blob: 62ff4d68c51c5a795f3ebb458b64f397f2497813 [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"encoding/json"
"fmt"
"internal/trace"
"io"
"log"
"math"
"net/http"
"path/filepath"
"runtime"
"runtime/debug"
"sort"
"strconv"
"strings"
"time"
)
func init() {
http.HandleFunc("/trace", httpTrace)
http.HandleFunc("/jsontrace", httpJsonTrace)
http.HandleFunc("/trace_viewer_html", httpTraceViewerHTML)
}
// httpTrace serves either whole trace (goid==0) or trace for goid goroutine.
func httpTrace(w http.ResponseWriter, r *http.Request) {
_, err := parseTrace()
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
if err := r.ParseForm(); err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
html := strings.Replace(templTrace, "{{PARAMS}}", r.Form.Encode(), -1)
w.Write([]byte(html))
}
// See https://github.com/catapult-project/catapult/blob/master/tracing/docs/embedding-trace-viewer.md
// This is almost verbatim copy of:
// https://github.com/catapult-project/catapult/blob/master/tracing/bin/index.html
// on revision 5f9e4c3eaa555bdef18218a89f38c768303b7b6e.
var templTrace = `
<html>
<head>
<link href="/trace_viewer_html" rel="import">
<style type="text/css">
html, body {
box-sizing: border-box;
overflow: hidden;
margin: 0px;
padding: 0;
width: 100%;
height: 100%;
}
#trace-viewer {
width: 100%;
height: 100%;
}
#trace-viewer:focus {
outline: none;
}
</style>
<script>
'use strict';
(function() {
var viewer;
var url;
var model;
function load() {
var req = new XMLHttpRequest();
var is_binary = /[.]gz$/.test(url) || /[.]zip$/.test(url);
req.overrideMimeType('text/plain; charset=x-user-defined');
req.open('GET', url, true);
if (is_binary)
req.responseType = 'arraybuffer';
req.onreadystatechange = function(event) {
if (req.readyState !== 4)
return;
window.setTimeout(function() {
if (req.status === 200)
onResult(is_binary ? req.response : req.responseText);
else
onResultFail(req.status);
}, 0);
};
req.send(null);
}
function onResultFail(err) {
var overlay = new tr.ui.b.Overlay();
overlay.textContent = err + ': ' + url + ' could not be loaded';
overlay.title = 'Failed to fetch data';
overlay.visible = true;
}
function onResult(result) {
model = new tr.Model();
var opts = new tr.importer.ImportOptions();
opts.shiftWorldToZero = false;
var i = new tr.importer.Import(model, opts);
var p = i.importTracesWithProgressDialog([result]);
p.then(onModelLoaded, onImportFail);
}
function onModelLoaded() {
viewer.model = model;
viewer.viewTitle = "trace";
if (!model || model.bounds.isEmpty)
return;
var sel = window.location.hash.substr(1);
if (sel === '')
return;
var parts = sel.split(':');
var range = new (tr.b.Range || tr.b.math.Range)();
range.addValue(parseFloat(parts[0]));
range.addValue(parseFloat(parts[1]));
viewer.trackView.viewport.interestRange.set(range);
}
function onImportFail(err) {
var overlay = new tr.ui.b.Overlay();
overlay.textContent = tr.b.normalizeException(err).message;
overlay.title = 'Import error';
overlay.visible = true;
}
document.addEventListener('DOMContentLoaded', function() {
var container = document.createElement('track-view-container');
container.id = 'track_view_container';
viewer = document.createElement('tr-ui-timeline-view');
viewer.track_view_container = container;
viewer.appendChild(container);
viewer.id = 'trace-viewer';
viewer.globalMode = true;
document.body.appendChild(viewer);
url = '/jsontrace?{{PARAMS}}';
load();
});
}());
</script>
</head>
<body>
</body>
</html>
`
// httpTraceViewerHTML serves static part of trace-viewer.
// This URL is queried from templTrace HTML.
func httpTraceViewerHTML(w http.ResponseWriter, r *http.Request) {
http.ServeFile(w, r, filepath.Join(runtime.GOROOT(), "misc", "trace", "trace_viewer_full.html"))
}
// httpJsonTrace serves json trace, requested from within templTrace HTML.
func httpJsonTrace(w http.ResponseWriter, r *http.Request) {
defer debug.FreeOSMemory()
defer reportMemoryUsage("after httpJsonTrace")
// This is an AJAX handler, so instead of http.Error we use log.Printf to log errors.
res, err := parseTrace()
if err != nil {
log.Printf("failed to parse trace: %v", err)
return
}
params := &traceParams{
parsed: res,
endTime: math.MaxInt64,
}
if goids := r.FormValue("goid"); goids != "" {
// If goid argument is present, we are rendering a trace for this particular goroutine.
goid, err := strconv.ParseUint(goids, 10, 64)
if err != nil {
log.Printf("failed to parse goid parameter %q: %v", goids, err)
return
}
analyzeGoroutines(res.Events)
g, ok := gs[goid]
if !ok {
log.Printf("failed to find goroutine %d", goid)
return
}
params.mode = modeGoroutineOriented
params.startTime = g.StartTime
if g.EndTime != 0 {
params.endTime = g.EndTime
} else { // The goroutine didn't end.
params.endTime = lastTimestamp()
}
params.maing = goid
params.gs = trace.RelatedGoroutines(res.Events, goid)
} else if taskids := r.FormValue("taskid"); taskids != "" {
taskid, err := strconv.ParseUint(taskids, 10, 64)
if err != nil {
log.Printf("failed to parse taskid parameter %q: %v", taskids, err)
return
}
annotRes, _ := analyzeAnnotations()
task, ok := annotRes.tasks[taskid]
if !ok || len(task.events) == 0 {
log.Printf("failed to find task with id %d", taskid)
return
}
goid := task.events[0].G
params.mode = modeGoroutineOriented | modeTaskOriented
params.startTime = task.firstTimestamp() - 1
params.endTime = task.lastTimestamp() + 1
params.maing = goid
params.tasks = task.decendents()
gs := map[uint64]bool{}
for _, t := range params.tasks {
// find only directly involved goroutines
for k, v := range t.RelatedGoroutines(res.Events, 0) {
gs[k] = v
}
}
params.gs = gs
} else if taskids := r.FormValue("focustask"); taskids != "" {
taskid, err := strconv.ParseUint(taskids, 10, 64)
if err != nil {
log.Printf("failed to parse focustask parameter %q: %v", taskids, err)
return
}
annotRes, _ := analyzeAnnotations()
task, ok := annotRes.tasks[taskid]
if !ok || len(task.events) == 0 {
log.Printf("failed to find task with id %d", taskid)
return
}
params.mode = modeTaskOriented
params.startTime = task.firstTimestamp() - 1
params.endTime = task.lastTimestamp() + 1
params.tasks = task.decendents()
}
start := int64(0)
end := int64(math.MaxInt64)
if startStr, endStr := r.FormValue("start"), r.FormValue("end"); startStr != "" && endStr != "" {
// If start/end arguments are present, we are rendering a range of the trace.
start, err = strconv.ParseInt(startStr, 10, 64)
if err != nil {
log.Printf("failed to parse start parameter %q: %v", startStr, err)
return
}
end, err = strconv.ParseInt(endStr, 10, 64)
if err != nil {
log.Printf("failed to parse end parameter %q: %v", endStr, err)
return
}
}
c := viewerDataTraceConsumer(w, start, end)
if err := generateTrace(params, c); err != nil {
log.Printf("failed to generate trace: %v", err)
return
}
}
type Range struct {
Name string
Start int
End int
}
// splitTrace splits the trace into a number of ranges,
// each resulting in approx 100MB of json output
// (trace viewer can hardly handle more).
func splitTrace(res trace.ParseResult) []Range {
params := &traceParams{
parsed: res,
endTime: math.MaxInt64,
}
s, c := splittingTraceConsumer(100 << 20) // 100M
if err := generateTrace(params, c); err != nil {
dief("%v\n", err)
}
return s.Ranges
}
type splitter struct {
Ranges []Range
}
func splittingTraceConsumer(max int) (*splitter, traceConsumer) {
type eventSz struct {
Time float64
Sz int
}
var (
data = ViewerData{Frames: make(map[string]ViewerFrame)}
sizes []eventSz
cw countingWriter
)
s := new(splitter)
return s, traceConsumer{
consumeTimeUnit: func(unit string) {
data.TimeUnit = unit
},
consumeViewerEvent: func(v *ViewerEvent, required bool) {
if required {
// Store required events inside data
// so flush can include them in the required
// part of the trace.
data.Events = append(data.Events, v)
return
}
enc := json.NewEncoder(&cw)
enc.Encode(v)
sizes = append(sizes, eventSz{v.Time, cw.size + 1}) // +1 for ",".
cw.size = 0
},
consumeViewerFrame: func(k string, v ViewerFrame) {
data.Frames[k] = v
},
flush: func() {
// Calculate size of the mandatory part of the trace.
// This includes stack traces and thread names.
cw.size = 0
enc := json.NewEncoder(&cw)
enc.Encode(data)
minSize := cw.size
// Then calculate size of each individual event
// and group them into ranges.
sum := minSize
start := 0
for i, ev := range sizes {
if sum+ev.Sz > max {
ranges = append(ranges, Range{
Name: fmt.Sprintf("%v-%v", time.Duration(sizes[start].Time*1000), time.Duration(ev.Time*1000)),
Start: start,
End: i + 1,
})
start = i + 1
sum = minSize
} else {
sum += ev.Sz + 1
}
}
if len(ranges) <= 1 {
s.Ranges = nil
return
}
if end := len(sizes) - 1; start < end {
ranges = append(ranges, Range{
Name: fmt.Sprintf("%v-%v", time.Duration(sizes[start].Time*1000), time.Duration(sizes[end].Time*1000)),
Start: start,
End: end,
})
}
s.Ranges = ranges
},
}
}
type countingWriter struct {
size int
}
func (cw *countingWriter) Write(data []byte) (int, error) {
cw.size += len(data)
return len(data), nil
}
type traceParams struct {
parsed trace.ParseResult
mode traceviewMode
startTime int64
endTime int64
maing uint64 // for goroutine-oriented view, place this goroutine on the top row
gs map[uint64]bool // Goroutines to be displayed for goroutine-oriented or task-oriented view
tasks []*taskDesc // Tasks to be displayed. tasks[0] is the top-most task
}
type traceviewMode uint
const (
modeGoroutineOriented traceviewMode = 1 << iota
modeTaskOriented
)
type traceContext struct {
*traceParams
consumer traceConsumer
frameTree frameNode
frameSeq int
arrowSeq uint64
gcount uint64
heapStats, prevHeapStats heapStats
threadStats, prevThreadStats threadStats
gstates, prevGstates [gStateCount]int64
regionID int // last emitted region id. incremented in each emitRegion call.
}
type heapStats struct {
heapAlloc uint64
nextGC uint64
}
type threadStats struct {
insyscallRuntime int64 // system goroutine in syscall
insyscall int64 // user goroutine in syscall
prunning int64 // thread running P
}
type frameNode struct {
id int
children map[uint64]frameNode
}
type gState int
const (
gDead gState = iota
gRunnable
gRunning
gWaiting
gWaitingGC
gStateCount
)
type gInfo struct {
state gState // current state
name string // name chosen for this goroutine at first EvGoStart
isSystemG bool
start *trace.Event // most recent EvGoStart
markAssist *trace.Event // if non-nil, the mark assist currently running.
}
type ViewerData struct {
Events []*ViewerEvent `json:"traceEvents"`
Frames map[string]ViewerFrame `json:"stackFrames"`
TimeUnit string `json:"displayTimeUnit"`
// This is where mandatory part of the trace starts (e.g. thread names)
footer int
}
type ViewerEvent struct {
Name string `json:"name,omitempty"`
Phase string `json:"ph"`
Scope string `json:"s,omitempty"`
Time float64 `json:"ts"`
Dur float64 `json:"dur,omitempty"`
Pid uint64 `json:"pid"`
Tid uint64 `json:"tid"`
ID uint64 `json:"id,omitempty"`
Stack int `json:"sf,omitempty"`
EndStack int `json:"esf,omitempty"`
Arg interface{} `json:"args,omitempty"`
Cname string `json:"cname,omitempty"`
Category string `json:"cat,omitempty"`
}
type ViewerFrame struct {
Name string `json:"name"`
Parent int `json:"parent,omitempty"`
}
type NameArg struct {
Name string `json:"name"`
}
type TaskArg struct {
ID uint64 `json:"id"`
StartG uint64 `json:"start_g,omitempty"`
EndG uint64 `json:"end_g,omitempty"`
}
type RegionArg struct {
TaskID uint64 `json:"taskid,omitempty"`
}
type SortIndexArg struct {
Index int `json:"sort_index"`
}
type traceConsumer struct {
consumeTimeUnit func(unit string)
consumeViewerEvent func(v *ViewerEvent, required bool)
consumeViewerFrame func(key string, f ViewerFrame)
flush func()
}
const (
procsSection = 0 // where Goroutines or per-P timelines are presented.
statsSection = 1 // where counters are presented.
tasksSection = 2 // where Task hierarchy & timeline is presented.
)
// generateTrace generates json trace for trace-viewer:
// https://github.com/google/trace-viewer
// Trace format is described at:
// https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/view
// If mode==goroutineMode, generate trace for goroutine goid, otherwise whole trace.
// startTime, endTime determine part of the trace that we are interested in.
// gset restricts goroutines that are included in the resulting trace.
func generateTrace(params *traceParams, consumer traceConsumer) error {
defer consumer.flush()
ctx := &traceContext{traceParams: params}
ctx.frameTree.children = make(map[uint64]frameNode)
ctx.consumer = consumer
ctx.consumer.consumeTimeUnit("ns")
maxProc := 0
ginfos := make(map[uint64]*gInfo)
stacks := params.parsed.Stacks
getGInfo := func(g uint64) *gInfo {
info, ok := ginfos[g]
if !ok {
info = &gInfo{}
ginfos[g] = info
}
return info
}
// Since we make many calls to setGState, we record a sticky
// error in setGStateErr and check it after every event.
var setGStateErr error
setGState := func(ev *trace.Event, g uint64, oldState, newState gState) {
info := getGInfo(g)
if oldState == gWaiting && info.state == gWaitingGC {
// For checking, gWaiting counts as any gWaiting*.
oldState = info.state
}
if info.state != oldState && setGStateErr == nil {
setGStateErr = fmt.Errorf("expected G %d to be in state %d, but got state %d", g, oldState, newState)
}
ctx.gstates[info.state]--
ctx.gstates[newState]++
info.state = newState
}
for _, ev := range ctx.parsed.Events {
// Handle state transitions before we filter out events.
switch ev.Type {
case trace.EvGoStart, trace.EvGoStartLabel:
setGState(ev, ev.G, gRunnable, gRunning)
info := getGInfo(ev.G)
info.start = ev
case trace.EvProcStart:
ctx.threadStats.prunning++
case trace.EvProcStop:
ctx.threadStats.prunning--
case trace.EvGoCreate:
newG := ev.Args[0]
info := getGInfo(newG)
if info.name != "" {
return fmt.Errorf("duplicate go create event for go id=%d detected at offset %d", newG, ev.Off)
}
stk, ok := stacks[ev.Args[1]]
if !ok || len(stk) == 0 {
return fmt.Errorf("invalid go create event: missing stack information for go id=%d at offset %d", newG, ev.Off)
}
fname := stk[0].Fn
info.name = fmt.Sprintf("G%v %s", newG, fname)
info.isSystemG = isSystemGoroutine(fname)
ctx.gcount++
setGState(ev, newG, gDead, gRunnable)
case trace.EvGoEnd:
ctx.gcount--
setGState(ev, ev.G, gRunning, gDead)
case trace.EvGoUnblock:
setGState(ev, ev.Args[0], gWaiting, gRunnable)
case trace.EvGoSysExit:
setGState(ev, ev.G, gWaiting, gRunnable)
if getGInfo(ev.G).isSystemG {
ctx.threadStats.insyscallRuntime--
} else {
ctx.threadStats.insyscall--
}
case trace.EvGoSysBlock:
setGState(ev, ev.G, gRunning, gWaiting)
if getGInfo(ev.G).isSystemG {
ctx.threadStats.insyscallRuntime++
} else {
ctx.threadStats.insyscall++
}
case trace.EvGoSched, trace.EvGoPreempt:
setGState(ev, ev.G, gRunning, gRunnable)
case trace.EvGoStop,
trace.EvGoSleep, trace.EvGoBlock, trace.EvGoBlockSend, trace.EvGoBlockRecv,
trace.EvGoBlockSelect, trace.EvGoBlockSync, trace.EvGoBlockCond, trace.EvGoBlockNet:
setGState(ev, ev.G, gRunning, gWaiting)
case trace.EvGoBlockGC:
setGState(ev, ev.G, gRunning, gWaitingGC)
case trace.EvGCMarkAssistStart:
getGInfo(ev.G).markAssist = ev
case trace.EvGCMarkAssistDone:
getGInfo(ev.G).markAssist = nil
case trace.EvGoWaiting:
setGState(ev, ev.G, gRunnable, gWaiting)
case trace.EvGoInSyscall:
// Cancel out the effect of EvGoCreate at the beginning.
setGState(ev, ev.G, gRunnable, gWaiting)
if getGInfo(ev.G).isSystemG {
ctx.threadStats.insyscallRuntime++
} else {
ctx.threadStats.insyscall++
}
case trace.EvHeapAlloc:
ctx.heapStats.heapAlloc = ev.Args[0]
case trace.EvNextGC:
ctx.heapStats.nextGC = ev.Args[0]
}
if setGStateErr != nil {
return setGStateErr
}
if ctx.gstates[gRunnable] < 0 || ctx.gstates[gRunning] < 0 || ctx.threadStats.insyscall < 0 || ctx.threadStats.insyscallRuntime < 0 {
return fmt.Errorf("invalid state after processing %v: runnable=%d running=%d insyscall=%d insyscallRuntime=%d", ev, ctx.gstates[gRunnable], ctx.gstates[gRunning], ctx.threadStats.insyscall, ctx.threadStats.insyscallRuntime)
}
// Ignore events that are from uninteresting goroutines
// or outside of the interesting timeframe.
if ctx.gs != nil && ev.P < trace.FakeP && !ctx.gs[ev.G] {
continue
}
if !withinTimeRange(ev, ctx.startTime, ctx.endTime) {
continue
}
if ev.P < trace.FakeP && ev.P > maxProc {
maxProc = ev.P
}
// Emit trace objects.
switch ev.Type {
case trace.EvProcStart:
if ctx.mode&modeGoroutineOriented != 0 {
continue
}
ctx.emitInstant(ev, "proc start", "")
case trace.EvProcStop:
if ctx.mode&modeGoroutineOriented != 0 {
continue
}
ctx.emitInstant(ev, "proc stop", "")
case trace.EvGCStart:
ctx.emitSlice(ev, "GC")
case trace.EvGCDone:
case trace.EvGCSTWStart:
if ctx.mode&modeGoroutineOriented != 0 {
continue
}
ctx.emitSlice(ev, fmt.Sprintf("STW (%s)", ev.SArgs[0]))
case trace.EvGCSTWDone:
case trace.EvGCMarkAssistStart:
// Mark assists can continue past preemptions, so truncate to the
// whichever comes first. We'll synthesize another slice if
// necessary in EvGoStart.
markFinish := ev.Link
goFinish := getGInfo(ev.G).start.Link
fakeMarkStart := *ev
text := "MARK ASSIST"
if markFinish == nil || markFinish.Ts > goFinish.Ts {
fakeMarkStart.Link = goFinish
text = "MARK ASSIST (unfinished)"
}
ctx.emitSlice(&fakeMarkStart, text)
case trace.EvGCSweepStart:
slice := ctx.emitSlice(ev, "SWEEP")
if done := ev.Link; done != nil && done.Args[0] != 0 {
slice.Arg = struct {
Swept uint64 `json:"Swept bytes"`
Reclaimed uint64 `json:"Reclaimed bytes"`
}{done.Args[0], done.Args[1]}
}
case trace.EvGoStart, trace.EvGoStartLabel:
info := getGInfo(ev.G)
if ev.Type == trace.EvGoStartLabel {
ctx.emitSlice(ev, ev.SArgs[0])
} else {
ctx.emitSlice(ev, info.name)
}
if info.markAssist != nil {
// If we're in a mark assist, synthesize a new slice, ending
// either when the mark assist ends or when we're descheduled.
markFinish := info.markAssist.Link
goFinish := ev.Link
fakeMarkStart := *ev
text := "MARK ASSIST (resumed, unfinished)"
if markFinish != nil && markFinish.Ts < goFinish.Ts {
fakeMarkStart.Link = markFinish
text = "MARK ASSIST (resumed)"
}
ctx.emitSlice(&fakeMarkStart, text)
}
case trace.EvGoCreate:
ctx.emitArrow(ev, "go")
case trace.EvGoUnblock:
ctx.emitArrow(ev, "unblock")
case trace.EvGoSysCall:
ctx.emitInstant(ev, "syscall", "")
case trace.EvGoSysExit:
ctx.emitArrow(ev, "sysexit")
case trace.EvUserLog:
ctx.emitInstant(ev, formatUserLog(ev), "user event")
case trace.EvUserTaskCreate:
ctx.emitInstant(ev, "task start", "user event")
case trace.EvUserTaskEnd:
ctx.emitInstant(ev, "task end", "user event")
}
// Emit any counter updates.
ctx.emitThreadCounters(ev)
ctx.emitHeapCounters(ev)
ctx.emitGoroutineCounters(ev)
}
ctx.emitSectionFooter(statsSection, "STATS", 0)
if ctx.mode&modeTaskOriented != 0 {
ctx.emitSectionFooter(tasksSection, "TASKS", 1)
}
if ctx.mode&modeGoroutineOriented != 0 {
ctx.emitSectionFooter(procsSection, "G", 2)
} else {
ctx.emitSectionFooter(procsSection, "PROCS", 2)
}
ctx.emitFooter(&ViewerEvent{Name: "thread_name", Phase: "M", Pid: procsSection, Tid: trace.GCP, Arg: &NameArg{"GC"}})
ctx.emitFooter(&ViewerEvent{Name: "thread_sort_index", Phase: "M", Pid: procsSection, Tid: trace.GCP, Arg: &SortIndexArg{-6}})
ctx.emitFooter(&ViewerEvent{Name: "thread_name", Phase: "M", Pid: procsSection, Tid: trace.NetpollP, Arg: &NameArg{"Network"}})
ctx.emitFooter(&ViewerEvent{Name: "thread_sort_index", Phase: "M", Pid: procsSection, Tid: trace.NetpollP, Arg: &SortIndexArg{-5}})
ctx.emitFooter(&ViewerEvent{Name: "thread_name", Phase: "M", Pid: procsSection, Tid: trace.TimerP, Arg: &NameArg{"Timers"}})
ctx.emitFooter(&ViewerEvent{Name: "thread_sort_index", Phase: "M", Pid: procsSection, Tid: trace.TimerP, Arg: &SortIndexArg{-4}})
ctx.emitFooter(&ViewerEvent{Name: "thread_name", Phase: "M", Pid: procsSection, Tid: trace.SyscallP, Arg: &NameArg{"Syscalls"}})
ctx.emitFooter(&ViewerEvent{Name: "thread_sort_index", Phase: "M", Pid: procsSection, Tid: trace.SyscallP, Arg: &SortIndexArg{-3}})
// Display rows for Ps if we are in the default trace view mode (not goroutine-oriented presentation)
if ctx.mode&modeGoroutineOriented == 0 {
for i := 0; i <= maxProc; i++ {
ctx.emitFooter(&ViewerEvent{Name: "thread_name", Phase: "M", Pid: procsSection, Tid: uint64(i), Arg: &NameArg{fmt.Sprintf("Proc %v", i)}})
ctx.emitFooter(&ViewerEvent{Name: "thread_sort_index", Phase: "M", Pid: procsSection, Tid: uint64(i), Arg: &SortIndexArg{i}})
}
}
// Display task and its regions if we are in task-oriented presentation mode.
if ctx.mode&modeTaskOriented != 0 {
// sort tasks based on the task start time.
sortedTask := make([]*taskDesc, 0, len(ctx.tasks))
for _, task := range ctx.tasks {
sortedTask = append(sortedTask, task)
}
sort.SliceStable(sortedTask, func(i, j int) bool {
ti, tj := sortedTask[i], sortedTask[j]
if ti.firstTimestamp() == tj.firstTimestamp() {
return ti.lastTimestamp() < tj.lastTimestamp()
}
return ti.firstTimestamp() < tj.firstTimestamp()
})
for i, task := range sortedTask {
ctx.emitTask(task, i)
// If we are in goroutine-oriented mode, we draw regions.
// TODO(hyangah): add this for task/P-oriented mode (i.e., focustask view) too.
if ctx.mode&modeGoroutineOriented != 0 {
for _, s := range task.regions {
ctx.emitRegion(s)
}
}
}
}
// Display goroutine rows if we are either in goroutine-oriented mode.
if ctx.mode&modeGoroutineOriented != 0 {
for k, v := range ginfos {
if !ctx.gs[k] {
continue
}
ctx.emitFooter(&ViewerEvent{Name: "thread_name", Phase: "M", Pid: procsSection, Tid: k, Arg: &NameArg{v.name}})
}
// Row for the main goroutine (maing)
ctx.emitFooter(&ViewerEvent{Name: "thread_sort_index", Phase: "M", Pid: procsSection, Tid: ctx.maing, Arg: &SortIndexArg{-2}})
// Row for GC or global state (specified with G=0)
ctx.emitFooter(&ViewerEvent{Name: "thread_sort_index", Phase: "M", Pid: procsSection, Tid: 0, Arg: &SortIndexArg{-1}})
}
return nil
}
func (ctx *traceContext) emit(e *ViewerEvent) {
ctx.consumer.consumeViewerEvent(e, false)
}
func (ctx *traceContext) emitFooter(e *ViewerEvent) {
ctx.consumer.consumeViewerEvent(e, true)
}
func (ctx *traceContext) emitSectionFooter(sectionID uint64, name string, priority int) {
ctx.emitFooter(&ViewerEvent{Name: "process_name", Phase: "M", Pid: sectionID, Arg: &NameArg{name}})
ctx.emitFooter(&ViewerEvent{Name: "process_sort_index", Phase: "M", Pid: sectionID, Arg: &SortIndexArg{priority}})
}
func (ctx *traceContext) time(ev *trace.Event) float64 {
// Trace viewer wants timestamps in microseconds.
return float64(ev.Ts) / 1000
}
func withinTimeRange(ev *trace.Event, s, e int64) bool {
if evEnd := ev.Link; evEnd != nil {
return ev.Ts <= e && evEnd.Ts >= s
}
return ev.Ts >= s && ev.Ts <= e
}
func tsWithinRange(ts, s, e int64) bool {
return s <= ts && ts <= e
}
func (ctx *traceContext) proc(ev *trace.Event) uint64 {
if ctx.mode&modeGoroutineOriented != 0 && ev.P < trace.FakeP {
return ev.G
} else {
return uint64(ev.P)
}
}
func (ctx *traceContext) emitSlice(ev *trace.Event, name string) *ViewerEvent {
// If ViewerEvent.Dur is not a positive value,
// trace viewer handles it as a non-terminating time interval.
// Avoid it by setting the field with a small value.
durationUsec := ctx.time(ev.Link) - ctx.time(ev)
if ev.Link.Ts-ev.Ts <= 0 {
durationUsec = 0.0001 // 0.1 nanoseconds
}
sl := &ViewerEvent{
Name: name,
Phase: "X",
Time: ctx.time(ev),
Dur: durationUsec,
Tid: ctx.proc(ev),
Stack: ctx.stack(ev.Stk),
EndStack: ctx.stack(ev.Link.Stk),
}
// grey out non-overlapping events if the event is not a global event (ev.G == 0)
if ctx.mode&modeTaskOriented != 0 && ev.G != 0 {
// include P information.
if t := ev.Type; t == trace.EvGoStart || t == trace.EvGoStartLabel {
type Arg struct {
P int
}
sl.Arg = &Arg{P: ev.P}
}
// grey out non-overlapping events.
overlapping := false
for _, task := range ctx.tasks {
if _, overlapped := task.overlappingDuration(ev); overlapped {
overlapping = true
break
}
}
if !overlapping {
sl.Cname = colorLightGrey
}
}
ctx.emit(sl)
return sl
}
func (ctx *traceContext) emitTask(task *taskDesc, sortIndex int) {
taskRow := uint64(task.id)
taskName := task.name
durationUsec := float64(task.lastTimestamp()-task.firstTimestamp()) / 1e3
ctx.emitFooter(&ViewerEvent{Name: "thread_name", Phase: "M", Pid: tasksSection, Tid: taskRow, Arg: &NameArg{fmt.Sprintf("T%d %s", task.id, taskName)}})
ctx.emit(&ViewerEvent{Name: "thread_sort_index", Phase: "M", Pid: tasksSection, Tid: taskRow, Arg: &SortIndexArg{sortIndex}})
ts := float64(task.firstTimestamp()) / 1e3
sl := &ViewerEvent{
Name: taskName,
Phase: "X",
Time: ts,
Dur: durationUsec,
Pid: tasksSection,
Tid: taskRow,
Cname: pickTaskColor(task.id),
}
targ := TaskArg{ID: task.id}
if task.create != nil {
sl.Stack = ctx.stack(task.create.Stk)
targ.StartG = task.create.G
}
if task.end != nil {
sl.EndStack = ctx.stack(task.end.Stk)
targ.EndG = task.end.G
}
sl.Arg = targ
ctx.emit(sl)
if task.create != nil && task.create.Type == trace.EvUserTaskCreate && task.create.Args[1] != 0 {
ctx.arrowSeq++
ctx.emit(&ViewerEvent{Name: "newTask", Phase: "s", Tid: task.create.Args[1], ID: ctx.arrowSeq, Time: ts, Pid: tasksSection})
ctx.emit(&ViewerEvent{Name: "newTask", Phase: "t", Tid: taskRow, ID: ctx.arrowSeq, Time: ts, Pid: tasksSection})
}
}
func (ctx *traceContext) emitRegion(s regionDesc) {
if s.Name == "" {
return
}
if !tsWithinRange(s.firstTimestamp(), ctx.startTime, ctx.endTime) &&
!tsWithinRange(s.lastTimestamp(), ctx.startTime, ctx.endTime) {
return
}
ctx.regionID++
regionID := ctx.regionID
id := s.TaskID
scopeID := fmt.Sprintf("%x", id)
name := s.Name
sl0 := &ViewerEvent{
Category: "Region",
Name: name,
Phase: "b",
Time: float64(s.firstTimestamp()) / 1e3,
Tid: s.G, // only in goroutine-oriented view
ID: uint64(regionID),
Scope: scopeID,
Cname: pickTaskColor(s.TaskID),
}
if s.Start != nil {
sl0.Stack = ctx.stack(s.Start.Stk)
}
ctx.emit(sl0)
sl1 := &ViewerEvent{
Category: "Region",
Name: name,
Phase: "e",
Time: float64(s.lastTimestamp()) / 1e3,
Tid: s.G,
ID: uint64(regionID),
Scope: scopeID,
Cname: pickTaskColor(s.TaskID),
Arg: RegionArg{TaskID: s.TaskID},
}
if s.End != nil {
sl1.Stack = ctx.stack(s.End.Stk)
}
ctx.emit(sl1)
}
type heapCountersArg struct {
Allocated uint64
NextGC uint64
}
func (ctx *traceContext) emitHeapCounters(ev *trace.Event) {
if ctx.prevHeapStats == ctx.heapStats {
return
}
diff := uint64(0)
if ctx.heapStats.nextGC > ctx.heapStats.heapAlloc {
diff = ctx.heapStats.nextGC - ctx.heapStats.heapAlloc
}
if tsWithinRange(ev.Ts, ctx.startTime, ctx.endTime) {
ctx.emit(&ViewerEvent{Name: "Heap", Phase: "C", Time: ctx.time(ev), Pid: 1, Arg: &heapCountersArg{ctx.heapStats.heapAlloc, diff}})
}
ctx.prevHeapStats = ctx.heapStats
}
type goroutineCountersArg struct {
Running uint64
Runnable uint64
GCWaiting uint64
}
func (ctx *traceContext) emitGoroutineCounters(ev *trace.Event) {
if ctx.prevGstates == ctx.gstates {
return
}
if tsWithinRange(ev.Ts, ctx.startTime, ctx.endTime) {
ctx.emit(&ViewerEvent{Name: "Goroutines", Phase: "C", Time: ctx.time(ev), Pid: 1, Arg: &goroutineCountersArg{uint64(ctx.gstates[gRunning]), uint64(ctx.gstates[gRunnable]), uint64(ctx.gstates[gWaitingGC])}})
}
ctx.prevGstates = ctx.gstates
}
type threadCountersArg struct {
Running int64
InSyscall int64
}
func (ctx *traceContext) emitThreadCounters(ev *trace.Event) {
if ctx.prevThreadStats == ctx.threadStats {
return
}
if tsWithinRange(ev.Ts, ctx.startTime, ctx.endTime) {
ctx.emit(&ViewerEvent{Name: "Threads", Phase: "C", Time: ctx.time(ev), Pid: 1, Arg: &threadCountersArg{
Running: ctx.threadStats.prunning,
InSyscall: ctx.threadStats.insyscall}})
}
ctx.prevThreadStats = ctx.threadStats
}
func (ctx *traceContext) emitInstant(ev *trace.Event, name, category string) {
if !tsWithinRange(ev.Ts, ctx.startTime, ctx.endTime) {
return
}
cname := ""
if ctx.mode&modeTaskOriented != 0 {
taskID, isUserAnnotation := isUserAnnotationEvent(ev)
show := false
for _, task := range ctx.tasks {
if isUserAnnotation && task.id == taskID || task.overlappingInstant(ev) {
show = true
break
}
}
// grey out or skip if non-overlapping instant.
if !show {
if isUserAnnotation {
return // don't display unrelated user annotation events.
}
cname = colorLightGrey
}
}
var arg interface{}
if ev.Type == trace.EvProcStart {
type Arg struct {
ThreadID uint64
}
arg = &Arg{ev.Args[0]}
}
ctx.emit(&ViewerEvent{
Name: name,
Category: category,
Phase: "I",
Scope: "t",
Time: ctx.time(ev),
Tid: ctx.proc(ev),
Stack: ctx.stack(ev.Stk),
Cname: cname,
Arg: arg})
}
func (ctx *traceContext) emitArrow(ev *trace.Event, name string) {
if ev.Link == nil {
// The other end of the arrow is not captured in the trace.
// For example, a goroutine was unblocked but was not scheduled before trace stop.
return
}
if ctx.mode&modeGoroutineOriented != 0 && (!ctx.gs[ev.Link.G] || ev.Link.Ts < ctx.startTime || ev.Link.Ts > ctx.endTime) {
return
}
if ev.P == trace.NetpollP || ev.P == trace.TimerP || ev.P == trace.SyscallP {
// Trace-viewer discards arrows if they don't start/end inside of a slice or instant.
// So emit a fake instant at the start of the arrow.
ctx.emitInstant(&trace.Event{P: ev.P, Ts: ev.Ts}, "unblock", "")
}
color := ""
if ctx.mode&modeTaskOriented != 0 {
overlapping := false
// skip non-overlapping arrows.
for _, task := range ctx.tasks {
if _, overlapped := task.overlappingDuration(ev); overlapped {
overlapping = true
break
}
}
if !overlapping {
return
}
}
ctx.arrowSeq++
ctx.emit(&ViewerEvent{Name: name, Phase: "s", Tid: ctx.proc(ev), ID: ctx.arrowSeq, Time: ctx.time(ev), Stack: ctx.stack(ev.Stk), Cname: color})
ctx.emit(&ViewerEvent{Name: name, Phase: "t", Tid: ctx.proc(ev.Link), ID: ctx.arrowSeq, Time: ctx.time(ev.Link), Cname: color})
}
func (ctx *traceContext) stack(stk []*trace.Frame) int {
return ctx.buildBranch(ctx.frameTree, stk)
}
// buildBranch builds one branch in the prefix tree rooted at ctx.frameTree.
func (ctx *traceContext) buildBranch(parent frameNode, stk []*trace.Frame) int {
if len(stk) == 0 {
return parent.id
}
last := len(stk) - 1
frame := stk[last]
stk = stk[:last]
node, ok := parent.children[frame.PC]
if !ok {
ctx.frameSeq++
node.id = ctx.frameSeq
node.children = make(map[uint64]frameNode)
parent.children[frame.PC] = node
ctx.consumer.consumeViewerFrame(strconv.Itoa(node.id), ViewerFrame{fmt.Sprintf("%v:%v", frame.Fn, frame.Line), parent.id})
}
return ctx.buildBranch(node, stk)
}
func isSystemGoroutine(entryFn string) bool {
// This mimics runtime.isSystemGoroutine as closely as
// possible.
return entryFn != "runtime.main" && strings.HasPrefix(entryFn, "runtime.")
}
// firstTimestamp returns the timestamp of the first event record.
func firstTimestamp() int64 {
res, _ := parseTrace()
if len(res.Events) > 0 {
return res.Events[0].Ts
}
return 0
}
// lastTimestamp returns the timestamp of the last event record.
func lastTimestamp() int64 {
res, _ := parseTrace()
if n := len(res.Events); n > 1 {
return res.Events[n-1].Ts
}
return 0
}
type jsonWriter struct {
w io.Writer
enc *json.Encoder
}
func viewerDataTraceConsumer(w io.Writer, start, end int64) traceConsumer {
frames := make(map[string]ViewerFrame)
enc := json.NewEncoder(w)
written := 0
index := int64(-1)
io.WriteString(w, "{")
return traceConsumer{
consumeTimeUnit: func(unit string) {
io.WriteString(w, `"displayTimeUnit":`)
enc.Encode(unit)
io.WriteString(w, ",")
},
consumeViewerEvent: func(v *ViewerEvent, required bool) {
index++
if !required && (index < start || index > end) {
// not in the range. Skip!
return
}
if written == 0 {
io.WriteString(w, `"traceEvents": [`)
}
if written > 0 {
io.WriteString(w, ",")
}
enc.Encode(v)
// TODO: get rid of the extra \n inserted by enc.Encode.
// Same should be applied to splittingTraceConsumer.
written++
},
consumeViewerFrame: func(k string, v ViewerFrame) {
frames[k] = v
},
flush: func() {
io.WriteString(w, `], "stackFrames":`)
enc.Encode(frames)
io.WriteString(w, `}`)
},
}
}
// Mapping from more reasonable color names to the reserved color names in
// https://github.com/catapult-project/catapult/blob/master/tracing/tracing/base/color_scheme.html#L50
// The chrome trace viewer allows only those as cname values.
const (
colorLightMauve = "thread_state_uninterruptible" // 182, 125, 143
colorOrange = "thread_state_iowait" // 255, 140, 0
colorSeafoamGreen = "thread_state_running" // 126, 200, 148
colorVistaBlue = "thread_state_runnable" // 133, 160, 210
colorTan = "thread_state_unknown" // 199, 155, 125
colorIrisBlue = "background_memory_dump" // 0, 180, 180
colorMidnightBlue = "light_memory_dump" // 0, 0, 180
colorDeepMagenta = "detailed_memory_dump" // 180, 0, 180
colorBlue = "vsync_highlight_color" // 0, 0, 255
colorGrey = "generic_work" // 125, 125, 125
colorGreen = "good" // 0, 125, 0
colorDarkGoldenrod = "bad" // 180, 125, 0
colorPeach = "terrible" // 180, 0, 0
colorBlack = "black" // 0, 0, 0
colorLightGrey = "grey" // 221, 221, 221
colorWhite = "white" // 255, 255, 255
colorYellow = "yellow" // 255, 255, 0
colorOlive = "olive" // 100, 100, 0
colorCornflowerBlue = "rail_response" // 67, 135, 253
colorSunsetOrange = "rail_animation" // 244, 74, 63
colorTangerine = "rail_idle" // 238, 142, 0
colorShamrockGreen = "rail_load" // 13, 168, 97
colorGreenishYellow = "startup" // 230, 230, 0
colorDarkGrey = "heap_dump_stack_frame" // 128, 128, 128
colorTawny = "heap_dump_child_node_arrow" // 204, 102, 0
colorLemon = "cq_build_running" // 255, 255, 119
colorLime = "cq_build_passed" // 153, 238, 102
colorPink = "cq_build_failed" // 238, 136, 136
colorSilver = "cq_build_abandoned" // 187, 187, 187
colorManzGreen = "cq_build_attempt_runnig" // 222, 222, 75
colorKellyGreen = "cq_build_attempt_passed" // 108, 218, 35
colorAnotherGrey = "cq_build_attempt_failed" // 187, 187, 187
)
var colorForTask = []string{
colorLightMauve,
colorOrange,
colorSeafoamGreen,
colorVistaBlue,
colorTan,
colorMidnightBlue,
colorIrisBlue,
colorDeepMagenta,
colorGreen,
colorDarkGoldenrod,
colorPeach,
colorOlive,
colorCornflowerBlue,
colorSunsetOrange,
colorTangerine,
colorShamrockGreen,
colorTawny,
colorLemon,
colorLime,
colorPink,
colorSilver,
colorManzGreen,
colorKellyGreen,
}
func pickTaskColor(id uint64) string {
idx := id % uint64(len(colorForTask))
return colorForTask[idx]
}