|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | // The original C code, the long comment, and the constants | 
|  | // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, | 
|  | // available from http://www.netlib.org/cephes/cmath.tgz. | 
|  | // The go code is a simplified version of the original C. | 
|  | //      tanh.c | 
|  | // | 
|  | //      Hyperbolic tangent | 
|  | // | 
|  | // SYNOPSIS: | 
|  | // | 
|  | // double x, y, tanh(); | 
|  | // | 
|  | // y = tanh( x ); | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG. | 
|  | //      MAXLOG = 8.8029691931113054295988e+01 = log(2**127) | 
|  | //      MINLOG = -8.872283911167299960540e+01 = log(2**-128) | 
|  | // | 
|  | // A rational function is used for |x| < 0.625.  The form | 
|  | // x + x**3 P(x)/Q(x) of Cody & Waite is employed. | 
|  | // Otherwise, | 
|  | //      tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1). | 
|  | // | 
|  | // ACCURACY: | 
|  | // | 
|  | //                      Relative error: | 
|  | // arithmetic   domain     # trials      peak         rms | 
|  | //    IEEE      -2,2        30000       2.5e-16     5.8e-17 | 
|  | // | 
|  | // Cephes Math Library Release 2.8:  June, 2000 | 
|  | // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier | 
|  | // | 
|  | // The readme file at http://netlib.sandia.gov/cephes/ says: | 
|  | //    Some software in this archive may be from the book _Methods and | 
|  | // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster | 
|  | // International, 1989) or from the Cephes Mathematical Library, a | 
|  | // commercial product. In either event, it is copyrighted by the author. | 
|  | // What you see here may be used freely but it comes with no support or | 
|  | // guarantee. | 
|  | // | 
|  | //   The two known misprints in the book are repaired here in the | 
|  | // source listings for the gamma function and the incomplete beta | 
|  | // integral. | 
|  | // | 
|  | //   Stephen L. Moshier | 
|  | //   moshier@na-net.ornl.gov | 
|  | // | 
|  |  | 
|  | var tanhP = [...]float64{ | 
|  | -9.64399179425052238628E-1, | 
|  | -9.92877231001918586564E1, | 
|  | -1.61468768441708447952E3, | 
|  | } | 
|  | var tanhQ = [...]float64{ | 
|  | 1.12811678491632931402E2, | 
|  | 2.23548839060100448583E3, | 
|  | 4.84406305325125486048E3, | 
|  | } | 
|  |  | 
|  | // Tanh returns the hyperbolic tangent of x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Tanh(±0) = ±0 | 
|  | //	Tanh(±Inf) = ±1 | 
|  | //	Tanh(NaN) = NaN | 
|  | func Tanh(x float64) float64 | 
|  |  | 
|  | func tanh(x float64) float64 { | 
|  | const MAXLOG = 8.8029691931113054295988e+01 // log(2**127) | 
|  | z := Abs(x) | 
|  | switch { | 
|  | case z > 0.5*MAXLOG: | 
|  | if x < 0 { | 
|  | return -1 | 
|  | } | 
|  | return 1 | 
|  | case z >= 0.625: | 
|  | s := Exp(2 * z) | 
|  | z = 1 - 2/(s+1) | 
|  | if x < 0 { | 
|  | z = -z | 
|  | } | 
|  | default: | 
|  | if x == 0 { | 
|  | return x | 
|  | } | 
|  | s := x * x | 
|  | z = x + x*s*((tanhP[0]*s+tanhP[1])*s+tanhP[2])/(((s+tanhQ[0])*s+tanhQ[1])*s+tanhQ[2]) | 
|  | } | 
|  | return z | 
|  | } |