blob: 69c0bc571f95a92a3c4d1ae291d7af5ce0d6688b [file] [log] [blame] [edit]
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package mlkem implements the quantum-resistant key encapsulation method
// ML-KEM (formerly known as Kyber), as specified in [NIST FIPS 203].
//
// Most applications should use the ML-KEM-768 parameter set, as implemented by
// [DecapsulationKey768] and [EncapsulationKey768].
//
// [NIST FIPS 203]: https://doi.org/10.6028/NIST.FIPS.203
package mlkem
import "crypto/internal/fips140/mlkem"
const (
// SharedKeySize is the size of a shared key produced by ML-KEM.
SharedKeySize = 32
// SeedSize is the size of a seed used to generate a decapsulation key.
SeedSize = 64
// CiphertextSize768 is the size of a ciphertext produced by ML-KEM-768.
CiphertextSize768 = 1088
// EncapsulationKeySize768 is the size of an ML-KEM-768 encapsulation key.
EncapsulationKeySize768 = 1184
// CiphertextSize1024 is the size of a ciphertext produced by ML-KEM-1024.
CiphertextSize1024 = 1568
// EncapsulationKeySize1024 is the size of an ML-KEM-1024 encapsulation key.
EncapsulationKeySize1024 = 1568
)
// DecapsulationKey768 is the secret key used to decapsulate a shared key
// from a ciphertext. It includes various precomputed values.
type DecapsulationKey768 struct {
key *mlkem.DecapsulationKey768
}
// GenerateKey768 generates a new decapsulation key, drawing random bytes from
// the default crypto/rand source. The decapsulation key must be kept secret.
func GenerateKey768() (*DecapsulationKey768, error) {
key, err := mlkem.GenerateKey768()
if err != nil {
return nil, err
}
return &DecapsulationKey768{key}, nil
}
// NewDecapsulationKey768 expands a decapsulation key from a 64-byte seed in the
// "d || z" form. The seed must be uniformly random.
func NewDecapsulationKey768(seed []byte) (*DecapsulationKey768, error) {
key, err := mlkem.NewDecapsulationKey768(seed)
if err != nil {
return nil, err
}
return &DecapsulationKey768{key}, nil
}
// Bytes returns the decapsulation key as a 64-byte seed in the "d || z" form.
//
// The decapsulation key must be kept secret.
func (dk *DecapsulationKey768) Bytes() []byte {
return dk.key.Bytes()
}
// Decapsulate generates a shared key from a ciphertext and a decapsulation
// key. If the ciphertext is not valid, Decapsulate returns an error.
//
// The shared key must be kept secret.
func (dk *DecapsulationKey768) Decapsulate(ciphertext []byte) (sharedKey []byte, err error) {
return dk.key.Decapsulate(ciphertext)
}
// EncapsulationKey returns the public encapsulation key necessary to produce
// ciphertexts.
func (dk *DecapsulationKey768) EncapsulationKey() *EncapsulationKey768 {
return &EncapsulationKey768{dk.key.EncapsulationKey()}
}
// An EncapsulationKey768 is the public key used to produce ciphertexts to be
// decapsulated by the corresponding DecapsulationKey768.
type EncapsulationKey768 struct {
key *mlkem.EncapsulationKey768
}
// NewEncapsulationKey768 parses an encapsulation key from its encoded form. If
// the encapsulation key is not valid, NewEncapsulationKey768 returns an error.
func NewEncapsulationKey768(encapsulationKey []byte) (*EncapsulationKey768, error) {
key, err := mlkem.NewEncapsulationKey768(encapsulationKey)
if err != nil {
return nil, err
}
return &EncapsulationKey768{key}, nil
}
// Bytes returns the encapsulation key as a byte slice.
func (ek *EncapsulationKey768) Bytes() []byte {
return ek.key.Bytes()
}
// Encapsulate generates a shared key and an associated ciphertext from an
// encapsulation key, drawing random bytes from the default crypto/rand source.
//
// The shared key must be kept secret.
func (ek *EncapsulationKey768) Encapsulate() (sharedKey, ciphertext []byte) {
return ek.key.Encapsulate()
}
// DecapsulationKey1024 is the secret key used to decapsulate a shared key
// from a ciphertext. It includes various precomputed values.
type DecapsulationKey1024 struct {
key *mlkem.DecapsulationKey1024
}
// GenerateKey1024 generates a new decapsulation key, drawing random bytes from
// the default crypto/rand source. The decapsulation key must be kept secret.
func GenerateKey1024() (*DecapsulationKey1024, error) {
key, err := mlkem.GenerateKey1024()
if err != nil {
return nil, err
}
return &DecapsulationKey1024{key}, nil
}
// NewDecapsulationKey1024 expands a decapsulation key from a 64-byte seed in the
// "d || z" form. The seed must be uniformly random.
func NewDecapsulationKey1024(seed []byte) (*DecapsulationKey1024, error) {
key, err := mlkem.NewDecapsulationKey1024(seed)
if err != nil {
return nil, err
}
return &DecapsulationKey1024{key}, nil
}
// Bytes returns the decapsulation key as a 64-byte seed in the "d || z" form.
//
// The decapsulation key must be kept secret.
func (dk *DecapsulationKey1024) Bytes() []byte {
return dk.key.Bytes()
}
// Decapsulate generates a shared key from a ciphertext and a decapsulation
// key. If the ciphertext is not valid, Decapsulate returns an error.
//
// The shared key must be kept secret.
func (dk *DecapsulationKey1024) Decapsulate(ciphertext []byte) (sharedKey []byte, err error) {
return dk.key.Decapsulate(ciphertext)
}
// EncapsulationKey returns the public encapsulation key necessary to produce
// ciphertexts.
func (dk *DecapsulationKey1024) EncapsulationKey() *EncapsulationKey1024 {
return &EncapsulationKey1024{dk.key.EncapsulationKey()}
}
// An EncapsulationKey1024 is the public key used to produce ciphertexts to be
// decapsulated by the corresponding DecapsulationKey1024.
type EncapsulationKey1024 struct {
key *mlkem.EncapsulationKey1024
}
// NewEncapsulationKey1024 parses an encapsulation key from its encoded form. If
// the encapsulation key is not valid, NewEncapsulationKey1024 returns an error.
func NewEncapsulationKey1024(encapsulationKey []byte) (*EncapsulationKey1024, error) {
key, err := mlkem.NewEncapsulationKey1024(encapsulationKey)
if err != nil {
return nil, err
}
return &EncapsulationKey1024{key}, nil
}
// Bytes returns the encapsulation key as a byte slice.
func (ek *EncapsulationKey1024) Bytes() []byte {
return ek.key.Bytes()
}
// Encapsulate generates a shared key and an associated ciphertext from an
// encapsulation key, drawing random bytes from the default crypto/rand source.
//
// The shared key must be kept secret.
func (ek *EncapsulationKey1024) Encapsulate() (sharedKey, ciphertext []byte) {
return ek.key.Encapsulate()
}