|  | // Copyright 2012 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package strings | 
|  |  | 
|  | // stringFinder efficiently finds strings in a source text. It's implemented | 
|  | // using the Boyer-Moore string search algorithm: | 
|  | // https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm | 
|  | // https://www.cs.utexas.edu/~moore/publications/fstrpos.pdf (note: this aged | 
|  | // document uses 1-based indexing) | 
|  | type stringFinder struct { | 
|  | // pattern is the string that we are searching for in the text. | 
|  | pattern string | 
|  |  | 
|  | // badCharSkip[b] contains the distance between the last byte of pattern | 
|  | // and the rightmost occurrence of b in pattern. If b is not in pattern, | 
|  | // badCharSkip[b] is len(pattern). | 
|  | // | 
|  | // Whenever a mismatch is found with byte b in the text, we can safely | 
|  | // shift the matching frame at least badCharSkip[b] until the next time | 
|  | // the matching char could be in alignment. | 
|  | badCharSkip [256]int | 
|  |  | 
|  | // goodSuffixSkip[i] defines how far we can shift the matching frame given | 
|  | // that the suffix pattern[i+1:] matches, but the byte pattern[i] does | 
|  | // not. There are two cases to consider: | 
|  | // | 
|  | // 1. The matched suffix occurs elsewhere in pattern (with a different | 
|  | // byte preceding it that we might possibly match). In this case, we can | 
|  | // shift the matching frame to align with the next suffix chunk. For | 
|  | // example, the pattern "mississi" has the suffix "issi" next occurring | 
|  | // (in right-to-left order) at index 1, so goodSuffixSkip[3] == | 
|  | // shift+len(suffix) == 3+4 == 7. | 
|  | // | 
|  | // 2. If the matched suffix does not occur elsewhere in pattern, then the | 
|  | // matching frame may share part of its prefix with the end of the | 
|  | // matching suffix. In this case, goodSuffixSkip[i] will contain how far | 
|  | // to shift the frame to align this portion of the prefix to the | 
|  | // suffix. For example, in the pattern "abcxxxabc", when the first | 
|  | // mismatch from the back is found to be in position 3, the matching | 
|  | // suffix "xxabc" is not found elsewhere in the pattern. However, its | 
|  | // rightmost "abc" (at position 6) is a prefix of the whole pattern, so | 
|  | // goodSuffixSkip[3] == shift+len(suffix) == 6+5 == 11. | 
|  | goodSuffixSkip []int | 
|  | } | 
|  |  | 
|  | func makeStringFinder(pattern string) *stringFinder { | 
|  | f := &stringFinder{ | 
|  | pattern:        pattern, | 
|  | goodSuffixSkip: make([]int, len(pattern)), | 
|  | } | 
|  | // last is the index of the last character in the pattern. | 
|  | last := len(pattern) - 1 | 
|  |  | 
|  | // Build bad character table. | 
|  | // Bytes not in the pattern can skip one pattern's length. | 
|  | for i := range f.badCharSkip { | 
|  | f.badCharSkip[i] = len(pattern) | 
|  | } | 
|  | // The loop condition is < instead of <= so that the last byte does not | 
|  | // have a zero distance to itself. Finding this byte out of place implies | 
|  | // that it is not in the last position. | 
|  | for i := 0; i < last; i++ { | 
|  | f.badCharSkip[pattern[i]] = last - i | 
|  | } | 
|  |  | 
|  | // Build good suffix table. | 
|  | // First pass: set each value to the next index which starts a prefix of | 
|  | // pattern. | 
|  | lastPrefix := last | 
|  | for i := last; i >= 0; i-- { | 
|  | if HasPrefix(pattern, pattern[i+1:]) { | 
|  | lastPrefix = i + 1 | 
|  | } | 
|  | // lastPrefix is the shift, and (last-i) is len(suffix). | 
|  | f.goodSuffixSkip[i] = lastPrefix + last - i | 
|  | } | 
|  | // Second pass: find repeats of pattern's suffix starting from the front. | 
|  | for i := 0; i < last; i++ { | 
|  | lenSuffix := longestCommonSuffix(pattern, pattern[1:i+1]) | 
|  | if pattern[i-lenSuffix] != pattern[last-lenSuffix] { | 
|  | // (last-i) is the shift, and lenSuffix is len(suffix). | 
|  | f.goodSuffixSkip[last-lenSuffix] = lenSuffix + last - i | 
|  | } | 
|  | } | 
|  |  | 
|  | return f | 
|  | } | 
|  |  | 
|  | func longestCommonSuffix(a, b string) (i int) { | 
|  | for ; i < len(a) && i < len(b); i++ { | 
|  | if a[len(a)-1-i] != b[len(b)-1-i] { | 
|  | break | 
|  | } | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // next returns the index in text of the first occurrence of the pattern. If | 
|  | // the pattern is not found, it returns -1. | 
|  | func (f *stringFinder) next(text string) int { | 
|  | i := len(f.pattern) - 1 | 
|  | for i < len(text) { | 
|  | // Compare backwards from the end until the first unmatching character. | 
|  | j := len(f.pattern) - 1 | 
|  | for j >= 0 && text[i] == f.pattern[j] { | 
|  | i-- | 
|  | j-- | 
|  | } | 
|  | if j < 0 { | 
|  | return i + 1 // match | 
|  | } | 
|  | i += max(f.badCharSkip[text[i]], f.goodSuffixSkip[j]) | 
|  | } | 
|  | return -1 | 
|  | } | 
|  |  | 
|  | func max(a, b int) int { | 
|  | if a > b { | 
|  | return a | 
|  | } | 
|  | return b | 
|  | } |