blob: 9fe49659844964794b4a7365df8965d1a63faecf [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements scanner, a lexical tokenizer for
// Go source. After initialization, consecutive calls of
// next advance the scanner one token at a time.
//
// This file, source.go, tokens.go, and token_string.go are self-contained
// (`go tool compile scanner.go source.go tokens.go token_string.go` compiles)
// and thus could be made into their own package.
package syntax
import (
"fmt"
"io"
"unicode"
"unicode/utf8"
)
// The mode flags below control which comments are reported
// by calling the error handler. If no flag is set, comments
// are ignored.
const (
comments uint = 1 << iota // call handler for all comments
directives // call handler for directives only
)
type scanner struct {
source
mode uint
nlsemi bool // if set '\n' and EOF translate to ';'
// current token, valid after calling next()
line, col uint
blank bool // line is blank up to col
tok token
lit string // valid if tok is _Name, _Literal, or _Semi ("semicolon", "newline", or "EOF"); may be malformed if bad is true
bad bool // valid if tok is _Literal, true if a syntax error occurred, lit may be malformed
kind LitKind // valid if tok is _Literal
op Operator // valid if tok is _Operator, _AssignOp, or _IncOp
prec int // valid if tok is _Operator, _AssignOp, or _IncOp
}
func (s *scanner) init(src io.Reader, errh func(line, col uint, msg string), mode uint) {
s.source.init(src, errh)
s.mode = mode
s.nlsemi = false
}
// errorf reports an error at the most recently read character position.
func (s *scanner) errorf(format string, args ...interface{}) {
s.error(fmt.Sprintf(format, args...))
}
// errorAtf reports an error at a byte column offset relative to the current token start.
func (s *scanner) errorAtf(offset int, format string, args ...interface{}) {
s.errh(s.line, s.col+uint(offset), fmt.Sprintf(format, args...))
}
// setLit sets the scanner state for a recognized _Literal token.
func (s *scanner) setLit(kind LitKind, ok bool) {
s.nlsemi = true
s.tok = _Literal
s.lit = string(s.segment())
s.bad = !ok
s.kind = kind
}
// next advances the scanner by reading the next token.
//
// If a read, source encoding, or lexical error occurs, next calls
// the installed error handler with the respective error position
// and message. The error message is guaranteed to be non-empty and
// never starts with a '/'. The error handler must exist.
//
// If the scanner mode includes the comments flag and a comment
// (including comments containing directives) is encountered, the
// error handler is also called with each comment position and text
// (including opening /* or // and closing */, but without a newline
// at the end of line comments). Comment text always starts with a /
// which can be used to distinguish these handler calls from errors.
//
// If the scanner mode includes the directives (but not the comments)
// flag, only comments containing a //line, /*line, or //go: directive
// are reported, in the same way as regular comments.
func (s *scanner) next() {
nlsemi := s.nlsemi
s.nlsemi = false
redo:
// skip white space
s.stop()
startLine, startCol := s.pos()
for s.ch == ' ' || s.ch == '\t' || s.ch == '\n' && !nlsemi || s.ch == '\r' {
s.nextch()
}
// token start
s.line, s.col = s.pos()
s.blank = s.line > startLine || startCol == colbase
s.start()
if isLetter(s.ch) || s.ch >= utf8.RuneSelf && s.atIdentChar(true) {
s.nextch()
s.ident()
return
}
switch s.ch {
case -1:
if nlsemi {
s.lit = "EOF"
s.tok = _Semi
break
}
s.tok = _EOF
case '\n':
s.nextch()
s.lit = "newline"
s.tok = _Semi
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
s.number(false)
case '"':
s.stdString()
case '`':
s.rawString()
case '\'':
s.rune()
case '(':
s.nextch()
s.tok = _Lparen
case '[':
s.nextch()
s.tok = _Lbrack
case '{':
s.nextch()
s.tok = _Lbrace
case ',':
s.nextch()
s.tok = _Comma
case ';':
s.nextch()
s.lit = "semicolon"
s.tok = _Semi
case ')':
s.nextch()
s.nlsemi = true
s.tok = _Rparen
case ']':
s.nextch()
s.nlsemi = true
s.tok = _Rbrack
case '}':
s.nextch()
s.nlsemi = true
s.tok = _Rbrace
case ':':
s.nextch()
if s.ch == '=' {
s.nextch()
s.tok = _Define
break
}
s.tok = _Colon
case '.':
s.nextch()
if isDecimal(s.ch) {
s.number(true)
break
}
if s.ch == '.' {
s.nextch()
if s.ch == '.' {
s.nextch()
s.tok = _DotDotDot
break
}
s.rewind() // now s.ch holds 1st '.'
s.nextch() // consume 1st '.' again
}
s.tok = _Dot
case '+':
s.nextch()
s.op, s.prec = Add, precAdd
if s.ch != '+' {
goto assignop
}
s.nextch()
s.nlsemi = true
s.tok = _IncOp
case '-':
s.nextch()
s.op, s.prec = Sub, precAdd
if s.ch != '-' {
goto assignop
}
s.nextch()
s.nlsemi = true
s.tok = _IncOp
case '*':
s.nextch()
s.op, s.prec = Mul, precMul
// don't goto assignop - want _Star token
if s.ch == '=' {
s.nextch()
s.tok = _AssignOp
break
}
s.tok = _Star
case '/':
s.nextch()
if s.ch == '/' {
s.nextch()
s.lineComment()
goto redo
}
if s.ch == '*' {
s.nextch()
s.fullComment()
if line, _ := s.pos(); line > s.line && nlsemi {
// A multi-line comment acts like a newline;
// it translates to a ';' if nlsemi is set.
s.lit = "newline"
s.tok = _Semi
break
}
goto redo
}
s.op, s.prec = Div, precMul
goto assignop
case '%':
s.nextch()
s.op, s.prec = Rem, precMul
goto assignop
case '&':
s.nextch()
if s.ch == '&' {
s.nextch()
s.op, s.prec = AndAnd, precAndAnd
s.tok = _Operator
break
}
s.op, s.prec = And, precMul
if s.ch == '^' {
s.nextch()
s.op = AndNot
}
goto assignop
case '|':
s.nextch()
if s.ch == '|' {
s.nextch()
s.op, s.prec = OrOr, precOrOr
s.tok = _Operator
break
}
s.op, s.prec = Or, precAdd
goto assignop
case '^':
s.nextch()
s.op, s.prec = Xor, precAdd
goto assignop
case '<':
s.nextch()
if s.ch == '=' {
s.nextch()
s.op, s.prec = Leq, precCmp
s.tok = _Operator
break
}
if s.ch == '<' {
s.nextch()
s.op, s.prec = Shl, precMul
goto assignop
}
if s.ch == '-' {
s.nextch()
s.tok = _Arrow
break
}
s.op, s.prec = Lss, precCmp
s.tok = _Operator
case '>':
s.nextch()
if s.ch == '=' {
s.nextch()
s.op, s.prec = Geq, precCmp
s.tok = _Operator
break
}
if s.ch == '>' {
s.nextch()
s.op, s.prec = Shr, precMul
goto assignop
}
s.op, s.prec = Gtr, precCmp
s.tok = _Operator
case '=':
s.nextch()
if s.ch == '=' {
s.nextch()
s.op, s.prec = Eql, precCmp
s.tok = _Operator
break
}
s.tok = _Assign
case '!':
s.nextch()
if s.ch == '=' {
s.nextch()
s.op, s.prec = Neq, precCmp
s.tok = _Operator
break
}
s.op, s.prec = Not, 0
s.tok = _Operator
default:
s.errorf("invalid character %#U", s.ch)
s.nextch()
goto redo
}
return
assignop:
if s.ch == '=' {
s.nextch()
s.tok = _AssignOp
return
}
s.tok = _Operator
}
func (s *scanner) ident() {
// accelerate common case (7bit ASCII)
for isLetter(s.ch) || isDecimal(s.ch) {
s.nextch()
}
// general case
if s.ch >= utf8.RuneSelf {
for s.atIdentChar(false) {
s.nextch()
}
}
// possibly a keyword
lit := s.segment()
if len(lit) >= 2 {
if tok := keywordMap[hash(lit)]; tok != 0 && tokStrFast(tok) == string(lit) {
s.nlsemi = contains(1<<_Break|1<<_Continue|1<<_Fallthrough|1<<_Return, tok)
s.tok = tok
return
}
}
s.nlsemi = true
s.lit = string(lit)
s.tok = _Name
}
// tokStrFast is a faster version of token.String, which assumes that tok
// is one of the valid tokens - and can thus skip bounds checks.
func tokStrFast(tok token) string {
return _token_name[_token_index[tok-1]:_token_index[tok]]
}
func (s *scanner) atIdentChar(first bool) bool {
switch {
case unicode.IsLetter(s.ch) || s.ch == '_':
// ok
case unicode.IsDigit(s.ch):
if first {
s.errorf("identifier cannot begin with digit %#U", s.ch)
}
case s.ch >= utf8.RuneSelf:
s.errorf("invalid character %#U in identifier", s.ch)
default:
return false
}
return true
}
// hash is a perfect hash function for keywords.
// It assumes that s has at least length 2.
func hash(s []byte) uint {
return (uint(s[0])<<4 ^ uint(s[1]) + uint(len(s))) & uint(len(keywordMap)-1)
}
var keywordMap [1 << 6]token // size must be power of two
func init() {
// populate keywordMap
for tok := _Break; tok <= _Var; tok++ {
h := hash([]byte(tok.String()))
if keywordMap[h] != 0 {
panic("imperfect hash")
}
keywordMap[h] = tok
}
}
func lower(ch rune) rune { return ('a' - 'A') | ch } // returns lower-case ch iff ch is ASCII letter
func isLetter(ch rune) bool { return 'a' <= lower(ch) && lower(ch) <= 'z' || ch == '_' }
func isDecimal(ch rune) bool { return '0' <= ch && ch <= '9' }
func isHex(ch rune) bool { return '0' <= ch && ch <= '9' || 'a' <= lower(ch) && lower(ch) <= 'f' }
// digits accepts the sequence { digit | '_' }.
// If base <= 10, digits accepts any decimal digit but records
// the index (relative to the literal start) of a digit >= base
// in *invalid, if *invalid < 0.
// digits returns a bitset describing whether the sequence contained
// digits (bit 0 is set), or separators '_' (bit 1 is set).
func (s *scanner) digits(base int, invalid *int) (digsep int) {
if base <= 10 {
max := rune('0' + base)
for isDecimal(s.ch) || s.ch == '_' {
ds := 1
if s.ch == '_' {
ds = 2
} else if s.ch >= max && *invalid < 0 {
_, col := s.pos()
*invalid = int(col - s.col) // record invalid rune index
}
digsep |= ds
s.nextch()
}
} else {
for isHex(s.ch) || s.ch == '_' {
ds := 1
if s.ch == '_' {
ds = 2
}
digsep |= ds
s.nextch()
}
}
return
}
func (s *scanner) number(seenPoint bool) {
ok := true
kind := IntLit
base := 10 // number base
prefix := rune(0) // one of 0 (decimal), '0' (0-octal), 'x', 'o', or 'b'
digsep := 0 // bit 0: digit present, bit 1: '_' present
invalid := -1 // index of invalid digit in literal, or < 0
// integer part
if !seenPoint {
if s.ch == '0' {
s.nextch()
switch lower(s.ch) {
case 'x':
s.nextch()
base, prefix = 16, 'x'
case 'o':
s.nextch()
base, prefix = 8, 'o'
case 'b':
s.nextch()
base, prefix = 2, 'b'
default:
base, prefix = 8, '0'
digsep = 1 // leading 0
}
}
digsep |= s.digits(base, &invalid)
if s.ch == '.' {
if prefix == 'o' || prefix == 'b' {
s.errorf("invalid radix point in %s literal", baseName(base))
ok = false
}
s.nextch()
seenPoint = true
}
}
// fractional part
if seenPoint {
kind = FloatLit
digsep |= s.digits(base, &invalid)
}
if digsep&1 == 0 && ok {
s.errorf("%s literal has no digits", baseName(base))
ok = false
}
// exponent
if e := lower(s.ch); e == 'e' || e == 'p' {
if ok {
switch {
case e == 'e' && prefix != 0 && prefix != '0':
s.errorf("%q exponent requires decimal mantissa", s.ch)
ok = false
case e == 'p' && prefix != 'x':
s.errorf("%q exponent requires hexadecimal mantissa", s.ch)
ok = false
}
}
s.nextch()
kind = FloatLit
if s.ch == '+' || s.ch == '-' {
s.nextch()
}
digsep = s.digits(10, nil) | digsep&2 // don't lose sep bit
if digsep&1 == 0 && ok {
s.errorf("exponent has no digits")
ok = false
}
} else if prefix == 'x' && kind == FloatLit && ok {
s.errorf("hexadecimal mantissa requires a 'p' exponent")
ok = false
}
// suffix 'i'
if s.ch == 'i' {
kind = ImagLit
s.nextch()
}
s.setLit(kind, ok) // do this now so we can use s.lit below
if kind == IntLit && invalid >= 0 && ok {
s.errorAtf(invalid, "invalid digit %q in %s literal", s.lit[invalid], baseName(base))
ok = false
}
if digsep&2 != 0 && ok {
if i := invalidSep(s.lit); i >= 0 {
s.errorAtf(i, "'_' must separate successive digits")
ok = false
}
}
s.bad = !ok // correct s.bad
}
func baseName(base int) string {
switch base {
case 2:
return "binary"
case 8:
return "octal"
case 10:
return "decimal"
case 16:
return "hexadecimal"
}
panic("invalid base")
}
// invalidSep returns the index of the first invalid separator in x, or -1.
func invalidSep(x string) int {
x1 := ' ' // prefix char, we only care if it's 'x'
d := '.' // digit, one of '_', '0' (a digit), or '.' (anything else)
i := 0
// a prefix counts as a digit
if len(x) >= 2 && x[0] == '0' {
x1 = lower(rune(x[1]))
if x1 == 'x' || x1 == 'o' || x1 == 'b' {
d = '0'
i = 2
}
}
// mantissa and exponent
for ; i < len(x); i++ {
p := d // previous digit
d = rune(x[i])
switch {
case d == '_':
if p != '0' {
return i
}
case isDecimal(d) || x1 == 'x' && isHex(d):
d = '0'
default:
if p == '_' {
return i - 1
}
d = '.'
}
}
if d == '_' {
return len(x) - 1
}
return -1
}
func (s *scanner) rune() {
ok := true
s.nextch()
n := 0
for ; ; n++ {
if s.ch == '\'' {
if ok {
if n == 0 {
s.errorf("empty rune literal or unescaped '")
ok = false
} else if n != 1 {
s.errorAtf(0, "more than one character in rune literal")
ok = false
}
}
s.nextch()
break
}
if s.ch == '\\' {
s.nextch()
if !s.escape('\'') {
ok = false
}
continue
}
if s.ch == '\n' {
if ok {
s.errorf("newline in rune literal")
ok = false
}
break
}
if s.ch < 0 {
if ok {
s.errorAtf(0, "rune literal not terminated")
ok = false
}
break
}
s.nextch()
}
s.setLit(RuneLit, ok)
}
func (s *scanner) stdString() {
ok := true
s.nextch()
for {
if s.ch == '"' {
s.nextch()
break
}
if s.ch == '\\' {
s.nextch()
if !s.escape('"') {
ok = false
}
continue
}
if s.ch == '\n' {
s.errorf("newline in string")
ok = false
break
}
if s.ch < 0 {
s.errorAtf(0, "string not terminated")
ok = false
break
}
s.nextch()
}
s.setLit(StringLit, ok)
}
func (s *scanner) rawString() {
ok := true
s.nextch()
for {
if s.ch == '`' {
s.nextch()
break
}
if s.ch < 0 {
s.errorAtf(0, "string not terminated")
ok = false
break
}
s.nextch()
}
// We leave CRs in the string since they are part of the
// literal (even though they are not part of the literal
// value).
s.setLit(StringLit, ok)
}
func (s *scanner) comment(text string) {
s.errorAtf(0, "%s", text)
}
func (s *scanner) skipLine() {
// don't consume '\n' - needed for nlsemi logic
for s.ch >= 0 && s.ch != '\n' {
s.nextch()
}
}
func (s *scanner) lineComment() {
// opening has already been consumed
if s.mode&comments != 0 {
s.skipLine()
s.comment(string(s.segment()))
return
}
// are we saving directives? or is this definitely not a directive?
if s.mode&directives == 0 || (s.ch != 'g' && s.ch != 'l') {
s.stop()
s.skipLine()
return
}
// recognize go: or line directives
prefix := "go:"
if s.ch == 'l' {
prefix = "line "
}
for _, m := range prefix {
if s.ch != m {
s.stop()
s.skipLine()
return
}
s.nextch()
}
// directive text
s.skipLine()
s.comment(string(s.segment()))
}
func (s *scanner) skipComment() bool {
for s.ch >= 0 {
for s.ch == '*' {
s.nextch()
if s.ch == '/' {
s.nextch()
return true
}
}
s.nextch()
}
s.errorAtf(0, "comment not terminated")
return false
}
func (s *scanner) fullComment() {
/* opening has already been consumed */
if s.mode&comments != 0 {
if s.skipComment() {
s.comment(string(s.segment()))
}
return
}
if s.mode&directives == 0 || s.ch != 'l' {
s.stop()
s.skipComment()
return
}
// recognize line directive
const prefix = "line "
for _, m := range prefix {
if s.ch != m {
s.stop()
s.skipComment()
return
}
s.nextch()
}
// directive text
if s.skipComment() {
s.comment(string(s.segment()))
}
}
func (s *scanner) escape(quote rune) bool {
var n int
var base, max uint32
switch s.ch {
case quote, 'a', 'b', 'f', 'n', 'r', 't', 'v', '\\':
s.nextch()
return true
case '0', '1', '2', '3', '4', '5', '6', '7':
n, base, max = 3, 8, 255
case 'x':
s.nextch()
n, base, max = 2, 16, 255
case 'u':
s.nextch()
n, base, max = 4, 16, unicode.MaxRune
case 'U':
s.nextch()
n, base, max = 8, 16, unicode.MaxRune
default:
if s.ch < 0 {
return true // complain in caller about EOF
}
s.errorf("unknown escape")
return false
}
var x uint32
for i := n; i > 0; i-- {
if s.ch < 0 {
return true // complain in caller about EOF
}
d := base
if isDecimal(s.ch) {
d = uint32(s.ch) - '0'
} else if 'a' <= lower(s.ch) && lower(s.ch) <= 'f' {
d = uint32(lower(s.ch)) - 'a' + 10
}
if d >= base {
s.errorf("invalid character %q in %s escape", s.ch, baseName(int(base)))
return false
}
// d < base
x = x*base + d
s.nextch()
}
if x > max && base == 8 {
s.errorf("octal escape value %d > 255", x)
return false
}
if x > max || 0xD800 <= x && x < 0xE000 /* surrogate range */ {
s.errorf("escape is invalid Unicode code point %#U", x)
return false
}
return true
}