() int { return len(s) } |
| func (s byNodeName) Less(i, j int) bool { return cmpNodeName(s[i], s[j]) } |
| func (s byNodeName) Swap(i, j int) { s[i], s[j] = s[j], s[i] } |
| |
| // varOffset returns the offset of slot within the user variable it was |
| // decomposed from. This has nothing to do with its stack offset. |
| func varOffset(slot *ssa.LocalSlot) int64 { |
| offset := slot.Off |
| for ; slot.SplitOf != nil; slot = slot.SplitOf { |
| offset += slot.SplitOffset |
| } |
| return offset |
| } |
| |
| type partsByVarOffset []varPart |
| |
| func (a partsByVarOffset) Len() int { return len(a) } |
| func (a partsByVarOffset) Less(i, j int) bool { return a[i].varOffset < a[j].varOffset } |
| func (a partsByVarOffset) Swap(i, j int) { a[i], a[j] = a[j], a[i] } |
| |
| // stackOffset returns the stack location of a LocalSlot relative to the |
| // stack pointer, suitable for use in a DWARF location entry. This has nothing |
| // to do with its offset in the user variable. |
| func stackOffset(slot *ssa.LocalSlot) int32 { |
| n := slot.N.(*Node) |
| var base int64 |
| switch n.Class() { |
| case PAUTO: |
| if Ctxt.FixedFrameSize() == 0 { |
| base -= int64(Widthptr) |
| } |
| if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) { |
| base -= int64(Widthptr) |
| } |
| case PPARAM, PPARAMOUT: |
| base += Ctxt.FixedFrameSize() |
| } |
| return int32(base + n.Xoffset + slot.Off) |
| } |
| |
| // createComplexVar builds a DWARF variable entry and location list representing n. |
| func createComplexVar(debugInfo *ssa.FuncDebug, n *Node, parts []varPart) *dwarf.Var { |
| slots := debugInfo.Slots |
| var offs int64 // base stack offset for this kind of variable |
| var abbrev int |
| switch n.Class() { |
| case PAUTO: |
| abbrev = dwarf.DW_ABRV_AUTO_LOCLIST |
| if Ctxt.FixedFrameSize() == 0 { |
| offs -= int64(Widthptr) |
| } |
| if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) { |
| offs -= int64(Widthptr) |
| } |
| |
| case PPARAM, PPARAMOUT: |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| offs += Ctxt.FixedFrameSize() |
| default: |
| return nil |
| } |
| |
| gotype := ngotype(n).Linksym() |
| typename := dwarf.InfoPrefix + gotype.Name[len("type."):] |
| inlIndex := 0 |
| if genDwarfInline > 1 { |
| if n.InlFormal() || n.InlLocal() { |
| inlIndex = posInlIndex(n.Pos) + 1 |
| if n.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } |
| } |
| } |
| declpos := Ctxt.InnermostPos(n.Pos) |
| dvar := &dwarf.Var{ |
| Name: n.Sym.Name, |
| IsReturnValue: n.Class() == PPARAMOUT, |
| IsInlFormal: n.InlFormal(), |
| Abbrev: abbrev, |
| Type: Ctxt.Lookup(typename), |
| // The stack offset is used as a sorting key, so for decomposed |
| // variables just give it the lowest one. It's not used otherwise. |
| // This won't work well if the first slot hasn't been assigned a stack |
| // location, but it's not obvious how to do better. |
| StackOffset: int32(stackOffset(slots[parts[0].slot])), |
| DeclFile: declpos.Base().SymFilename(), |
| DeclLine: declpos.Line(), |
| DeclCol: declpos.Col(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| } |
| |
| if Debug_locationlist != 0 { |
| Ctxt.Logf("Building location list for %+v. Parts:\n", n) |
| for _, part := range parts { |
| Ctxt.Logf("\t%v => %v\n", debugInfo.Slots[part.slot], debugInfo.SlotLocsString(part.slot)) |
| } |
| } |
| |
| // Given a variable that's been decomposed into multiple parts, |
| // its location list may need a new entry after the beginning or |
| // end of every location entry for each of its parts. For example: |
| // |
| // [variable] [pc range] |
| // string.ptr |----|-----| |----| |
| // string.len |------------| |--| |
| // ... needs a location list like: |
| // string |----|-----|-| |--|-| |
| // |
| // Note that location entries may or may not line up with each other, |
| // and some of the result will only have one or the other part. |
| // |
| // To build the resulting list: |
| // - keep a "current" pointer for each part |
| // - find the next transition point |
| // - advance the current pointer for each part up to that transition point |
| // - build the piece for the range between that transition point and the next |
| // - repeat |
| |
| type locID struct { |
| block int |
| loc int |
| } |
| findLoc := func(part varPart, id locID) *ssa.VarLoc { |
| if id.block >= len(debugInfo.Blocks) { |
| return nil |
| } |
| return debugInfo.Blocks[id.block].Variables[part.slot].Locations[id.loc] |
| } |
| nextLoc := func(part varPart, id locID) (locID, *ssa.VarLoc) { |
| // Check if there's another loc in this block |
| id.loc++ |
| if b := debugInfo.Blocks[id.block]; b != nil && id.loc < len(b.Variables[part.slot].Locations) { |
| return id, findLoc(part, id) |
| } |
| // Find the next block that has a loc for this part. |
| id.loc = 0 |
| id.block++ |
| for ; id.block < len(debugInfo.Blocks); id.block++ { |
| if b := debugInfo.Blocks[id.block]; b != nil && len(b.Variables[part.slot].Locations) != 0 { |
| return id, findLoc(part, id) |
| } |
| } |
| return id, nil |
| } |
| curLoc := make([]locID, len(slots)) |
| // Position each pointer at the first entry for its slot. |
| for _, part := range parts { |
| if b := debugInfo.Blocks[0]; b != nil && len(b.Variables[part.slot].Locations) != 0 { |
| // Block 0 has an entry; no need to advance. |
| continue |
| } |
| curLoc[part.slot], _ = nextLoc(part, curLoc[part.slot]) |
| } |
| |
| // findBoundaryAfter finds the next beginning or end of a piece after currentPC. |
| findBoundaryAfter := func(currentPC int64) int64 { |
| min := int64(math.MaxInt64) |
| for _, part := range parts { |
| // For each part, find the first PC greater than current. Doesn't |
| // matter if it's a start or an end, since we're looking for any boundary. |
| // If it's the new winner, save it. |
| onePart: |
| for i, loc := curLoc[part.slot], findLoc(part, curLoc[part.slot]); loc != nil; i, loc = nextLoc(part, i) { |
| for _, pc := range [2]int64{loc.StartPC, loc.EndPC} { |
| if pc > currentPC { |
| if pc < min { |
| min = pc |
| } |
| break onePart |
| } |
| } |
| } |
| } |
| return min |
| } |
| var start int64 |
| end := findBoundaryAfter(0) |
| for { |
| // Advance to the next chunk. |
| start = end |
| end = findBoundaryAfter(start) |
| if end == math.MaxInt64 { |
| break |
| } |
| |
| dloc := dwarf.Location{StartPC: start, EndPC: end} |
| if Debug_locationlist != 0 { |
| Ctxt.Logf("Processing range %x -> %x\n", start, end) |
| } |
| |
| // Advance curLoc to the last location that starts before/at start. |
| // After this loop, if there's a location that covers [start, end), it will be current. |
| // Otherwise the current piece will be too early. |
| for _, part := range parts { |
| choice := locID{-1, -1} |
| for i, loc := curLoc[part.slot], findLoc(part, curLoc[part.slot]); loc != nil; i, loc = nextLoc(part, i) { |
| if loc.StartPC > start { |
| break //overshot |
| } |
| choice = i // best yet |
| } |
| if choice.block != -1 { |
| curLoc[part.slot] = choice |
| } |
| if Debug_locationlist != 0 { |
| Ctxt.Logf("\t %v => %v", slots[part.slot], curLoc[part.slot]) |
| } |
| } |
| if Debug_locationlist != 0 { |
| Ctxt.Logf("\n") |
| } |
| // Assemble the location list entry for this chunk. |
| present := 0 |
| for _, part := range parts { |
| dpiece := dwarf.Piece{ |
| Length: slots[part.slot].Type.Size(), |
| } |
| loc := findLoc(part, curLoc[part.slot]) |
| if loc == nil || start >= loc.EndPC || end <= loc.StartPC { |
| if Debug_locationlist != 0 { |
| Ctxt.Logf("\t%v: missing", slots[part.slot]) |
| } |
| dpiece.Missing = true |
| dloc.Pieces = append(dloc.Pieces, dpiece) |
| continue |
| } |
| present++ |
| if Debug_locationlist != 0 { |
| Ctxt.Logf("\t%v: %v", slots[part.slot], debugInfo.Blocks[curLoc[part.slot].block].LocString(loc)) |
| } |
| if loc.OnStack { |
| dpiece.OnStack = true |
| dpiece.StackOffset = stackOffset(slots[loc.StackLocation]) |
| } else { |
| for reg := 0; reg < len(debugInfo.Registers); reg++ { |
| if loc.Registers&(1<<uint8(reg)) != 0 { |
| dpiece.RegNum = Ctxt.Arch.DWARFRegisters[debugInfo.Registers[reg].ObjNum()] |
| } |
| } |
| } |
| dloc.Pieces = append(dloc.Pieces, dpiece) |
| } |
| if present == 0 { |
| if Debug_locationlist != 0 { |
| Ctxt.Logf(" -> totally missing\n") |
| } |
| continue |
| } |
| // Extend the previous entry if possible. |
| if len(dvar.LocationList) > 0 { |
| prev := &dvar.LocationList[len(dvar.LocationList)-1] |
| if prev.EndPC == dloc.StartPC && len(prev.Pieces) == len(dloc.Pieces) { |
| equal := true |
| for i := range prev.Pieces { |
| if prev.Pieces[i] != dloc.Pieces[i] { |
| equal = false |
| } |
| } |
| if equal { |
| prev.EndPC = end |
| if Debug_locationlist != 0 { |
| Ctxt.Logf("-> merged with previous, now %#v\n", prev) |
| } |
| continue |
| } |
| } |
| } |
| dvar.LocationList = append(dvar.LocationList, dloc) |
| if Debug_locationlist != 0 { |
| Ctxt.Logf("-> added: %#v\n", dloc) |
| } |
| } |
| return dvar |
| } |
| |
| // fieldtrack adds R_USEFIELD relocations to fnsym to record any |
| // struct fields that it used. |
| func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) { |
| if fnsym == nil { |
| return |
| } |
| if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 { |
| return |
| } |
| |
| trackSyms := make([]*types.Sym, 0, len(tracked)) |
| for sym := range tracked { |
| trackSyms = append(trackSyms, sym) |
| } |
| sort.Sort(symByName(trackSyms)) |
| for _, sym := range trackSyms { |
| r := obj.Addrel(fnsym) |
| r.Sym = sym.Linksym() |
| r.Type = objabi.R_USEFIELD |
| } |
| } |
| |
| type symByName []*types.Sym |
| |
| func (a symByName) Len() int { return len(a) } |
| func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name } |
| func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] } |