| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package math | 
 |  | 
 | func isOddInt(x float64) bool { | 
 | 	xi, xf := Modf(x) | 
 | 	return xf == 0 && int64(xi)&1 == 1 | 
 | } | 
 |  | 
 | // Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c | 
 | // updated by IEEE Std. 754-2008 "Section 9.2.1 Special values". | 
 |  | 
 | // Pow returns x**y, the base-x exponential of y. | 
 | // | 
 | // Special cases are (in order): | 
 | //	Pow(x, ±0) = 1 for any x | 
 | //	Pow(1, y) = 1 for any y | 
 | //	Pow(x, 1) = x for any x | 
 | //	Pow(NaN, y) = NaN | 
 | //	Pow(x, NaN) = NaN | 
 | //	Pow(±0, y) = ±Inf for y an odd integer < 0 | 
 | //	Pow(±0, -Inf) = +Inf | 
 | //	Pow(±0, +Inf) = +0 | 
 | //	Pow(±0, y) = +Inf for finite y < 0 and not an odd integer | 
 | //	Pow(±0, y) = ±0 for y an odd integer > 0 | 
 | //	Pow(±0, y) = +0 for finite y > 0 and not an odd integer | 
 | //	Pow(-1, ±Inf) = 1 | 
 | //	Pow(x, +Inf) = +Inf for |x| > 1 | 
 | //	Pow(x, -Inf) = +0 for |x| > 1 | 
 | //	Pow(x, +Inf) = +0 for |x| < 1 | 
 | //	Pow(x, -Inf) = +Inf for |x| < 1 | 
 | //	Pow(+Inf, y) = +Inf for y > 0 | 
 | //	Pow(+Inf, y) = +0 for y < 0 | 
 | //	Pow(-Inf, y) = Pow(-0, -y) | 
 | //	Pow(x, y) = NaN for finite x < 0 and finite non-integer y | 
 | func Pow(x, y float64) float64 | 
 |  | 
 | func pow(x, y float64) float64 { | 
 | 	switch { | 
 | 	case y == 0 || x == 1: | 
 | 		return 1 | 
 | 	case y == 1: | 
 | 		return x | 
 | 	case IsNaN(x) || IsNaN(y): | 
 | 		return NaN() | 
 | 	case x == 0: | 
 | 		switch { | 
 | 		case y < 0: | 
 | 			if isOddInt(y) { | 
 | 				return Copysign(Inf(1), x) | 
 | 			} | 
 | 			return Inf(1) | 
 | 		case y > 0: | 
 | 			if isOddInt(y) { | 
 | 				return x | 
 | 			} | 
 | 			return 0 | 
 | 		} | 
 | 	case IsInf(y, 0): | 
 | 		switch { | 
 | 		case x == -1: | 
 | 			return 1 | 
 | 		case (Abs(x) < 1) == IsInf(y, 1): | 
 | 			return 0 | 
 | 		default: | 
 | 			return Inf(1) | 
 | 		} | 
 | 	case IsInf(x, 0): | 
 | 		if IsInf(x, -1) { | 
 | 			return Pow(1/x, -y) // Pow(-0, -y) | 
 | 		} | 
 | 		switch { | 
 | 		case y < 0: | 
 | 			return 0 | 
 | 		case y > 0: | 
 | 			return Inf(1) | 
 | 		} | 
 | 	case y == 0.5: | 
 | 		return Sqrt(x) | 
 | 	case y == -0.5: | 
 | 		return 1 / Sqrt(x) | 
 | 	} | 
 |  | 
 | 	yi, yf := Modf(Abs(y)) | 
 | 	if yf != 0 && x < 0 { | 
 | 		return NaN() | 
 | 	} | 
 | 	if yi >= 1<<63 { | 
 | 		// yi is a large even int that will lead to overflow (or underflow to 0) | 
 | 		// for all x except -1 (x == 1 was handled earlier) | 
 | 		switch { | 
 | 		case x == -1: | 
 | 			return 1 | 
 | 		case (Abs(x) < 1) == (y > 0): | 
 | 			return 0 | 
 | 		default: | 
 | 			return Inf(1) | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// ans = a1 * 2**ae (= 1 for now). | 
 | 	a1 := 1.0 | 
 | 	ae := 0 | 
 |  | 
 | 	// ans *= x**yf | 
 | 	if yf != 0 { | 
 | 		if yf > 0.5 { | 
 | 			yf-- | 
 | 			yi++ | 
 | 		} | 
 | 		a1 = Exp(yf * Log(x)) | 
 | 	} | 
 |  | 
 | 	// ans *= x**yi | 
 | 	// by multiplying in successive squarings | 
 | 	// of x according to bits of yi. | 
 | 	// accumulate powers of two into exp. | 
 | 	x1, xe := Frexp(x) | 
 | 	for i := int64(yi); i != 0; i >>= 1 { | 
 | 		if xe < -1<<12 || 1<<12 < xe { | 
 | 			// catch xe before it overflows the left shift below | 
 | 			// Since i !=0 it has at least one bit still set, so ae will accumulate xe | 
 | 			// on at least one more iteration, ae += xe is a lower bound on ae | 
 | 			// the lower bound on ae exceeds the size of a float64 exp | 
 | 			// so the final call to Ldexp will produce under/overflow (0/Inf) | 
 | 			ae += xe | 
 | 			break | 
 | 		} | 
 | 		if i&1 == 1 { | 
 | 			a1 *= x1 | 
 | 			ae += xe | 
 | 		} | 
 | 		x1 *= x1 | 
 | 		xe <<= 1 | 
 | 		if x1 < .5 { | 
 | 			x1 += x1 | 
 | 			xe-- | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// ans = a1*2**ae | 
 | 	// if y < 0 { ans = 1 / ans } | 
 | 	// but in the opposite order | 
 | 	if y < 0 { | 
 | 		a1 = 1 / a1 | 
 | 		ae = -ae | 
 | 	} | 
 | 	return Ldexp(a1, ae) | 
 | } |