blob: 36c37fb0656e1d5aca0306c01e39490e71f57ed4 [file] [log] [blame] [edit]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big_test
import (
cryptorand "crypto/rand"
"math/big"
"math/rand"
"reflect"
"testing"
"testing/quick"
)
func equal(z, x *big.Int) bool {
return z.Cmp(x) == 0
}
type bigInt struct {
*big.Int
}
func generatePositiveInt(rand *rand.Rand, size int) *big.Int {
n := big.NewInt(1)
n.Lsh(n, uint(rand.Intn(size*8)))
n.Rand(rand, n)
return n
}
func (bigInt) Generate(rand *rand.Rand, size int) reflect.Value {
n := generatePositiveInt(rand, size)
if rand.Intn(4) == 0 {
n.Neg(n)
}
return reflect.ValueOf(bigInt{n})
}
type notZeroInt struct {
*big.Int
}
func (notZeroInt) Generate(rand *rand.Rand, size int) reflect.Value {
n := generatePositiveInt(rand, size)
if rand.Intn(4) == 0 {
n.Neg(n)
}
if n.Sign() == 0 {
n.SetInt64(1)
}
return reflect.ValueOf(notZeroInt{n})
}
type positiveInt struct {
*big.Int
}
func (positiveInt) Generate(rand *rand.Rand, size int) reflect.Value {
n := generatePositiveInt(rand, size)
return reflect.ValueOf(positiveInt{n})
}
type prime struct {
*big.Int
}
func (prime) Generate(r *rand.Rand, size int) reflect.Value {
n, err := cryptorand.Prime(r, r.Intn(size*8-2)+2)
if err != nil {
panic(err)
}
return reflect.ValueOf(prime{n})
}
type zeroOrOne struct {
uint
}
func (zeroOrOne) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.ValueOf(zeroOrOne{uint(rand.Intn(2))})
}
type smallUint struct {
uint
}
func (smallUint) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.ValueOf(smallUint{uint(rand.Intn(1024))})
}
// checkAliasingOneArg checks if f returns a correct result when v and x alias.
//
// f is a function that takes x as an argument, doesn't modify it, sets v to the
// result, and returns v. It is the function signature of unbound methods like
//
// func (v *big.Int) m(x *big.Int) *big.Int
//
// v and x are two random Int values. v is randomized even if it will be
// overwritten to test for improper buffer reuse.
func checkAliasingOneArg(t *testing.T, f func(v, x *big.Int) *big.Int, v, x *big.Int) bool {
x1, v1 := new(big.Int).Set(x), new(big.Int).Set(x)
// Calculate a reference f(x) without aliasing.
if out := f(v, x); out != v {
return false
}
// Test aliasing the argument and the receiver.
if out := f(v1, v1); out != v1 || !equal(v1, v) {
t.Logf("f(v, x) != f(x, x)")
return false
}
// Ensure the arguments was not modified.
return equal(x, x1)
}
// checkAliasingTwoArgs checks if f returns a correct result when any
// combination of v, x and y alias.
//
// f is a function that takes x and y as arguments, doesn't modify them, sets v
// to the result, and returns v. It is the function signature of unbound methods
// like
//
// func (v *big.Int) m(x, y *big.Int) *big.Int
//
// v, x and y are random Int values. v is randomized even if it will be
// overwritten to test for improper buffer reuse.
func checkAliasingTwoArgs(t *testing.T, f func(v, x, y *big.Int) *big.Int, v, x, y *big.Int) bool {
x1, y1, v1 := new(big.Int).Set(x), new(big.Int).Set(y), new(big.Int).Set(v)
// Calculate a reference f(x, y) without aliasing.
if out := f(v, x, y); out == nil {
// Certain functions like ModInverse return nil for certain inputs.
// Check that receiver and arguments were unchanged and move on.
return equal(x, x1) && equal(y, y1) && equal(v, v1)
} else if out != v {
return false
}
// Test aliasing the first argument and the receiver.
v1.Set(x)
if out := f(v1, v1, y); out != v1 || !equal(v1, v) {
t.Logf("f(v, x, y) != f(x, x, y)")
return false
}
// Test aliasing the second argument and the receiver.
v1.Set(y)
if out := f(v1, x, v1); out != v1 || !equal(v1, v) {
t.Logf("f(v, x, y) != f(y, x, y)")
return false
}
// Calculate a reference f(y, y) without aliasing.
// We use y because it's the one that commonly has restrictions
// like being prime or non-zero.
v1.Set(v)
y2 := new(big.Int).Set(y)
if out := f(v, y, y2); out == nil {
return equal(y, y1) && equal(y2, y1) && equal(v, v1)
} else if out != v {
return false
}
// Test aliasing the two arguments.
if out := f(v1, y, y); out != v1 || !equal(v1, v) {
t.Logf("f(v, y1, y2) != f(v, y, y)")
return false
}
// Test aliasing the two arguments and the receiver.
v1.Set(y)
if out := f(v1, v1, v1); out != v1 || !equal(v1, v) {
t.Logf("f(v, y1, y2) != f(y, y, y)")
return false
}
// Ensure the arguments were not modified.
return equal(x, x1) && equal(y, y1)
}
func TestAliasing(t *testing.T) {
for name, f := range map[string]interface{}{
"Abs": func(v, x bigInt) bool {
return checkAliasingOneArg(t, (*big.Int).Abs, v.Int, x.Int)
},
"Add": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Add, v.Int, x.Int, y.Int)
},
"And": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).And, v.Int, x.Int, y.Int)
},
"AndNot": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).AndNot, v.Int, x.Int, y.Int)
},
"Div": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Div, v.Int, x.Int, y.Int)
},
"Exp-XY": func(v, x, y bigInt, z notZeroInt) bool {
return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
return v.Exp(x, y, z.Int)
}, v.Int, x.Int, y.Int)
},
"Exp-XZ": func(v, x, y bigInt, z notZeroInt) bool {
return checkAliasingTwoArgs(t, func(v, x, z *big.Int) *big.Int {
return v.Exp(x, y.Int, z)
}, v.Int, x.Int, z.Int)
},
"Exp-YZ": func(v, x, y bigInt, z notZeroInt) bool {
return checkAliasingTwoArgs(t, func(v, y, z *big.Int) *big.Int {
return v.Exp(x.Int, y, z)
}, v.Int, y.Int, z.Int)
},
"GCD": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
return v.GCD(nil, nil, x, y)
}, v.Int, x.Int, y.Int)
},
"GCD-X": func(v, x, y bigInt) bool {
a, b := new(big.Int), new(big.Int)
return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
a.GCD(v, b, x, y)
return v
}, v.Int, x.Int, y.Int)
},
"GCD-Y": func(v, x, y bigInt) bool {
a, b := new(big.Int), new(big.Int)
return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
a.GCD(b, v, x, y)
return v
}, v.Int, x.Int, y.Int)
},
"Lsh": func(v, x bigInt, n smallUint) bool {
return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
return v.Lsh(x, n.uint)
}, v.Int, x.Int)
},
"Mod": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Mod, v.Int, x.Int, y.Int)
},
"ModInverse": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).ModInverse, v.Int, x.Int, y.Int)
},
"ModSqrt": func(v, x bigInt, p prime) bool {
return checkAliasingTwoArgs(t, (*big.Int).ModSqrt, v.Int, x.Int, p.Int)
},
"Mul": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Mul, v.Int, x.Int, y.Int)
},
"Neg": func(v, x bigInt) bool {
return checkAliasingOneArg(t, (*big.Int).Neg, v.Int, x.Int)
},
"Not": func(v, x bigInt) bool {
return checkAliasingOneArg(t, (*big.Int).Not, v.Int, x.Int)
},
"Or": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Or, v.Int, x.Int, y.Int)
},
"Quo": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Quo, v.Int, x.Int, y.Int)
},
"Rand": func(v, x bigInt, seed int64) bool {
return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
rnd := rand.New(rand.NewSource(seed))
return v.Rand(rnd, x)
}, v.Int, x.Int)
},
"Rem": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Rem, v.Int, x.Int, y.Int)
},
"Rsh": func(v, x bigInt, n smallUint) bool {
return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
return v.Rsh(x, n.uint)
}, v.Int, x.Int)
},
"Set": func(v, x bigInt) bool {
return checkAliasingOneArg(t, (*big.Int).Set, v.Int, x.Int)
},
"SetBit": func(v, x bigInt, i smallUint, b zeroOrOne) bool {
return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
return v.SetBit(x, int(i.uint), b.uint)
}, v.Int, x.Int)
},
"Sqrt": func(v bigInt, x positiveInt) bool {
return checkAliasingOneArg(t, (*big.Int).Sqrt, v.Int, x.Int)
},
"Sub": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Sub, v.Int, x.Int, y.Int)
},
"Xor": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Xor, v.Int, x.Int, y.Int)
},
} {
t.Run(name, func(t *testing.T) {
scale := 1.0
switch name {
case "ModInverse", "GCD-Y", "GCD-X":
scale /= 5
case "Rand":
scale /= 10
case "Exp-XZ", "Exp-XY", "Exp-YZ":
scale /= 50
case "ModSqrt":
scale /= 500
}
if err := quick.Check(f, &quick.Config{
MaxCountScale: scale,
}); err != nil {
t.Error(err)
}
})
}
}