blob: 87e74f2a0e9d6a2464619347cc49b3e4d0145e96 [file] [log] [blame] [edit]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ecdsa
import (
"bufio"
"bytes"
"compress/bzip2"
"crypto"
"crypto/elliptic"
"crypto/internal/cryptotest"
"crypto/rand"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/hex"
"hash"
"io"
"math/big"
"os"
"strings"
"testing"
)
func testAllCurves(t *testing.T, f func(*testing.T, elliptic.Curve)) {
tests := []struct {
name string
curve elliptic.Curve
}{
{"P256", elliptic.P256()},
{"P224", elliptic.P224()},
{"P384", elliptic.P384()},
{"P521", elliptic.P521()},
{"P256/Generic", genericParamsForCurve(elliptic.P256())},
}
if testing.Short() {
tests = tests[:1]
}
for _, test := range tests {
curve := test.curve
cryptotest.TestAllImplementations(t, "ecdsa", func(t *testing.T) {
t.Run(test.name, func(t *testing.T) {
t.Parallel()
f(t, curve)
})
})
}
}
// genericParamsForCurve returns the dereferenced CurveParams for
// the specified curve. This is used to avoid the logic for
// upgrading a curve to its specific implementation, forcing
// usage of the generic implementation.
func genericParamsForCurve(c elliptic.Curve) *elliptic.CurveParams {
d := *(c.Params())
return &d
}
func TestKeyGeneration(t *testing.T) {
testAllCurves(t, testKeyGeneration)
}
func testKeyGeneration(t *testing.T, c elliptic.Curve) {
priv, err := GenerateKey(c, rand.Reader)
if err != nil {
t.Fatal(err)
}
if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
t.Errorf("public key invalid: %s", err)
}
}
func TestSignAndVerify(t *testing.T) {
testAllCurves(t, testSignAndVerify)
}
func testSignAndVerify(t *testing.T, c elliptic.Curve) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r, s, err := Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("error signing: %s", err)
return
}
if !Verify(&priv.PublicKey, hashed, r, s) {
t.Errorf("Verify failed")
}
hashed[0] ^= 0xff
if Verify(&priv.PublicKey, hashed, r, s) {
t.Errorf("Verify always works!")
}
}
func TestSignAndVerifyASN1(t *testing.T) {
testAllCurves(t, testSignAndVerifyASN1)
}
func testSignAndVerifyASN1(t *testing.T, c elliptic.Curve) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
sig, err := SignASN1(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("error signing: %s", err)
return
}
if !VerifyASN1(&priv.PublicKey, hashed, sig) {
t.Errorf("VerifyASN1 failed")
}
hashed[0] ^= 0xff
if VerifyASN1(&priv.PublicKey, hashed, sig) {
t.Errorf("VerifyASN1 always works!")
}
}
func TestNonceSafety(t *testing.T) {
testAllCurves(t, testNonceSafety)
}
func testNonceSafety(t *testing.T, c elliptic.Curve) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r0, s0, err := Sign(zeroReader, priv, hashed)
if err != nil {
t.Errorf("error signing: %s", err)
return
}
hashed = []byte("testing...")
r1, s1, err := Sign(zeroReader, priv, hashed)
if err != nil {
t.Errorf("error signing: %s", err)
return
}
if s0.Cmp(s1) == 0 {
// This should never happen.
t.Errorf("the signatures on two different messages were the same")
}
if r0.Cmp(r1) == 0 {
t.Errorf("the nonce used for two different messages was the same")
}
}
type readerFunc func([]byte) (int, error)
func (f readerFunc) Read(b []byte) (int, error) { return f(b) }
var zeroReader = readerFunc(func(b []byte) (int, error) {
clear(b)
return len(b), nil
})
func TestINDCCA(t *testing.T) {
testAllCurves(t, testINDCCA)
}
func testINDCCA(t *testing.T, c elliptic.Curve) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r0, s0, err := Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("error signing: %s", err)
return
}
r1, s1, err := Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("error signing: %s", err)
return
}
if s0.Cmp(s1) == 0 {
t.Errorf("two signatures of the same message produced the same result")
}
if r0.Cmp(r1) == 0 {
t.Errorf("two signatures of the same message produced the same nonce")
}
}
func fromHex(s string) *big.Int {
r, ok := new(big.Int).SetString(s, 16)
if !ok {
panic("bad hex")
}
return r
}
func TestVectors(t *testing.T) {
cryptotest.TestAllImplementations(t, "ecdsa", testVectors)
}
func testVectors(t *testing.T) {
// This test runs the full set of NIST test vectors from
// https://csrc.nist.gov/groups/STM/cavp/documents/dss/186-3ecdsatestvectors.zip
//
// The SigVer.rsp file has been edited to remove test vectors for
// unsupported algorithms and has been compressed.
if testing.Short() {
return
}
f, err := os.Open("testdata/SigVer.rsp.bz2")
if err != nil {
t.Fatal(err)
}
buf := bufio.NewReader(bzip2.NewReader(f))
lineNo := 1
var h hash.Hash
var msg []byte
var hashed []byte
var r, s *big.Int
pub := new(PublicKey)
for {
line, err := buf.ReadString('\n')
if len(line) == 0 {
if err == io.EOF {
break
}
t.Fatalf("error reading from input: %s", err)
}
lineNo++
// Need to remove \r\n from the end of the line.
if !strings.HasSuffix(line, "\r\n") {
t.Fatalf("bad line ending (expected \\r\\n) on line %d", lineNo)
}
line = line[:len(line)-2]
if len(line) == 0 || line[0] == '#' {
continue
}
if line[0] == '[' {
line = line[1 : len(line)-1]
curve, hash, _ := strings.Cut(line, ",")
switch curve {
case "P-224":
pub.Curve = elliptic.P224()
case "P-256":
pub.Curve = elliptic.P256()
case "P-384":
pub.Curve = elliptic.P384()
case "P-521":
pub.Curve = elliptic.P521()
default:
pub.Curve = nil
}
switch hash {
case "SHA-1":
h = sha1.New()
case "SHA-224":
h = sha256.New224()
case "SHA-256":
h = sha256.New()
case "SHA-384":
h = sha512.New384()
case "SHA-512":
h = sha512.New()
default:
h = nil
}
continue
}
if h == nil || pub.Curve == nil {
continue
}
switch {
case strings.HasPrefix(line, "Msg = "):
if msg, err = hex.DecodeString(line[6:]); err != nil {
t.Fatalf("failed to decode message on line %d: %s", lineNo, err)
}
case strings.HasPrefix(line, "Qx = "):
pub.X = fromHex(line[5:])
case strings.HasPrefix(line, "Qy = "):
pub.Y = fromHex(line[5:])
case strings.HasPrefix(line, "R = "):
r = fromHex(line[4:])
case strings.HasPrefix(line, "S = "):
s = fromHex(line[4:])
case strings.HasPrefix(line, "Result = "):
expected := line[9] == 'P'
h.Reset()
h.Write(msg)
hashed := h.Sum(hashed[:0])
if Verify(pub, hashed, r, s) != expected {
t.Fatalf("incorrect result on line %d", lineNo)
}
default:
t.Fatalf("unknown variable on line %d: %s", lineNo, line)
}
}
}
func TestNegativeInputs(t *testing.T) {
testAllCurves(t, testNegativeInputs)
}
func testNegativeInputs(t *testing.T, curve elliptic.Curve) {
key, err := GenerateKey(curve, rand.Reader)
if err != nil {
t.Errorf("failed to generate key")
}
var hash [32]byte
r := new(big.Int).SetInt64(1)
r.Lsh(r, 550 /* larger than any supported curve */)
r.Neg(r)
if Verify(&key.PublicKey, hash[:], r, r) {
t.Errorf("bogus signature accepted")
}
}
func TestZeroHashSignature(t *testing.T) {
testAllCurves(t, testZeroHashSignature)
}
func testZeroHashSignature(t *testing.T, curve elliptic.Curve) {
zeroHash := make([]byte, 64)
privKey, err := GenerateKey(curve, rand.Reader)
if err != nil {
panic(err)
}
// Sign a hash consisting of all zeros.
r, s, err := Sign(rand.Reader, privKey, zeroHash)
if err != nil {
panic(err)
}
// Confirm that it can be verified.
if !Verify(&privKey.PublicKey, zeroHash, r, s) {
t.Errorf("zero hash signature verify failed for %T", curve)
}
}
func TestZeroSignature(t *testing.T) {
testAllCurves(t, testZeroSignature)
}
func testZeroSignature(t *testing.T, curve elliptic.Curve) {
privKey, err := GenerateKey(curve, rand.Reader)
if err != nil {
panic(err)
}
if Verify(&privKey.PublicKey, make([]byte, 64), big.NewInt(0), big.NewInt(0)) {
t.Errorf("Verify with r,s=0 succeeded: %T", curve)
}
}
func TestNegativeSignature(t *testing.T) {
testAllCurves(t, testNegativeSignature)
}
func testNegativeSignature(t *testing.T, curve elliptic.Curve) {
zeroHash := make([]byte, 64)
privKey, err := GenerateKey(curve, rand.Reader)
if err != nil {
panic(err)
}
r, s, err := Sign(rand.Reader, privKey, zeroHash)
if err != nil {
panic(err)
}
r = r.Neg(r)
if Verify(&privKey.PublicKey, zeroHash, r, s) {
t.Errorf("Verify with r=-r succeeded: %T", curve)
}
}
func TestRPlusNSignature(t *testing.T) {
testAllCurves(t, testRPlusNSignature)
}
func testRPlusNSignature(t *testing.T, curve elliptic.Curve) {
zeroHash := make([]byte, 64)
privKey, err := GenerateKey(curve, rand.Reader)
if err != nil {
panic(err)
}
r, s, err := Sign(rand.Reader, privKey, zeroHash)
if err != nil {
panic(err)
}
r = r.Add(r, curve.Params().N)
if Verify(&privKey.PublicKey, zeroHash, r, s) {
t.Errorf("Verify with r=r+n succeeded: %T", curve)
}
}
func TestRMinusNSignature(t *testing.T) {
testAllCurves(t, testRMinusNSignature)
}
func testRMinusNSignature(t *testing.T, curve elliptic.Curve) {
zeroHash := make([]byte, 64)
privKey, err := GenerateKey(curve, rand.Reader)
if err != nil {
panic(err)
}
r, s, err := Sign(rand.Reader, privKey, zeroHash)
if err != nil {
panic(err)
}
r = r.Sub(r, curve.Params().N)
if Verify(&privKey.PublicKey, zeroHash, r, s) {
t.Errorf("Verify with r=r-n succeeded: %T", curve)
}
}
func TestRFC6979(t *testing.T) {
t.Run("P-224", func(t *testing.T) {
testRFC6979(t, elliptic.P224(),
"F220266E1105BFE3083E03EC7A3A654651F45E37167E88600BF257C1",
"00CF08DA5AD719E42707FA431292DEA11244D64FC51610D94B130D6C",
"EEAB6F3DEBE455E3DBF85416F7030CBD94F34F2D6F232C69F3C1385A",
"sample",
"61AA3DA010E8E8406C656BC477A7A7189895E7E840CDFE8FF42307BA",
"BC814050DAB5D23770879494F9E0A680DC1AF7161991BDE692B10101")
testRFC6979(t, elliptic.P224(),
"F220266E1105BFE3083E03EC7A3A654651F45E37167E88600BF257C1",
"00CF08DA5AD719E42707FA431292DEA11244D64FC51610D94B130D6C",
"EEAB6F3DEBE455E3DBF85416F7030CBD94F34F2D6F232C69F3C1385A",
"test",
"AD04DDE87B84747A243A631EA47A1BA6D1FAA059149AD2440DE6FBA6",
"178D49B1AE90E3D8B629BE3DB5683915F4E8C99FDF6E666CF37ADCFD")
})
t.Run("P-256", func(t *testing.T) {
// This vector was bruteforced to find a message that causes the
// generation of k to loop. It was checked against
// github.com/codahale/rfc6979 (https://go.dev/play/p/FK5-fmKf7eK),
// OpenSSL 3.2.0 (https://github.com/openssl/openssl/pull/23130),
// and python-ecdsa:
//
// ecdsa.keys.SigningKey.from_secret_exponent(
// 0xC9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721,
// ecdsa.curves.curve_by_name("NIST256p"), hashlib.sha256).sign_deterministic(
// b"wv[vnX", hashlib.sha256, lambda r, s, order: print(hex(r), hex(s)))
//
testRFC6979(t, elliptic.P256(),
"C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721",
"60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6",
"7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299",
"wv[vnX",
"EFD9073B652E76DA1B5A019C0E4A2E3FA529B035A6ABB91EF67F0ED7A1F21234",
"3DB4706C9D9F4A4FE13BB5E08EF0FAB53A57DBAB2061C83A35FA411C68D2BA33")
// The remaining vectors are from RFC 6979.
testRFC6979(t, elliptic.P256(),
"C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721",
"60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6",
"7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299",
"sample",
"EFD48B2AACB6A8FD1140DD9CD45E81D69D2C877B56AAF991C34D0EA84EAF3716",
"F7CB1C942D657C41D436C7A1B6E29F65F3E900DBB9AFF4064DC4AB2F843ACDA8")
testRFC6979(t, elliptic.P256(),
"C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721",
"60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6",
"7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299",
"test",
"F1ABB023518351CD71D881567B1EA663ED3EFCF6C5132B354F28D3B0B7D38367",
"019F4113742A2B14BD25926B49C649155F267E60D3814B4C0CC84250E46F0083")
})
t.Run("P-384", func(t *testing.T) {
testRFC6979(t, elliptic.P384(),
"6B9D3DAD2E1B8C1C05B19875B6659F4DE23C3B667BF297BA9AA47740787137D896D5724E4C70A825F872C9EA60D2EDF5",
"EC3A4E415B4E19A4568618029F427FA5DA9A8BC4AE92E02E06AAE5286B300C64DEF8F0EA9055866064A254515480BC13",
"8015D9B72D7D57244EA8EF9AC0C621896708A59367F9DFB9F54CA84B3F1C9DB1288B231C3AE0D4FE7344FD2533264720",
"sample",
"21B13D1E013C7FA1392D03C5F99AF8B30C570C6F98D4EA8E354B63A21D3DAA33BDE1E888E63355D92FA2B3C36D8FB2CD",
"F3AA443FB107745BF4BD77CB3891674632068A10CA67E3D45DB2266FA7D1FEEBEFDC63ECCD1AC42EC0CB8668A4FA0AB0")
testRFC6979(t, elliptic.P384(),
"6B9D3DAD2E1B8C1C05B19875B6659F4DE23C3B667BF297BA9AA47740787137D896D5724E4C70A825F872C9EA60D2EDF5",
"EC3A4E415B4E19A4568618029F427FA5DA9A8BC4AE92E02E06AAE5286B300C64DEF8F0EA9055866064A254515480BC13",
"8015D9B72D7D57244EA8EF9AC0C621896708A59367F9DFB9F54CA84B3F1C9DB1288B231C3AE0D4FE7344FD2533264720",
"test",
"6D6DEFAC9AB64DABAFE36C6BF510352A4CC27001263638E5B16D9BB51D451559F918EEDAF2293BE5B475CC8F0188636B",
"2D46F3BECBCC523D5F1A1256BF0C9B024D879BA9E838144C8BA6BAEB4B53B47D51AB373F9845C0514EEFB14024787265")
})
t.Run("P-521", func(t *testing.T) {
testRFC6979(t, elliptic.P521(),
"0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538",
"1894550D0785932E00EAA23B694F213F8C3121F86DC97A04E5A7167DB4E5BCD371123D46E45DB6B5D5370A7F20FB633155D38FFA16D2BD761DCAC474B9A2F5023A4",
"0493101C962CD4D2FDDF782285E64584139C2F91B47F87FF82354D6630F746A28A0DB25741B5B34A828008B22ACC23F924FAAFBD4D33F81EA66956DFEAA2BFDFCF5",
"sample",
"1511BB4D675114FE266FC4372B87682BAECC01D3CC62CF2303C92B3526012659D16876E25C7C1E57648F23B73564D67F61C6F14D527D54972810421E7D87589E1A7",
"04A171143A83163D6DF460AAF61522695F207A58B95C0644D87E52AA1A347916E4F7A72930B1BC06DBE22CE3F58264AFD23704CBB63B29B931F7DE6C9D949A7ECFC")
testRFC6979(t, elliptic.P521(),
"0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538",
"1894550D0785932E00EAA23B694F213F8C3121F86DC97A04E5A7167DB4E5BCD371123D46E45DB6B5D5370A7F20FB633155D38FFA16D2BD761DCAC474B9A2F5023A4",
"0493101C962CD4D2FDDF782285E64584139C2F91B47F87FF82354D6630F746A28A0DB25741B5B34A828008B22ACC23F924FAAFBD4D33F81EA66956DFEAA2BFDFCF5",
"test",
"00E871C4A14F993C6C7369501900C4BC1E9C7B0B4BA44E04868B30B41D8071042EB28C4C250411D0CE08CD197E4188EA4876F279F90B3D8D74A3C76E6F1E4656AA8",
"0CD52DBAA33B063C3A6CD8058A1FB0A46A4754B034FCC644766CA14DA8CA5CA9FDE00E88C1AD60CCBA759025299079D7A427EC3CC5B619BFBC828E7769BCD694E86")
})
}
func testRFC6979(t *testing.T, curve elliptic.Curve, D, X, Y, msg, r, s string) {
priv := &PrivateKey{
D: fromHex(D),
PublicKey: PublicKey{
Curve: curve,
X: fromHex(X),
Y: fromHex(Y),
},
}
h := sha256.Sum256([]byte(msg))
sig, err := priv.Sign(nil, h[:], crypto.SHA256)
if err != nil {
t.Fatal(err)
}
expected, err := encodeSignature(fromHex(r).Bytes(), fromHex(s).Bytes())
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(sig, expected) {
t.Errorf("signature mismatch:\n got: %x\nwant: %x", sig, expected)
}
}
func TestParseAndBytesRoundTrip(t *testing.T) {
testAllCurves(t, testParseAndBytesRoundTrip)
}
func testParseAndBytesRoundTrip(t *testing.T, curve elliptic.Curve) {
if strings.HasSuffix(t.Name(), "/Generic") {
t.Skip("these methods don't support generic curves")
}
priv, _ := GenerateKey(curve, rand.Reader)
b, err := priv.PublicKey.Bytes()
if err != nil {
t.Fatalf("failed to serialize private key's public key: %v", err)
}
if b[0] != 4 {
t.Fatalf("public key bytes doesn't start with 0x04 (uncompressed format)")
}
p, err := ParseUncompressedPublicKey(curve, b)
if err != nil {
t.Fatalf("failed to parse private key's public key: %v", err)
}
if !priv.PublicKey.Equal(p) {
t.Errorf("parsed private key's public key doesn't match original")
}
bk, err := priv.Bytes()
if err != nil {
t.Fatalf("failed to serialize private key: %v", err)
}
k, err := ParseRawPrivateKey(curve, bk)
if err != nil {
t.Fatalf("failed to parse private key: %v", err)
}
if !priv.Equal(k) {
t.Errorf("parsed private key doesn't match original")
}
if curve != elliptic.P224() {
privECDH, err := priv.ECDH()
if err != nil {
t.Fatalf("failed to convert private key to ECDH: %v", err)
}
pp, err := privECDH.Curve().NewPublicKey(b)
if err != nil {
t.Fatalf("failed to parse with ECDH: %v", err)
}
if !privECDH.PublicKey().Equal(pp) {
t.Errorf("parsed ECDH public key doesn't match original")
}
if !bytes.Equal(b, pp.Bytes()) {
t.Errorf("encoded ECDH public key doesn't match Bytes")
}
kk, err := privECDH.Curve().NewPrivateKey(bk)
if err != nil {
t.Fatalf("failed to parse with ECDH: %v", err)
}
if !privECDH.Equal(kk) {
t.Errorf("parsed ECDH private key doesn't match original")
}
if !bytes.Equal(bk, kk.Bytes()) {
t.Errorf("encoded ECDH private key doesn't match Bytes")
}
}
}
func TestInvalidPublicKeys(t *testing.T) {
testAllCurves(t, testInvalidPublicKeys)
}
func testInvalidPublicKeys(t *testing.T, curve elliptic.Curve) {
t.Run("Infinity", func(t *testing.T) {
k := &PublicKey{Curve: curve, X: big.NewInt(0), Y: big.NewInt(0)}
if _, err := k.Bytes(); err == nil {
t.Errorf("PublicKey.Bytes accepted infinity")
}
b := []byte{0}
if _, err := ParseUncompressedPublicKey(curve, b); err == nil {
t.Errorf("ParseUncompressedPublicKey accepted infinity")
}
b = make([]byte, 1+2*(curve.Params().BitSize+7)/8)
b[0] = 4
if _, err := ParseUncompressedPublicKey(curve, b); err == nil {
t.Errorf("ParseUncompressedPublicKey accepted infinity")
}
})
t.Run("NotOnCurve", func(t *testing.T) {
k, _ := GenerateKey(curve, rand.Reader)
k.X = k.X.Add(k.X, big.NewInt(1))
if _, err := k.Bytes(); err == nil {
t.Errorf("PublicKey.Bytes accepted not on curve")
}
b := make([]byte, 1+2*(curve.Params().BitSize+7)/8)
b[0] = 4
k.X.FillBytes(b[1 : 1+len(b)/2])
k.Y.FillBytes(b[1+len(b)/2:])
if _, err := ParseUncompressedPublicKey(curve, b); err == nil {
t.Errorf("ParseUncompressedPublicKey accepted not on curve")
}
})
t.Run("Compressed", func(t *testing.T) {
k, _ := GenerateKey(curve, rand.Reader)
b := elliptic.MarshalCompressed(curve, k.X, k.Y)
if _, err := ParseUncompressedPublicKey(curve, b); err == nil {
t.Errorf("ParseUncompressedPublicKey accepted compressed key")
}
})
}
func TestInvalidPrivateKeys(t *testing.T) {
testAllCurves(t, testInvalidPrivateKeys)
}
func testInvalidPrivateKeys(t *testing.T, curve elliptic.Curve) {
t.Run("Zero", func(t *testing.T) {
k := &PrivateKey{PublicKey{curve, big.NewInt(0), big.NewInt(0)}, big.NewInt(0)}
if _, err := k.Bytes(); err == nil {
t.Errorf("PrivateKey.Bytes accepted zero key")
}
b := make([]byte, (curve.Params().BitSize+7)/8)
if _, err := ParseRawPrivateKey(curve, b); err == nil {
t.Errorf("ParseRawPrivateKey accepted zero key")
}
})
t.Run("Overflow", func(t *testing.T) {
d := new(big.Int).Add(curve.Params().N, big.NewInt(5))
x, y := curve.ScalarBaseMult(d.Bytes())
k := &PrivateKey{PublicKey{curve, x, y}, d}
if _, err := k.Bytes(); err == nil {
t.Errorf("PrivateKey.Bytes accepted overflow key")
}
b := make([]byte, (curve.Params().BitSize+7)/8)
k.D.FillBytes(b)
if _, err := ParseRawPrivateKey(curve, b); err == nil {
t.Errorf("ParseRawPrivateKey accepted overflow key")
}
})
t.Run("Length", func(t *testing.T) {
b := []byte{1, 2, 3}
if _, err := ParseRawPrivateKey(curve, b); err == nil {
t.Errorf("ParseRawPrivateKey accepted short key")
}
b = append(b, make([]byte, (curve.Params().BitSize+7)/8)...)
if _, err := ParseRawPrivateKey(curve, b); err == nil {
t.Errorf("ParseRawPrivateKey accepted long key")
}
})
}
func benchmarkAllCurves(b *testing.B, f func(*testing.B, elliptic.Curve)) {
tests := []struct {
name string
curve elliptic.Curve
}{
{"P256", elliptic.P256()},
{"P384", elliptic.P384()},
{"P521", elliptic.P521()},
}
for _, test := range tests {
curve := test.curve
b.Run(test.name, func(b *testing.B) {
f(b, curve)
})
}
}
func BenchmarkSign(b *testing.B) {
benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
r := bufio.NewReaderSize(rand.Reader, 1<<15)
priv, err := GenerateKey(curve, r)
if err != nil {
b.Fatal(err)
}
hashed := []byte("testing")
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
sig, err := SignASN1(r, priv, hashed)
if err != nil {
b.Fatal(err)
}
// Prevent the compiler from optimizing out the operation.
hashed[0] = sig[0]
}
})
}
func BenchmarkVerify(b *testing.B) {
benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
r := bufio.NewReaderSize(rand.Reader, 1<<15)
priv, err := GenerateKey(curve, r)
if err != nil {
b.Fatal(err)
}
hashed := []byte("testing")
sig, err := SignASN1(r, priv, hashed)
if err != nil {
b.Fatal(err)
}
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
if !VerifyASN1(&priv.PublicKey, hashed, sig) {
b.Fatal("verify failed")
}
}
})
}
func BenchmarkGenerateKey(b *testing.B) {
benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
r := bufio.NewReaderSize(rand.Reader, 1<<15)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
if _, err := GenerateKey(curve, r); err != nil {
b.Fatal(err)
}
}
})
}