blob: ef8c51e6589e9449f0fe82ba70922ec9a84cc50f [file] [log] [blame] [edit]
// asmcheck -gcflags=-d=converthash=qy
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package codegen
import "math"
var sink64 [8]float64
func approx(x float64) {
// amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41"
// amd64:"ROUNDSD [$]2"
// s390x:"FIDBR [$]6"
// arm64:"FRINTPD"
// ppc64x:"FRIP"
// wasm:"F64Ceil"
sink64[0] = math.Ceil(x)
// amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41"
// amd64:"ROUNDSD [$]1"
// s390x:"FIDBR [$]7"
// arm64:"FRINTMD"
// ppc64x:"FRIM"
// wasm:"F64Floor"
sink64[1] = math.Floor(x)
// s390x:"FIDBR [$]1"
// arm64:"FRINTAD"
// ppc64x:"FRIN"
sink64[2] = math.Round(x)
// amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41"
// amd64:"ROUNDSD [$]3"
// s390x:"FIDBR [$]5"
// arm64:"FRINTZD"
// ppc64x:"FRIZ"
// wasm:"F64Trunc"
sink64[3] = math.Trunc(x)
// amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41"
// amd64:"ROUNDSD [$]0"
// s390x:"FIDBR [$]4"
// arm64:"FRINTND"
// wasm:"F64Nearest"
sink64[4] = math.RoundToEven(x)
}
func sqrt(x float64) float64 {
// amd64:"SQRTSD"
// 386/sse2:"SQRTSD" 386/softfloat:-"SQRTD"
// arm64:"FSQRTD"
// arm/7:"SQRTD"
// loong64:"SQRTD"
// mips/hardfloat:"SQRTD" mips/softfloat:-"SQRTD"
// mips64/hardfloat:"SQRTD" mips64/softfloat:-"SQRTD"
// wasm:"F64Sqrt"
// ppc64x:"FSQRT"
// riscv64: "FSQRTD"
return math.Sqrt(x)
}
func sqrt32(x float32) float32 {
// amd64:"SQRTSS"
// 386/sse2:"SQRTSS" 386/softfloat:-"SQRTS"
// arm64:"FSQRTS"
// arm/7:"SQRTF"
// loong64:"SQRTF"
// mips/hardfloat:"SQRTF" mips/softfloat:-"SQRTF"
// mips64/hardfloat:"SQRTF" mips64/softfloat:-"SQRTF"
// wasm:"F32Sqrt"
// ppc64x:"FSQRTS"
// riscv64: "FSQRTS"
return float32(math.Sqrt(float64(x)))
}
// Check that it's using integer registers
func abs(x, y float64) {
// amd64:"BTRQ [$]63"
// arm64:"FABSD "
// loong64:"ABSD "
// s390x:"LPDFR " -"MOVD " (no integer load/store)
// ppc64x:"FABS "
// riscv64:"FABSD "
// wasm:"F64Abs"
// arm/6:"ABSD "
// mips64/hardfloat:"ABSD "
// mips/hardfloat:"ABSD "
sink64[0] = math.Abs(x)
// amd64:"BTRQ [$]63" "PXOR" (TODO: this should be BTSQ)
// s390x:"LNDFR " -"MOVD " (no integer load/store)
// ppc64x:"FNABS "
sink64[1] = -math.Abs(y)
}
// Check that it's using integer registers
func abs32(x float32) float32 {
// s390x:"LPDFR" -"LDEBR" -"LEDBR" (no float64 conversion)
return float32(math.Abs(float64(x)))
}
// Check that it's using integer registers
func copysign(a, b, c float64) {
// amd64:"BTRQ [$]63" "ANDQ" "ORQ"
// loong64:"FCOPYSGD"
// s390x:"CPSDR" -"MOVD" (no integer load/store)
// ppc64x:"FCPSGN"
// riscv64:"FSGNJD"
// wasm:"F64Copysign"
sink64[0] = math.Copysign(a, b)
// amd64:"BTSQ [$]63"
// loong64:"FCOPYSGD"
// s390x:"LNDFR " -"MOVD " (no integer load/store)
// ppc64x:"FCPSGN"
// riscv64:"FSGNJD"
// arm64:"ORR", -"AND"
sink64[1] = math.Copysign(c, -1)
// Like math.Copysign(c, -1), but with integer operations. Useful
// for platforms that have a copysign opcode to see if it's detected.
// s390x:"LNDFR " -"MOVD " (no integer load/store)
sink64[2] = math.Float64frombits(math.Float64bits(a) | 1<<63)
// amd64:"ANDQ" "ORQ"
// loong64:"FCOPYSGD"
// s390x:"CPSDR " -"MOVD " (no integer load/store)
// ppc64x:"FCPSGN"
// riscv64:"FSGNJD"
sink64[3] = math.Copysign(-1, c)
}
func fma(x, y, z float64) float64 {
// amd64/v3:-".*x86HasFMA"
// amd64:"VFMADD231SD"
// arm/6:"FMULAD"
// arm64:"FMADDD"
// loong64:"FMADDD"
// s390x:"FMADD"
// ppc64x:"FMADD"
// riscv64:"FMADDD"
return math.FMA(x, y, z)
}
func fms(x, y, z float64) float64 {
// riscv64:"FMSUBD"
return math.FMA(x, y, -z)
}
func fnms(x, y, z float64) float64 {
// riscv64:"FNMSUBD" -"FNMADDD"
return math.FMA(-x, y, z)
}
func fnma(x, y, z float64) float64 {
// riscv64:"FNMADDD" -"FNMSUBD"
return math.FMA(x, -y, -z)
}
func isPosInf(x float64) bool {
// riscv64:"FCLASSD"
return math.IsInf(x, 1)
}
func isPosInfEq(x float64) bool {
// riscv64:"FCLASSD"
return x == math.Inf(1)
}
func isPosInfCmp(x float64) bool {
// riscv64:"FCLASSD"
return x > math.MaxFloat64
}
func isNotPosInf(x float64) bool {
// riscv64:"FCLASSD"
return !math.IsInf(x, 1)
}
func isNotPosInfEq(x float64) bool {
// riscv64:"FCLASSD"
return x != math.Inf(1)
}
func isNotPosInfCmp(x float64) bool {
// riscv64:"FCLASSD"
return x <= math.MaxFloat64
}
func isNegInf(x float64) bool {
// riscv64:"FCLASSD"
return math.IsInf(x, -1)
}
func isNegInfEq(x float64) bool {
// riscv64:"FCLASSD"
return x == math.Inf(-1)
}
func isNegInfCmp(x float64) bool {
// riscv64:"FCLASSD"
return x < -math.MaxFloat64
}
func isNotNegInf(x float64) bool {
// riscv64:"FCLASSD"
return !math.IsInf(x, -1)
}
func isNotNegInfEq(x float64) bool {
// riscv64:"FCLASSD"
return x != math.Inf(-1)
}
func isNotNegInfCmp(x float64) bool {
// riscv64:"FCLASSD"
return x >= -math.MaxFloat64
}
func fromFloat64(f64 float64) uint64 {
// amd64:"MOVQ X.*, [^X].*"
// arm64:"FMOVD F.*, R.*"
// loong64:"MOVV F.*, R.*"
// ppc64x:"MFVSRD"
// mips64/hardfloat:"MOVV F.*, R.*"
// riscv64:"FMVXD"
return math.Float64bits(f64+1) + 1
}
func fromFloat32(f32 float32) uint32 {
// amd64:"MOVL X.*, [^X].*"
// arm64:"FMOVS F.*, R.*"
// loong64:"MOVW F.*, R.*"
// mips64/hardfloat:"MOVW F.*, R.*"
// riscv64:"FMVXW"
return math.Float32bits(f32+1) + 1
}
func toFloat64(u64 uint64) float64 {
// amd64:"MOVQ [^X].*, X.*"
// arm64:"FMOVD R.*, F.*"
// loong64:"MOVV R.*, F.*"
// ppc64x:"MTVSRD"
// mips64/hardfloat:"MOVV R.*, F.*"
// riscv64:"FMVDX"
return math.Float64frombits(u64+1) + 1
}
func toFloat32(u32 uint32) float32 {
// amd64:"MOVL [^X].*, X.*"
// arm64:"FMOVS R.*, F.*"
// loong64:"MOVW R.*, F.*"
// mips64/hardfloat:"MOVW R.*, F.*"
// riscv64:"FMVWX"
return math.Float32frombits(u32+1) + 1
}
// Test that comparisons with constants converted to float
// are evaluated at compile-time
func constantCheck64() bool {
// amd64:"(MOVB [$]0)|(XORL [A-Z][A-Z0-9]+, [A-Z][A-Z0-9]+)" -"FCMP" -"MOVB [$]1"
// s390x:"MOV(B|BZ|D) [$]0," -"FCMPU" -"MOV(B|BZ|D) [$]1,"
return 0.5 == float64(uint32(1)) || 1.5 > float64(uint64(1<<63))
}
func constantCheck32() bool {
// amd64:"MOV(B|L) [$]1" -"FCMP" -"MOV(B|L) [$]0"
// s390x:"MOV(B|BZ|D) [$]1," -"FCMPU" -"MOV(B|BZ|D) [$]0,"
return float32(0.5) <= float32(int64(1)) && float32(1.5) >= float32(int32(-1<<31))
}
// Test that integer constants are converted to floating point constants
// at compile-time
func constantConvert32(x float32) float32 {
// amd64:"MOVSS [$]f32.3f800000\\(SB\\)"
// s390x:"FMOVS [$]f32.3f800000\\(SB\\)"
// ppc64x/power8:"FMOVS [$]f32.3f800000\\(SB\\)"
// ppc64x/power9:"FMOVS [$]f32.3f800000\\(SB\\)"
// ppc64x/power10:"XXSPLTIDP [$]1065353216, VS0"
// arm64:"FMOVS [$]\\(1.0\\)"
if x > math.Float32frombits(0x3f800000) {
return -x
}
return x
}
func constantConvertInt32(x uint32) uint32 {
// amd64:-"MOVSS"
// s390x:-"FMOVS"
// ppc64x:-"FMOVS"
// arm64:-"FMOVS"
if x > math.Float32bits(1) {
return -x
}
return x
}
func nanGenerate64() float64 {
// Test to make sure we don't generate a NaN while constant propagating.
// See issue 36400.
zero := 0.0
// amd64:-"DIVSD"
inf := 1 / zero // +inf. We can constant propagate this one.
negone := -1.0
// amd64:"DIVSD"
z0 := zero / zero
// amd64/v1,amd64/v2:"MULSD"
z1 := zero * inf
// amd64:"SQRTSD"
z2 := math.Sqrt(negone)
// amd64/v3:"VFMADD231SD"
return z0 + z1 + z2
}
func nanGenerate32() float32 {
zero := float32(0.0)
// amd64:-"DIVSS"
inf := 1 / zero // +inf. We can constant propagate this one.
// amd64:"DIVSS"
z0 := zero / zero
// amd64/v1,amd64/v2:"MULSS"
z1 := zero * inf
// amd64/v3:"VFMADD231SS"
return z0 + z1
}
func outOfBoundsConv(i32 *[2]int32, u32 *[2]uint32, i64 *[2]int64, u64 *[2]uint64) {
// arm64: "FCVTZSDW"
// amd64: "CVTTSD2SL", "CVTSD2SS"
i32[0] = int32(two40())
// arm64: "FCVTZSDW"
// amd64: "CVTTSD2SL", "CVTSD2SS"
i32[1] = int32(-two40())
// arm64: "FCVTZSDW"
// amd64: "CVTTSD2SL", "CVTSD2SS"
u32[0] = uint32(two41())
// on arm64, this uses an explicit <0 comparison, so it constant folds.
// on amd64, this uses an explicit <0 comparison, so it constant folds.
// amd64: "MOVL [$]0,"
u32[1] = uint32(minus1())
// arm64: "FCVTZSD"
// amd64: "CVTTSD2SQ"
i64[0] = int64(two80())
// arm64: "FCVTZSD"
// amd64: "CVTTSD2SQ"
i64[1] = int64(-two80())
// arm64: "FCVTZUD"
// amd64: "CVTTSD2SQ"
u64[0] = uint64(two81())
// arm64: "FCVTZUD"
// on amd64, this uses an explicit <0 comparison, so it constant folds.
// amd64: "MOVQ [$]0,"
u64[1] = uint64(minus1())
}
func two40() float64 {
return 1 << 40
}
func two41() float64 {
return 1 << 41
}
func two80() float64 {
return 1 << 80
}
func two81() float64 {
return 1 << 81
}
func minus1() float64 {
return -1
}