|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package jpeg | 
|  |  | 
|  | import ( | 
|  | "bufio" | 
|  | "errors" | 
|  | "image" | 
|  | "image/color" | 
|  | "io" | 
|  | ) | 
|  |  | 
|  | // div returns a/b rounded to the nearest integer, instead of rounded to zero. | 
|  | func div(a, b int32) int32 { | 
|  | if a >= 0 { | 
|  | return (a + (b >> 1)) / b | 
|  | } | 
|  | return -((-a + (b >> 1)) / b) | 
|  | } | 
|  |  | 
|  | // bitCount counts the number of bits needed to hold an integer. | 
|  | var bitCount = [256]byte{ | 
|  | 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, | 
|  | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
|  | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, | 
|  | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, | 
|  | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | 
|  | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | 
|  | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | 
|  | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | 
|  | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
|  | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
|  | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
|  | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
|  | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
|  | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
|  | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
|  | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
|  | } | 
|  |  | 
|  | type quantIndex int | 
|  |  | 
|  | const ( | 
|  | quantIndexLuminance quantIndex = iota | 
|  | quantIndexChrominance | 
|  | nQuantIndex | 
|  | ) | 
|  |  | 
|  | // unscaledQuant are the unscaled quantization tables in zig-zag order. Each | 
|  | // encoder copies and scales the tables according to its quality parameter. | 
|  | // The values are derived from section K.1 of the spec, after converting from | 
|  | // natural to zig-zag order. | 
|  | var unscaledQuant = [nQuantIndex][blockSize]byte{ | 
|  | // Luminance. | 
|  | { | 
|  | 16, 11, 12, 14, 12, 10, 16, 14, | 
|  | 13, 14, 18, 17, 16, 19, 24, 40, | 
|  | 26, 24, 22, 22, 24, 49, 35, 37, | 
|  | 29, 40, 58, 51, 61, 60, 57, 51, | 
|  | 56, 55, 64, 72, 92, 78, 64, 68, | 
|  | 87, 69, 55, 56, 80, 109, 81, 87, | 
|  | 95, 98, 103, 104, 103, 62, 77, 113, | 
|  | 121, 112, 100, 120, 92, 101, 103, 99, | 
|  | }, | 
|  | // Chrominance. | 
|  | { | 
|  | 17, 18, 18, 24, 21, 24, 47, 26, | 
|  | 26, 47, 99, 66, 56, 66, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | }, | 
|  | } | 
|  |  | 
|  | type huffIndex int | 
|  |  | 
|  | const ( | 
|  | huffIndexLuminanceDC huffIndex = iota | 
|  | huffIndexLuminanceAC | 
|  | huffIndexChrominanceDC | 
|  | huffIndexChrominanceAC | 
|  | nHuffIndex | 
|  | ) | 
|  |  | 
|  | // huffmanSpec specifies a Huffman encoding. | 
|  | type huffmanSpec struct { | 
|  | // count[i] is the number of codes of length i+1 bits. | 
|  | count [16]byte | 
|  | // value[i] is the decoded value of the i'th codeword. | 
|  | value []byte | 
|  | } | 
|  |  | 
|  | // theHuffmanSpec is the Huffman encoding specifications. | 
|  | // | 
|  | // This encoder uses the same Huffman encoding for all images. It is also the | 
|  | // same Huffman encoding used by section K.3 of the spec. | 
|  | // | 
|  | // The DC tables have 12 decoded values, called categories. | 
|  | // | 
|  | // The AC tables have 162 decoded values: bytes that pack a 4-bit Run and a | 
|  | // 4-bit Size. There are 16 valid Runs and 10 valid Sizes, plus two special R|S | 
|  | // cases: 0|0 (meaning EOB) and F|0 (meaning ZRL). | 
|  | var theHuffmanSpec = [nHuffIndex]huffmanSpec{ | 
|  | // Luminance DC. | 
|  | { | 
|  | [16]byte{0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}, | 
|  | []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, | 
|  | }, | 
|  | // Luminance AC. | 
|  | { | 
|  | [16]byte{0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125}, | 
|  | []byte{ | 
|  | 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, | 
|  | 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, | 
|  | 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, | 
|  | 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, | 
|  | 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, | 
|  | 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, | 
|  | 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, | 
|  | 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, | 
|  | 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, | 
|  | 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, | 
|  | 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, | 
|  | 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, | 
|  | 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, | 
|  | 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, | 
|  | 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, | 
|  | 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, | 
|  | 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, | 
|  | 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, | 
|  | 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, | 
|  | 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, | 
|  | 0xf9, 0xfa, | 
|  | }, | 
|  | }, | 
|  | // Chrominance DC. | 
|  | { | 
|  | [16]byte{0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}, | 
|  | []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, | 
|  | }, | 
|  | // Chrominance AC. | 
|  | { | 
|  | [16]byte{0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119}, | 
|  | []byte{ | 
|  | 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, | 
|  | 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, | 
|  | 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, | 
|  | 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, | 
|  | 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, | 
|  | 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, | 
|  | 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, | 
|  | 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, | 
|  | 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, | 
|  | 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, | 
|  | 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, | 
|  | 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, | 
|  | 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, | 
|  | 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, | 
|  | 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, | 
|  | 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, | 
|  | 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, | 
|  | 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, | 
|  | 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, | 
|  | 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, | 
|  | 0xf9, 0xfa, | 
|  | }, | 
|  | }, | 
|  | } | 
|  |  | 
|  | // huffmanLUT is a compiled look-up table representation of a huffmanSpec. | 
|  | // Each value maps to a uint32 of which the 8 most significant bits hold the | 
|  | // codeword size in bits and the 24 least significant bits hold the codeword. | 
|  | // The maximum codeword size is 16 bits. | 
|  | type huffmanLUT []uint32 | 
|  |  | 
|  | func (h *huffmanLUT) init(s huffmanSpec) { | 
|  | maxValue := 0 | 
|  | for _, v := range s.value { | 
|  | if int(v) > maxValue { | 
|  | maxValue = int(v) | 
|  | } | 
|  | } | 
|  | *h = make([]uint32, maxValue+1) | 
|  | code, k := uint32(0), 0 | 
|  | for i := 0; i < len(s.count); i++ { | 
|  | nBits := uint32(i+1) << 24 | 
|  | for j := uint8(0); j < s.count[i]; j++ { | 
|  | (*h)[s.value[k]] = nBits | code | 
|  | code++ | 
|  | k++ | 
|  | } | 
|  | code <<= 1 | 
|  | } | 
|  | } | 
|  |  | 
|  | // theHuffmanLUT are compiled representations of theHuffmanSpec. | 
|  | var theHuffmanLUT [4]huffmanLUT | 
|  |  | 
|  | func init() { | 
|  | for i, s := range theHuffmanSpec { | 
|  | theHuffmanLUT[i].init(s) | 
|  | } | 
|  | } | 
|  |  | 
|  | // writer is a buffered writer. | 
|  | type writer interface { | 
|  | Flush() error | 
|  | io.Writer | 
|  | io.ByteWriter | 
|  | } | 
|  |  | 
|  | // encoder encodes an image to the JPEG format. | 
|  | type encoder struct { | 
|  | // w is the writer to write to. err is the first error encountered during | 
|  | // writing. All attempted writes after the first error become no-ops. | 
|  | w   writer | 
|  | err error | 
|  | // buf is a scratch buffer. | 
|  | buf [16]byte | 
|  | // bits and nBits are accumulated bits to write to w. | 
|  | bits, nBits uint32 | 
|  | // quant is the scaled quantization tables, in zig-zag order. | 
|  | quant [nQuantIndex][blockSize]byte | 
|  | } | 
|  |  | 
|  | func (e *encoder) flush() { | 
|  | if e.err != nil { | 
|  | return | 
|  | } | 
|  | e.err = e.w.Flush() | 
|  | } | 
|  |  | 
|  | func (e *encoder) write(p []byte) { | 
|  | if e.err != nil { | 
|  | return | 
|  | } | 
|  | _, e.err = e.w.Write(p) | 
|  | } | 
|  |  | 
|  | func (e *encoder) writeByte(b byte) { | 
|  | if e.err != nil { | 
|  | return | 
|  | } | 
|  | e.err = e.w.WriteByte(b) | 
|  | } | 
|  |  | 
|  | // emit emits the least significant nBits bits of bits to the bit-stream. | 
|  | // The precondition is bits < 1<<nBits && nBits <= 16. | 
|  | func (e *encoder) emit(bits, nBits uint32) { | 
|  | nBits += e.nBits | 
|  | bits <<= 32 - nBits | 
|  | bits |= e.bits | 
|  | for nBits >= 8 { | 
|  | b := uint8(bits >> 24) | 
|  | e.writeByte(b) | 
|  | if b == 0xff { | 
|  | e.writeByte(0x00) | 
|  | } | 
|  | bits <<= 8 | 
|  | nBits -= 8 | 
|  | } | 
|  | e.bits, e.nBits = bits, nBits | 
|  | } | 
|  |  | 
|  | // emitHuff emits the given value with the given Huffman encoder. | 
|  | func (e *encoder) emitHuff(h huffIndex, value int32) { | 
|  | x := theHuffmanLUT[h][value] | 
|  | e.emit(x&(1<<24-1), x>>24) | 
|  | } | 
|  |  | 
|  | // emitHuffRLE emits a run of runLength copies of value encoded with the given | 
|  | // Huffman encoder. | 
|  | func (e *encoder) emitHuffRLE(h huffIndex, runLength, value int32) { | 
|  | a, b := value, value | 
|  | if a < 0 { | 
|  | a, b = -value, value-1 | 
|  | } | 
|  | var nBits uint32 | 
|  | if a < 0x100 { | 
|  | nBits = uint32(bitCount[a]) | 
|  | } else { | 
|  | nBits = 8 + uint32(bitCount[a>>8]) | 
|  | } | 
|  | e.emitHuff(h, runLength<<4|int32(nBits)) | 
|  | if nBits > 0 { | 
|  | e.emit(uint32(b)&(1<<nBits-1), nBits) | 
|  | } | 
|  | } | 
|  |  | 
|  | // writeMarkerHeader writes the header for a marker with the given length. | 
|  | func (e *encoder) writeMarkerHeader(marker uint8, markerlen int) { | 
|  | e.buf[0] = 0xff | 
|  | e.buf[1] = marker | 
|  | e.buf[2] = uint8(markerlen >> 8) | 
|  | e.buf[3] = uint8(markerlen & 0xff) | 
|  | e.write(e.buf[:4]) | 
|  | } | 
|  |  | 
|  | // writeDQT writes the Define Quantization Table marker. | 
|  | func (e *encoder) writeDQT() { | 
|  | const markerlen = 2 + int(nQuantIndex)*(1+blockSize) | 
|  | e.writeMarkerHeader(dqtMarker, markerlen) | 
|  | for i := range e.quant { | 
|  | e.writeByte(uint8(i)) | 
|  | e.write(e.quant[i][:]) | 
|  | } | 
|  | } | 
|  |  | 
|  | // writeSOF0 writes the Start Of Frame (Baseline Sequential) marker. | 
|  | func (e *encoder) writeSOF0(size image.Point, nComponent int) { | 
|  | markerlen := 8 + 3*nComponent | 
|  | e.writeMarkerHeader(sof0Marker, markerlen) | 
|  | e.buf[0] = 8 // 8-bit color. | 
|  | e.buf[1] = uint8(size.Y >> 8) | 
|  | e.buf[2] = uint8(size.Y & 0xff) | 
|  | e.buf[3] = uint8(size.X >> 8) | 
|  | e.buf[4] = uint8(size.X & 0xff) | 
|  | e.buf[5] = uint8(nComponent) | 
|  | if nComponent == 1 { | 
|  | e.buf[6] = 1 | 
|  | // No subsampling for grayscale image. | 
|  | e.buf[7] = 0x11 | 
|  | e.buf[8] = 0x00 | 
|  | } else { | 
|  | for i := 0; i < nComponent; i++ { | 
|  | e.buf[3*i+6] = uint8(i + 1) | 
|  | // We use 4:2:0 chroma subsampling. | 
|  | e.buf[3*i+7] = "\x22\x11\x11"[i] | 
|  | e.buf[3*i+8] = "\x00\x01\x01"[i] | 
|  | } | 
|  | } | 
|  | e.write(e.buf[:3*(nComponent-1)+9]) | 
|  | } | 
|  |  | 
|  | // writeDHT writes the Define Huffman Table marker. | 
|  | func (e *encoder) writeDHT(nComponent int) { | 
|  | markerlen := 2 | 
|  | specs := theHuffmanSpec[:] | 
|  | if nComponent == 1 { | 
|  | // Drop the Chrominance tables. | 
|  | specs = specs[:2] | 
|  | } | 
|  | for _, s := range specs { | 
|  | markerlen += 1 + 16 + len(s.value) | 
|  | } | 
|  | e.writeMarkerHeader(dhtMarker, markerlen) | 
|  | for i, s := range specs { | 
|  | e.writeByte("\x00\x10\x01\x11"[i]) | 
|  | e.write(s.count[:]) | 
|  | e.write(s.value) | 
|  | } | 
|  | } | 
|  |  | 
|  | // writeBlock writes a block of pixel data using the given quantization table, | 
|  | // returning the post-quantized DC value of the DCT-transformed block. b is in | 
|  | // natural (not zig-zag) order. | 
|  | func (e *encoder) writeBlock(b *block, q quantIndex, prevDC int32) int32 { | 
|  | fdct(b) | 
|  | // Emit the DC delta. | 
|  | dc := div(b[0], 8*int32(e.quant[q][0])) | 
|  | e.emitHuffRLE(huffIndex(2*q+0), 0, dc-prevDC) | 
|  | // Emit the AC components. | 
|  | h, runLength := huffIndex(2*q+1), int32(0) | 
|  | for zig := 1; zig < blockSize; zig++ { | 
|  | ac := div(b[unzig[zig]], 8*int32(e.quant[q][zig])) | 
|  | if ac == 0 { | 
|  | runLength++ | 
|  | } else { | 
|  | for runLength > 15 { | 
|  | e.emitHuff(h, 0xf0) | 
|  | runLength -= 16 | 
|  | } | 
|  | e.emitHuffRLE(h, runLength, ac) | 
|  | runLength = 0 | 
|  | } | 
|  | } | 
|  | if runLength > 0 { | 
|  | e.emitHuff(h, 0x00) | 
|  | } | 
|  | return dc | 
|  | } | 
|  |  | 
|  | // toYCbCr converts the 8x8 region of m whose top-left corner is p to its | 
|  | // YCbCr values. | 
|  | func toYCbCr(m image.Image, p image.Point, yBlock, cbBlock, crBlock *block) { | 
|  | b := m.Bounds() | 
|  | xmax := b.Max.X - 1 | 
|  | ymax := b.Max.Y - 1 | 
|  | for j := 0; j < 8; j++ { | 
|  | for i := 0; i < 8; i++ { | 
|  | r, g, b, _ := m.At(min(p.X+i, xmax), min(p.Y+j, ymax)).RGBA() | 
|  | yy, cb, cr := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) | 
|  | yBlock[8*j+i] = int32(yy) | 
|  | cbBlock[8*j+i] = int32(cb) | 
|  | crBlock[8*j+i] = int32(cr) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // grayToY stores the 8x8 region of m whose top-left corner is p in yBlock. | 
|  | func grayToY(m *image.Gray, p image.Point, yBlock *block) { | 
|  | b := m.Bounds() | 
|  | xmax := b.Max.X - 1 | 
|  | ymax := b.Max.Y - 1 | 
|  | pix := m.Pix | 
|  | for j := 0; j < 8; j++ { | 
|  | for i := 0; i < 8; i++ { | 
|  | idx := m.PixOffset(min(p.X+i, xmax), min(p.Y+j, ymax)) | 
|  | yBlock[8*j+i] = int32(pix[idx]) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // rgbaToYCbCr is a specialized version of toYCbCr for image.RGBA images. | 
|  | func rgbaToYCbCr(m *image.RGBA, p image.Point, yBlock, cbBlock, crBlock *block) { | 
|  | b := m.Bounds() | 
|  | xmax := b.Max.X - 1 | 
|  | ymax := b.Max.Y - 1 | 
|  | for j := 0; j < 8; j++ { | 
|  | sj := p.Y + j | 
|  | if sj > ymax { | 
|  | sj = ymax | 
|  | } | 
|  | offset := (sj-b.Min.Y)*m.Stride - b.Min.X*4 | 
|  | for i := 0; i < 8; i++ { | 
|  | sx := p.X + i | 
|  | if sx > xmax { | 
|  | sx = xmax | 
|  | } | 
|  | pix := m.Pix[offset+sx*4:] | 
|  | yy, cb, cr := color.RGBToYCbCr(pix[0], pix[1], pix[2]) | 
|  | yBlock[8*j+i] = int32(yy) | 
|  | cbBlock[8*j+i] = int32(cb) | 
|  | crBlock[8*j+i] = int32(cr) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // yCbCrToYCbCr is a specialized version of toYCbCr for image.YCbCr images. | 
|  | func yCbCrToYCbCr(m *image.YCbCr, p image.Point, yBlock, cbBlock, crBlock *block) { | 
|  | b := m.Bounds() | 
|  | xmax := b.Max.X - 1 | 
|  | ymax := b.Max.Y - 1 | 
|  | for j := 0; j < 8; j++ { | 
|  | sy := p.Y + j | 
|  | if sy > ymax { | 
|  | sy = ymax | 
|  | } | 
|  | for i := 0; i < 8; i++ { | 
|  | sx := p.X + i | 
|  | if sx > xmax { | 
|  | sx = xmax | 
|  | } | 
|  | yi := m.YOffset(sx, sy) | 
|  | ci := m.COffset(sx, sy) | 
|  | yBlock[8*j+i] = int32(m.Y[yi]) | 
|  | cbBlock[8*j+i] = int32(m.Cb[ci]) | 
|  | crBlock[8*j+i] = int32(m.Cr[ci]) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // scale scales the 16x16 region represented by the 4 src blocks to the 8x8 | 
|  | // dst block. | 
|  | func scale(dst *block, src *[4]block) { | 
|  | for i := 0; i < 4; i++ { | 
|  | dstOff := (i&2)<<4 | (i&1)<<2 | 
|  | for y := 0; y < 4; y++ { | 
|  | for x := 0; x < 4; x++ { | 
|  | j := 16*y + 2*x | 
|  | sum := src[i][j] + src[i][j+1] + src[i][j+8] + src[i][j+9] | 
|  | dst[8*y+x+dstOff] = (sum + 2) >> 2 | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // sosHeaderY is the SOS marker "\xff\xda" followed by 8 bytes: | 
|  | //   - the marker length "\x00\x08", | 
|  | //   - the number of components "\x01", | 
|  | //   - component 1 uses DC table 0 and AC table 0 "\x01\x00", | 
|  | //   - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for | 
|  | //     sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al) | 
|  | //     should be 0x00, 0x3f, 0x00<<4 | 0x00. | 
|  | var sosHeaderY = []byte{ | 
|  | 0xff, 0xda, 0x00, 0x08, 0x01, 0x01, 0x00, 0x00, 0x3f, 0x00, | 
|  | } | 
|  |  | 
|  | // sosHeaderYCbCr is the SOS marker "\xff\xda" followed by 12 bytes: | 
|  | //   - the marker length "\x00\x0c", | 
|  | //   - the number of components "\x03", | 
|  | //   - component 1 uses DC table 0 and AC table 0 "\x01\x00", | 
|  | //   - component 2 uses DC table 1 and AC table 1 "\x02\x11", | 
|  | //   - component 3 uses DC table 1 and AC table 1 "\x03\x11", | 
|  | //   - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for | 
|  | //     sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al) | 
|  | //     should be 0x00, 0x3f, 0x00<<4 | 0x00. | 
|  | var sosHeaderYCbCr = []byte{ | 
|  | 0xff, 0xda, 0x00, 0x0c, 0x03, 0x01, 0x00, 0x02, | 
|  | 0x11, 0x03, 0x11, 0x00, 0x3f, 0x00, | 
|  | } | 
|  |  | 
|  | // writeSOS writes the StartOfScan marker. | 
|  | func (e *encoder) writeSOS(m image.Image) { | 
|  | switch m.(type) { | 
|  | case *image.Gray: | 
|  | e.write(sosHeaderY) | 
|  | default: | 
|  | e.write(sosHeaderYCbCr) | 
|  | } | 
|  | var ( | 
|  | // Scratch buffers to hold the YCbCr values. | 
|  | // The blocks are in natural (not zig-zag) order. | 
|  | b      block | 
|  | cb, cr [4]block | 
|  | // DC components are delta-encoded. | 
|  | prevDCY, prevDCCb, prevDCCr int32 | 
|  | ) | 
|  | bounds := m.Bounds() | 
|  | switch m := m.(type) { | 
|  | // TODO(wathiede): switch on m.ColorModel() instead of type. | 
|  | case *image.Gray: | 
|  | for y := bounds.Min.Y; y < bounds.Max.Y; y += 8 { | 
|  | for x := bounds.Min.X; x < bounds.Max.X; x += 8 { | 
|  | p := image.Pt(x, y) | 
|  | grayToY(m, p, &b) | 
|  | prevDCY = e.writeBlock(&b, 0, prevDCY) | 
|  | } | 
|  | } | 
|  | default: | 
|  | rgba, _ := m.(*image.RGBA) | 
|  | ycbcr, _ := m.(*image.YCbCr) | 
|  | for y := bounds.Min.Y; y < bounds.Max.Y; y += 16 { | 
|  | for x := bounds.Min.X; x < bounds.Max.X; x += 16 { | 
|  | for i := 0; i < 4; i++ { | 
|  | xOff := (i & 1) * 8 | 
|  | yOff := (i & 2) * 4 | 
|  | p := image.Pt(x+xOff, y+yOff) | 
|  | if rgba != nil { | 
|  | rgbaToYCbCr(rgba, p, &b, &cb[i], &cr[i]) | 
|  | } else if ycbcr != nil { | 
|  | yCbCrToYCbCr(ycbcr, p, &b, &cb[i], &cr[i]) | 
|  | } else { | 
|  | toYCbCr(m, p, &b, &cb[i], &cr[i]) | 
|  | } | 
|  | prevDCY = e.writeBlock(&b, 0, prevDCY) | 
|  | } | 
|  | scale(&b, &cb) | 
|  | prevDCCb = e.writeBlock(&b, 1, prevDCCb) | 
|  | scale(&b, &cr) | 
|  | prevDCCr = e.writeBlock(&b, 1, prevDCCr) | 
|  | } | 
|  | } | 
|  | } | 
|  | // Pad the last byte with 1's. | 
|  | e.emit(0x7f, 7) | 
|  | } | 
|  |  | 
|  | // DefaultQuality is the default quality encoding parameter. | 
|  | const DefaultQuality = 75 | 
|  |  | 
|  | // Options are the encoding parameters. | 
|  | // Quality ranges from 1 to 100 inclusive, higher is better. | 
|  | type Options struct { | 
|  | Quality int | 
|  | } | 
|  |  | 
|  | // Encode writes the Image m to w in JPEG 4:2:0 baseline format with the given | 
|  | // options. Default parameters are used if a nil *[Options] is passed. | 
|  | func Encode(w io.Writer, m image.Image, o *Options) error { | 
|  | b := m.Bounds() | 
|  | if b.Dx() >= 1<<16 || b.Dy() >= 1<<16 { | 
|  | return errors.New("jpeg: image is too large to encode") | 
|  | } | 
|  | var e encoder | 
|  | if ww, ok := w.(writer); ok { | 
|  | e.w = ww | 
|  | } else { | 
|  | e.w = bufio.NewWriter(w) | 
|  | } | 
|  | // Clip quality to [1, 100]. | 
|  | quality := DefaultQuality | 
|  | if o != nil { | 
|  | quality = o.Quality | 
|  | if quality < 1 { | 
|  | quality = 1 | 
|  | } else if quality > 100 { | 
|  | quality = 100 | 
|  | } | 
|  | } | 
|  | // Convert from a quality rating to a scaling factor. | 
|  | var scale int | 
|  | if quality < 50 { | 
|  | scale = 5000 / quality | 
|  | } else { | 
|  | scale = 200 - quality*2 | 
|  | } | 
|  | // Initialize the quantization tables. | 
|  | for i := range e.quant { | 
|  | for j := range e.quant[i] { | 
|  | x := int(unscaledQuant[i][j]) | 
|  | x = (x*scale + 50) / 100 | 
|  | if x < 1 { | 
|  | x = 1 | 
|  | } else if x > 255 { | 
|  | x = 255 | 
|  | } | 
|  | e.quant[i][j] = uint8(x) | 
|  | } | 
|  | } | 
|  | // Compute number of components based on input image type. | 
|  | nComponent := 3 | 
|  | switch m.(type) { | 
|  | // TODO(wathiede): switch on m.ColorModel() instead of type. | 
|  | case *image.Gray: | 
|  | nComponent = 1 | 
|  | } | 
|  | // Write the Start Of Image marker. | 
|  | e.buf[0] = 0xff | 
|  | e.buf[1] = 0xd8 | 
|  | e.write(e.buf[:2]) | 
|  | // Write the quantization tables. | 
|  | e.writeDQT() | 
|  | // Write the image dimensions. | 
|  | e.writeSOF0(b.Size(), nComponent) | 
|  | // Write the Huffman tables. | 
|  | e.writeDHT(nComponent) | 
|  | // Write the image data. | 
|  | e.writeSOS(m) | 
|  | // Write the End Of Image marker. | 
|  | e.buf[0] = 0xff | 
|  | e.buf[1] = 0xd9 | 
|  | e.write(e.buf[:2]) | 
|  | e.flush() | 
|  | return e.err | 
|  | } |