blob: 21151b52159e1a3e3484f35a11837a3d6577bfe3 [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Indexed package import.
// See iexport.go for the export data format.
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/bio"
"cmd/internal/src"
"encoding/binary"
"fmt"
"math/big"
"os"
"strings"
)
// An iimporterAndOffset identifies an importer and an offset within
// its data section.
type iimporterAndOffset struct {
p *iimporter
off uint64
}
var (
// declImporter maps from imported identifiers to an importer
// and offset where that identifier's declaration can be read.
declImporter = map[*types.Sym]iimporterAndOffset{}
// inlineImporter is like declImporter, but for inline bodies
// for function and method symbols.
inlineImporter = map[*types.Sym]iimporterAndOffset{}
)
func expandDecl(n *Node) {
if n.Op != ONONAME {
return
}
r := importReaderFor(n, declImporter)
if r == nil {
// Can happen if user tries to reference an undeclared name.
return
}
r.doDecl(n)
}
func expandInline(fn *Node) {
if fn.Func.Inl.Body != nil {
return
}
r := importReaderFor(fn, inlineImporter)
if r == nil {
Fatalf("missing import reader for %v", fn)
}
r.doInline(fn)
}
func importReaderFor(n *Node, importers map[*types.Sym]iimporterAndOffset) *importReader {
x, ok := importers[n.Sym]
if !ok {
return nil
}
return x.p.newReader(x.off, n.Sym.Pkg)
}
type intReader struct {
*bio.Reader
pkg *types.Pkg
}
func (r *intReader) int64() int64 {
i, err := binary.ReadVarint(r.Reader)
if err != nil {
yyerror("import %q: read error: %v", r.pkg.Path, err)
errorexit()
}
return i
}
func (r *intReader) uint64() uint64 {
i, err := binary.ReadUvarint(r.Reader)
if err != nil {
yyerror("import %q: read error: %v", r.pkg.Path, err)
errorexit()
}
return i
}
func iimport(pkg *types.Pkg, in *bio.Reader) {
ir := &intReader{in, pkg}
version := ir.uint64()
if version != iexportVersion {
yyerror("import %q: unknown export format version %d", pkg.Path, version)
errorexit()
}
sLen := ir.uint64()
dLen := ir.uint64()
// Map string (and data) section into memory as a single large
// string. This reduces heap fragmentation and allows
// returning individual substrings very efficiently.
data, err := mapFile(in.File(), in.Offset(), int64(sLen+dLen))
if err != nil {
yyerror("import %q: mapping input: %v", pkg.Path, err)
errorexit()
}
stringData := data[:sLen]
declData := data[sLen:]
in.Seek(int64(sLen+dLen), os.SEEK_CUR)
p := &iimporter{
ipkg: pkg,
pkgCache: map[uint64]*types.Pkg{},
posBaseCache: map[uint64]*src.PosBase{},
typCache: map[uint64]*types.Type{},
stringData: stringData,
declData: declData,
}
for i, pt := range predeclared() {
p.typCache[uint64(i)] = pt
}
// Declaration index.
for nPkgs := ir.uint64(); nPkgs > 0; nPkgs-- {
pkg := p.pkgAt(ir.uint64())
pkgName := p.stringAt(ir.uint64())
pkgHeight := int(ir.uint64())
if pkg.Name == "" {
pkg.Name = pkgName
pkg.Height = pkgHeight
numImport[pkgName]++
// TODO(mdempsky): This belongs somewhere else.
pkg.Lookup("_").Def = asTypesNode(nblank)
} else {
if pkg.Name != pkgName {
Fatalf("conflicting package names %v and %v for path %q", pkg.Name, pkgName, pkg.Path)
}
if pkg.Height != pkgHeight {
Fatalf("conflicting package heights %v and %v for path %q", pkg.Height, pkgHeight, pkg.Path)
}
}
for nSyms := ir.uint64(); nSyms > 0; nSyms-- {
s := pkg.Lookup(p.stringAt(ir.uint64()))
off := ir.uint64()
if _, ok := declImporter[s]; ok {
continue
}
declImporter[s] = iimporterAndOffset{p, off}
// Create stub declaration. If used, this will
// be overwritten by expandDecl.
if s.Def != nil {
Fatalf("unexpected definition for %v: %v", s, asNode(s.Def))
}
s.Def = asTypesNode(npos(src.NoXPos, dclname(s)))
}
}
// Inline body index.
for nPkgs := ir.uint64(); nPkgs > 0; nPkgs-- {
pkg := p.pkgAt(ir.uint64())
for nSyms := ir.uint64(); nSyms > 0; nSyms-- {
s := pkg.Lookup(p.stringAt(ir.uint64()))
off := ir.uint64()
if _, ok := inlineImporter[s]; ok {
continue
}
inlineImporter[s] = iimporterAndOffset{p, off}
}
}
}
type iimporter struct {
ipkg *types.Pkg
pkgCache map[uint64]*types.Pkg
posBaseCache map[uint64]*src.PosBase
typCache map[uint64]*types.Type
stringData string
declData string
}
func (p *iimporter) stringAt(off uint64) string {
var x [binary.MaxVarintLen64]byte
n := copy(x[:], p.stringData[off:])
slen, n := binary.Uvarint(x[:n])
if n <= 0 {
Fatalf("varint failed")
}
spos := off + uint64(n)
return p.stringData[spos : spos+slen]
}
func (p *iimporter) posBaseAt(off uint64) *src.PosBase {
if posBase, ok := p.posBaseCache[off]; ok {
return posBase
}
file := p.stringAt(off)
posBase := src.NewFileBase(file, file)
p.posBaseCache[off] = posBase
return posBase
}
func (p *iimporter) pkgAt(off uint64) *types.Pkg {
if pkg, ok := p.pkgCache[off]; ok {
return pkg
}
pkg := p.ipkg
if pkgPath := p.stringAt(off); pkgPath != "" {
pkg = types.NewPkg(pkgPath, "")
}
p.pkgCache[off] = pkg
return pkg
}
// An importReader keeps state for reading an individual imported
// object (declaration or inline body).
type importReader struct {
strings.Reader
p *iimporter
currPkg *types.Pkg
prevBase *src.PosBase
prevLine int64
}
func (p *iimporter) newReader(off uint64, pkg *types.Pkg) *importReader {
r := &importReader{
p: p,
currPkg: pkg,
}
// (*strings.Reader).Reset wasn't added until Go 1.7, and we
// need to build with Go 1.4.
r.Reader = *strings.NewReader(p.declData[off:])
return r
}
func (r *importReader) string() string { return r.p.stringAt(r.uint64()) }
func (r *importReader) posBase() *src.PosBase { return r.p.posBaseAt(r.uint64()) }
func (r *importReader) pkg() *types.Pkg { return r.p.pkgAt(r.uint64()) }
func (r *importReader) setPkg() {
r.currPkg = r.pkg()
}
func (r *importReader) doDecl(n *Node) {
if n.Op != ONONAME {
Fatalf("doDecl: unexpected Op for %v: %v", n.Sym, n.Op)
}
tag := r.byte()
pos := r.pos()
switch tag {
case 'A':
typ := r.typ()
importalias(r.p.ipkg, pos, n.Sym, typ)
case 'C':
typ, val := r.value()
importconst(r.p.ipkg, pos, n.Sym, typ, val)
case 'F':
typ := r.signature(nil)
importfunc(r.p.ipkg, pos, n.Sym, typ)
r.funcExt(n)
case 'T':
// Types can be recursive. We need to setup a stub
// declaration before recursing.
t := importtype(r.p.ipkg, pos, n.Sym)
// We also need to defer width calculations until
// after the underlying type has been assigned.
//
// TODO(mdempsky): Add nesting support directly to
// {defer,resume}checkwidth? Width calculations are
// already deferred during initial typechecking, but
// not when we're expanding inline function bodies, so
// we currently need to handle both cases here.
deferring := defercalc != 0
if !deferring {
defercheckwidth()
}
underlying := r.typ()
copytype(typenod(t), underlying)
if !deferring {
resumecheckwidth()
}
if underlying.IsInterface() {
break
}
ms := make([]*types.Field, r.uint64())
for i := range ms {
mpos := r.pos()
msym := r.ident()
recv := r.param()
mtyp := r.signature(recv)
f := types.NewField()
f.Pos = mpos
f.Sym = msym
f.Type = mtyp
ms[i] = f
m := newfuncnamel(mpos, methodSym(recv.Type, msym))
m.Type = mtyp
m.SetClass(PFUNC)
// (comment from parser.go)
// inl.C's inlnode in on a dotmeth node expects to find the inlineable body as
// (dotmeth's type).Nname.Inl, and dotmeth's type has been pulled
// out by typecheck's lookdot as this $$.ttype. So by providing
// this back link here we avoid special casing there.
mtyp.SetNname(asTypesNode(m))
}
t.Methods().Set(ms)
for _, m := range ms {
r.methExt(m)
}
case 'V':
typ := r.typ()
importvar(r.p.ipkg, pos, n.Sym, typ)
r.varExt(n)
default:
Fatalf("unexpected tag: %v", tag)
}
}
func (p *importReader) value() (typ *types.Type, v Val) {
typ = p.typ()
switch constTypeOf(typ) {
case CTNIL:
v.U = &NilVal{}
case CTBOOL:
v.U = p.bool()
case CTSTR:
v.U = p.string()
case CTINT:
x := new(Mpint)
x.Rune = typ == types.Idealrune
p.mpint(&x.Val, typ)
v.U = x
case CTFLT:
x := newMpflt()
p.float(x, typ)
v.U = x
case CTCPLX:
x := newMpcmplx()
p.float(&x.Real, typ)
p.float(&x.Imag, typ)
v.U = x
}
typ = idealType(typ)
return
}
func (p *importReader) mpint(x *big.Int, typ *types.Type) {
signed, maxBytes := intSize(typ)
maxSmall := 256 - maxBytes
if signed {
maxSmall = 256 - 2*maxBytes
}
if maxBytes == 1 {
maxSmall = 256
}
n, _ := p.ReadByte()
if uint(n) < maxSmall {
v := int64(n)
if signed {
v >>= 1
if n&1 != 0 {
v = ^v
}
}
x.SetInt64(v)
return
}
v := -n
if signed {
v = -(n &^ 1) >> 1
}
if v < 1 || uint(v) > maxBytes {
Fatalf("weird decoding: %v, %v => %v", n, signed, v)
}
b := make([]byte, v)
p.Read(b)
x.SetBytes(b)
if signed && n&1 != 0 {
x.Neg(x)
}
}
func (p *importReader) float(x *Mpflt, typ *types.Type) {
var mant big.Int
p.mpint(&mant, typ)
m := x.Val.SetInt(&mant)
if m.Sign() == 0 {
return
}
m.SetMantExp(m, int(p.int64()))
}
func (r *importReader) ident() *types.Sym {
name := r.string()
if name == "" {
return nil
}
pkg := r.currPkg
if types.IsExported(name) {
pkg = localpkg
}
return pkg.Lookup(name)
}
func (r *importReader) qualifiedIdent() *types.Sym {
name := r.string()
pkg := r.pkg()
return pkg.Lookup(name)
}
func (r *importReader) pos() src.XPos {
delta := r.int64()
if delta != deltaNewFile {
r.prevLine += delta
} else if l := r.int64(); l == -1 {
r.prevLine += deltaNewFile
} else {
r.prevBase = r.posBase()
r.prevLine = l
}
if (r.prevBase == nil || r.prevBase.AbsFilename() == "") && r.prevLine == 0 {
// TODO(mdempsky): Remove once we reliably write
// position information for all nodes.
return src.NoXPos
}
if r.prevBase == nil {
Fatalf("missing posbase")
}
pos := src.MakePos(r.prevBase, uint(r.prevLine), 0)
return Ctxt.PosTable.XPos(pos)
}
func (r *importReader) typ() *types.Type {
return r.p.typAt(r.uint64())
}
func (p *iimporter) typAt(off uint64) *types.Type {
t, ok := p.typCache[off]
if !ok {
if off < predeclReserved {
Fatalf("predeclared type missing from cache: %d", off)
}
t = p.newReader(off-predeclReserved, nil).typ1()
p.typCache[off] = t
}
return t
}
func (r *importReader) typ1() *types.Type {
switch k := r.kind(); k {
default:
Fatalf("unexpected kind tag in %q: %v", r.p.ipkg.Path, k)
return nil
case definedType:
// We might be called from within doInline, in which
// case Sym.Def can point to declared parameters
// instead of the top-level types. Also, we don't
// support inlining functions with local defined
// types. Therefore, this must be a package-scope
// type.
n := asNode(r.qualifiedIdent().PkgDef())
if n.Op == ONONAME {
expandDecl(n)
}
if n.Op != OTYPE {
Fatalf("expected OTYPE, got %v: %v, %v", n.Op, n.Sym, n)
}
return n.Type
case pointerType:
return types.NewPtr(r.typ())
case sliceType:
return types.NewSlice(r.typ())
case arrayType:
n := r.uint64()
return types.NewArray(r.typ(), int64(n))
case chanType:
dir := types.ChanDir(r.uint64())
return types.NewChan(r.typ(), dir)
case mapType:
return types.NewMap(r.typ(), r.typ())
case signatureType:
r.setPkg()
return r.signature(nil)
case structType:
r.setPkg()
fs := make([]*types.Field, r.uint64())
for i := range fs {
pos := r.pos()
sym := r.ident()
typ := r.typ()
emb := r.bool()
note := r.string()
f := types.NewField()
f.Pos = pos
f.Sym = sym
f.Type = typ
if emb {
f.Embedded = 1
}
f.Note = note
fs[i] = f
}
t := types.New(TSTRUCT)
t.SetPkg(r.currPkg)
t.SetFields(fs)
return t
case interfaceType:
r.setPkg()
embeddeds := make([]*types.Field, r.uint64())
for i := range embeddeds {
pos := r.pos()
typ := r.typ()
f := types.NewField()
f.Pos = pos
f.Type = typ
embeddeds[i] = f
}
methods := make([]*types.Field, r.uint64())
for i := range methods {
pos := r.pos()
sym := r.ident()
typ := r.signature(fakeRecvField())
f := types.NewField()
f.Pos = pos
f.Sym = sym
f.Type = typ
methods[i] = f
}
t := types.New(TINTER)
t.SetPkg(r.currPkg)
t.SetInterface(append(embeddeds, methods...))
// Ensure we expand the interface in the frontend (#25055).
checkwidth(t)
return t
}
}
func (r *importReader) kind() itag {
return itag(r.uint64())
}
func (r *importReader) signature(recv *types.Field) *types.Type {
params := r.paramList()
results := r.paramList()
if n := len(params); n > 0 {
params[n-1].SetIsddd(r.bool())
}
t := functypefield(recv, params, results)
t.SetPkg(r.currPkg)
return t
}
func (r *importReader) paramList() []*types.Field {
fs := make([]*types.Field, r.uint64())
for i := range fs {
fs[i] = r.param()
}
return fs
}
func (r *importReader) param() *types.Field {
f := types.NewField()
f.Pos = r.pos()
f.Sym = r.ident()
f.Type = r.typ()
return f
}
func (r *importReader) bool() bool {
return r.uint64() != 0
}
func (r *importReader) int64() int64 {
n, err := binary.ReadVarint(r)
if err != nil {
Fatalf("readVarint: %v", err)
}
return n
}
func (r *importReader) uint64() uint64 {
n, err := binary.ReadUvarint(r)
if err != nil {
Fatalf("readVarint: %v", err)
}
return n
}
func (r *importReader) byte() byte {
x, err := r.ReadByte()
if err != nil {
Fatalf("declReader.ReadByte: %v", err)
}
return x
}
// Compiler-specific extensions.
func (r *importReader) varExt(n *Node) {
r.linkname(n.Sym)
}
func (r *importReader) funcExt(n *Node) {
r.linkname(n.Sym)
// Escape analysis.
for _, fs := range types.RecvsParams {
for _, f := range fs(n.Type).FieldSlice() {
f.Note = r.string()
}
}
// Inline body.
if u := r.uint64(); u > 0 {
n.Func.Inl = &Inline{
Cost: int32(u - 1),
}
}
}
func (r *importReader) methExt(m *types.Field) {
if r.bool() {
m.SetNointerface(true)
}
r.funcExt(asNode(m.Type.Nname()))
}
func (r *importReader) linkname(s *types.Sym) {
s.Linkname = r.string()
}
func (r *importReader) doInline(n *Node) {
if len(n.Func.Inl.Body) != 0 {
Fatalf("%v already has inline body", n)
}
funchdr(n)
body := r.stmtList()
funcbody()
if body == nil {
//
// Make sure empty body is not interpreted as
// no inlineable body (see also parser.fnbody)
// (not doing so can cause significant performance
// degradation due to unnecessary calls to empty
// functions).
body = []*Node{}
}
n.Func.Inl.Body = body
importlist = append(importlist, n)
if Debug['E'] > 0 && Debug['m'] > 2 {
if Debug['m'] > 3 {
fmt.Printf("inl body for %v %#v: %+v\n", n, n.Type, asNodes(n.Func.Inl.Body))
} else {
fmt.Printf("inl body for %v %#v: %v\n", n, n.Type, asNodes(n.Func.Inl.Body))
}
}
}
// ----------------------------------------------------------------------------
// Inlined function bodies
// Approach: Read nodes and use them to create/declare the same data structures
// as done originally by the (hidden) parser by closely following the parser's
// original code. In other words, "parsing" the import data (which happens to
// be encoded in binary rather textual form) is the best way at the moment to
// re-establish the syntax tree's invariants. At some future point we might be
// able to avoid this round-about way and create the rewritten nodes directly,
// possibly avoiding a lot of duplicate work (name resolution, type checking).
//
// Refined nodes (e.g., ODOTPTR as a refinement of OXDOT) are exported as their
// unrefined nodes (since this is what the importer uses). The respective case
// entries are unreachable in the importer.
func (r *importReader) stmtList() []*Node {
var list []*Node
for {
n := r.node()
if n == nil {
break
}
// OBLOCK nodes may be created when importing ODCL nodes - unpack them
if n.Op == OBLOCK {
list = append(list, n.List.Slice()...)
} else {
list = append(list, n)
}
}
return list
}
func (r *importReader) exprList() []*Node {
var list []*Node
for {
n := r.expr()
if n == nil {
break
}
list = append(list, n)
}
return list
}
func (r *importReader) expr() *Node {
n := r.node()
if n != nil && n.Op == OBLOCK {
Fatalf("unexpected block node: %v", n)
}
return n
}
// TODO(gri) split into expr and stmt
func (r *importReader) node() *Node {
switch op := r.op(); op {
// expressions
// case OPAREN:
// unreachable - unpacked by exporter
// case ODDDARG:
// unimplemented
case OLITERAL:
pos := r.pos()
typ, val := r.value()
n := npos(pos, nodlit(val))
n.Type = typ
return n
case ONONAME:
return mkname(r.qualifiedIdent())
case ONAME:
return mkname(r.ident())
// case OPACK, ONONAME:
// unreachable - should have been resolved by typechecking
case OTYPE:
return typenod(r.typ())
// case OTARRAY, OTMAP, OTCHAN, OTSTRUCT, OTINTER, OTFUNC:
// unreachable - should have been resolved by typechecking
// case OCLOSURE:
// unimplemented
case OPTRLIT:
pos := r.pos()
n := npos(pos, r.expr())
if !r.bool() /* !implicit, i.e. '&' operator */ {
if n.Op == OCOMPLIT {
// Special case for &T{...}: turn into (*T){...}.
n.Right = nodl(pos, OIND, n.Right, nil)
n.Right.SetImplicit(true)
} else {
n = nodl(pos, OADDR, n, nil)
}
}
return n
case OSTRUCTLIT:
// TODO(mdempsky): Export position information for OSTRUCTKEY nodes.
savedlineno := lineno
lineno = r.pos()
n := nodl(lineno, OCOMPLIT, nil, typenod(r.typ()))
n.List.Set(r.elemList()) // special handling of field names
lineno = savedlineno
return n
// case OARRAYLIT, OSLICELIT, OMAPLIT:
// unreachable - mapped to case OCOMPLIT below by exporter
case OCOMPLIT:
n := nodl(r.pos(), OCOMPLIT, nil, typenod(r.typ()))
n.List.Set(r.exprList())
return n
case OKEY:
pos := r.pos()
left, right := r.exprsOrNil()
return nodl(pos, OKEY, left, right)
// case OSTRUCTKEY:
// unreachable - handled in case OSTRUCTLIT by elemList
// case OCALLPART:
// unimplemented
// case OXDOT, ODOT, ODOTPTR, ODOTINTER, ODOTMETH:
// unreachable - mapped to case OXDOT below by exporter
case OXDOT:
// see parser.new_dotname
return npos(r.pos(), nodSym(OXDOT, r.expr(), r.ident()))
// case ODOTTYPE, ODOTTYPE2:
// unreachable - mapped to case ODOTTYPE below by exporter
case ODOTTYPE:
n := nodl(r.pos(), ODOTTYPE, r.expr(), nil)
n.Type = r.typ()
return n
// case OINDEX, OINDEXMAP, OSLICE, OSLICESTR, OSLICEARR, OSLICE3, OSLICE3ARR:
// unreachable - mapped to cases below by exporter
case OINDEX:
return nodl(r.pos(), op, r.expr(), r.expr())
case OSLICE, OSLICE3:
n := nodl(r.pos(), op, r.expr(), nil)
low, high := r.exprsOrNil()
var max *Node
if n.Op.IsSlice3() {
max = r.expr()
}
n.SetSliceBounds(low, high, max)
return n
// case OCONV, OCONVIFACE, OCONVNOP, OARRAYBYTESTR, OARRAYRUNESTR, OSTRARRAYBYTE, OSTRARRAYRUNE, ORUNESTR:
// unreachable - mapped to OCONV case below by exporter
case OCONV:
n := nodl(r.pos(), OCONV, r.expr(), nil)
n.Type = r.typ()
return n
case OCOPY, OCOMPLEX, OREAL, OIMAG, OAPPEND, OCAP, OCLOSE, ODELETE, OLEN, OMAKE, ONEW, OPANIC, ORECOVER, OPRINT, OPRINTN:
n := npos(r.pos(), builtinCall(op))
n.List.Set(r.exprList())
if op == OAPPEND {
n.SetIsddd(r.bool())
}
return n
// case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER, OGETG:
// unreachable - mapped to OCALL case below by exporter
case OCALL:
n := nodl(r.pos(), OCALL, r.expr(), nil)
n.List.Set(r.exprList())
n.SetIsddd(r.bool())
return n
case OMAKEMAP, OMAKECHAN, OMAKESLICE:
n := npos(r.pos(), builtinCall(OMAKE))
n.List.Append(typenod(r.typ()))
n.List.Append(r.exprList()...)
return n
// unary expressions
case OPLUS, OMINUS, OADDR, OCOM, OIND, ONOT, ORECV:
return nodl(r.pos(), op, r.expr(), nil)
// binary expressions
case OADD, OAND, OANDAND, OANDNOT, ODIV, OEQ, OGE, OGT, OLE, OLT,
OLSH, OMOD, OMUL, ONE, OOR, OOROR, ORSH, OSEND, OSUB, OXOR:
return nodl(r.pos(), op, r.expr(), r.expr())
case OADDSTR:
pos := r.pos()
list := r.exprList()
x := npos(pos, list[0])
for _, y := range list[1:] {
x = nodl(pos, OADD, x, y)
}
return x
// case OCMPSTR, OCMPIFACE:
// unreachable - mapped to std comparison operators by exporter
// --------------------------------------------------------------------
// statements
case ODCL:
pos := r.pos()
lhs := npos(pos, dclname(r.ident()))
typ := typenod(r.typ())
return npos(pos, liststmt(variter([]*Node{lhs}, typ, nil))) // TODO(gri) avoid list creation
// case ODCLFIELD:
// unimplemented
// case OAS, OASWB:
// unreachable - mapped to OAS case below by exporter
case OAS:
return nodl(r.pos(), OAS, r.expr(), r.expr())
case OASOP:
n := nodl(r.pos(), OASOP, nil, nil)
n.SetSubOp(r.op())
n.Left = r.expr()
if !r.bool() {
n.Right = nodintconst(1)
n.SetImplicit(true)
} else {
n.Right = r.expr()
}
return n
// case OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
// unreachable - mapped to OAS2 case below by exporter
case OAS2:
n := nodl(r.pos(), OAS2, nil, nil)
n.List.Set(r.exprList())
n.Rlist.Set(r.exprList())
return n
case ORETURN:
n := nodl(r.pos(), ORETURN, nil, nil)
n.List.Set(r.exprList())
return n
// case ORETJMP:
// unreachable - generated by compiler for trampolin routines (not exported)
case OPROC, ODEFER:
return nodl(r.pos(), op, r.expr(), nil)
case OIF:
n := nodl(r.pos(), OIF, nil, nil)
n.Ninit.Set(r.stmtList())
n.Left = r.expr()
n.Nbody.Set(r.stmtList())
n.Rlist.Set(r.stmtList())
return n
case OFOR:
n := nodl(r.pos(), OFOR, nil, nil)
n.Ninit.Set(r.stmtList())
n.Left, n.Right = r.exprsOrNil()
n.Nbody.Set(r.stmtList())
return n
case ORANGE:
n := nodl(r.pos(), ORANGE, nil, nil)
n.List.Set(r.stmtList())
n.Right = r.expr()
n.Nbody.Set(r.stmtList())
return n
case OSELECT, OSWITCH:
n := nodl(r.pos(), op, nil, nil)
n.Ninit.Set(r.stmtList())
n.Left, _ = r.exprsOrNil()
n.List.Set(r.stmtList())
return n
// case OCASE, OXCASE:
// unreachable - mapped to OXCASE case below by exporter
case OXCASE:
n := nodl(r.pos(), OXCASE, nil, nil)
n.List.Set(r.exprList())
// TODO(gri) eventually we must declare variables for type switch
// statements (type switch statements are not yet exported)
n.Nbody.Set(r.stmtList())
return n
// case OFALL:
// unreachable - mapped to OXFALL case below by exporter
case OFALL:
n := nodl(r.pos(), OFALL, nil, nil)
return n
case OBREAK, OCONTINUE:
pos := r.pos()
left, _ := r.exprsOrNil()
if left != nil {
left = newname(left.Sym)
}
return nodl(pos, op, left, nil)
// case OEMPTY:
// unreachable - not emitted by exporter
case OGOTO, OLABEL:
return nodl(r.pos(), op, newname(r.expr().Sym), nil)
case OEND:
return nil
default:
Fatalf("cannot import %v (%d) node\n"+
"==> please file an issue and assign to gri@\n", op, int(op))
panic("unreachable") // satisfy compiler
}
}
func (r *importReader) op() Op {
return Op(r.uint64())
}
func (r *importReader) elemList() []*Node {
c := r.uint64()
list := make([]*Node, c)
for i := range list {
s := r.ident()
list[i] = nodSym(OSTRUCTKEY, r.expr(), s)
}
return list
}
func (r *importReader) exprsOrNil() (a, b *Node) {
ab := r.uint64()
if ab&1 != 0 {
a = r.expr()
}
if ab&2 != 0 {
b = r.node()
}
return
}