| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This algorithm is based on "Faster Suffix Sorting" |
| // by N. Jesper Larsson and Kunihiko Sadakane |
| // paper: http://www.larsson.dogma.net/ssrev-tr.pdf |
| // code: http://www.larsson.dogma.net/qsufsort.c |
| |
| // This algorithm computes the suffix array sa by computing its inverse. |
| // Consecutive groups of suffixes in sa are labeled as sorted groups or |
| // unsorted groups. For a given pass of the sorter, all suffixes are ordered |
| // up to their first h characters, and sa is h-ordered. Suffixes in their |
| // final positions and unambiguously sorted in h-order are in a sorted group. |
| // Consecutive groups of suffixes with identical first h characters are an |
| // unsorted group. In each pass of the algorithm, unsorted groups are sorted |
| // according to the group number of their following suffix. |
| |
| // In the implementation, if sa[i] is negative, it indicates that i is |
| // the first element of a sorted group of length -sa[i], and can be skipped. |
| // An unsorted group sa[i:k] is given the group number of the index of its |
| // last element, k-1. The group numbers are stored in the inverse slice (inv), |
| // and when all groups are sorted, this slice is the inverse suffix array. |
| |
| package suffixarray |
| |
| import "sort" |
| |
| func qsufsort(data []byte) []int { |
| // initial sorting by first byte of suffix |
| sa := sortedByFirstByte(data) |
| if len(sa) < 2 { |
| return sa |
| } |
| // initialize the group lookup table |
| // this becomes the inverse of the suffix array when all groups are sorted |
| inv := initGroups(sa, data) |
| |
| // the index starts 1-ordered |
| sufSortable := &suffixSortable{sa: sa, inv: inv, h: 1} |
| |
| for sa[0] > -len(sa) { // until all suffixes are one big sorted group |
| // The suffixes are h-ordered, make them 2*h-ordered |
| pi := 0 // pi is first position of first group |
| sl := 0 // sl is negated length of sorted groups |
| for pi < len(sa) { |
| if s := sa[pi]; s < 0 { // if pi starts sorted group |
| pi -= s // skip over sorted group |
| sl += s // add negated length to sl |
| } else { // if pi starts unsorted group |
| if sl != 0 { |
| sa[pi+sl] = sl // combine sorted groups before pi |
| sl = 0 |
| } |
| pk := inv[s] + 1 // pk-1 is last position of unsorted group |
| sufSortable.sa = sa[pi:pk] |
| sort.Sort(sufSortable) |
| sufSortable.updateGroups(pi) |
| pi = pk // next group |
| } |
| } |
| if sl != 0 { // if the array ends with a sorted group |
| sa[pi+sl] = sl // combine sorted groups at end of sa |
| } |
| |
| sufSortable.h *= 2 // double sorted depth |
| } |
| |
| for i := range sa { // reconstruct suffix array from inverse |
| sa[inv[i]] = i |
| } |
| return sa |
| } |
| |
| func sortedByFirstByte(data []byte) []int { |
| // total byte counts |
| var count [256]int |
| for _, b := range data { |
| count[b]++ |
| } |
| // make count[b] equal index of first occurrence of b in sorted array |
| sum := 0 |
| for b := range count { |
| count[b], sum = sum, count[b]+sum |
| } |
| // iterate through bytes, placing index into the correct spot in sa |
| sa := make([]int, len(data)) |
| for i, b := range data { |
| sa[count[b]] = i |
| count[b]++ |
| } |
| return sa |
| } |
| |
| func initGroups(sa []int, data []byte) []int { |
| // label contiguous same-letter groups with the same group number |
| inv := make([]int, len(data)) |
| prevGroup := len(sa) - 1 |
| groupByte := data[sa[prevGroup]] |
| for i := len(sa) - 1; i >= 0; i-- { |
| if b := data[sa[i]]; b < groupByte { |
| if prevGroup == i+1 { |
| sa[i+1] = -1 |
| } |
| groupByte = b |
| prevGroup = i |
| } |
| inv[sa[i]] = prevGroup |
| if prevGroup == 0 { |
| sa[0] = -1 |
| } |
| } |
| // Separate out the final suffix to the start of its group. |
| // This is necessary to ensure the suffix "a" is before "aba" |
| // when using a potentially unstable sort. |
| lastByte := data[len(data)-1] |
| s := -1 |
| for i := range sa { |
| if sa[i] >= 0 { |
| if data[sa[i]] == lastByte && s == -1 { |
| s = i |
| } |
| if sa[i] == len(sa)-1 { |
| sa[i], sa[s] = sa[s], sa[i] |
| inv[sa[s]] = s |
| sa[s] = -1 // mark it as an isolated sorted group |
| break |
| } |
| } |
| } |
| return inv |
| } |
| |
| type suffixSortable struct { |
| sa []int |
| inv []int |
| h int |
| buf []int // common scratch space |
| } |
| |
| func (x *suffixSortable) Len() int { return len(x.sa) } |
| func (x *suffixSortable) Less(i, j int) bool { return x.inv[x.sa[i]+x.h] < x.inv[x.sa[j]+x.h] } |
| func (x *suffixSortable) Swap(i, j int) { x.sa[i], x.sa[j] = x.sa[j], x.sa[i] } |
| |
| func (x *suffixSortable) updateGroups(offset int) { |
| bounds := x.buf[0:0] |
| group := x.inv[x.sa[0]+x.h] |
| for i := 1; i < len(x.sa); i++ { |
| if g := x.inv[x.sa[i]+x.h]; g > group { |
| bounds = append(bounds, i) |
| group = g |
| } |
| } |
| bounds = append(bounds, len(x.sa)) |
| x.buf = bounds |
| |
| // update the group numberings after all new groups are determined |
| prev := 0 |
| for _, b := range bounds { |
| for i := prev; i < b; i++ { |
| x.inv[x.sa[i]] = offset + b - 1 |
| } |
| if b-prev == 1 { |
| x.sa[prev] = -1 |
| } |
| prev = b |
| } |
| } |