blob: 54fbecb5764aab3391283e24e4aecd461367b2c5 [file] [log] [blame] [edit]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
// defined in [FIPS 186-5].
//
// Signatures generated by this package are not deterministic, but entropy is
// mixed with the private key and the message, achieving the same level of
// security in case of randomness source failure.
//
// Operations involving private keys are implemented using constant-time
// algorithms, as long as an [elliptic.Curve] returned by [elliptic.P224],
// [elliptic.P256], [elliptic.P384], or [elliptic.P521] is used.
//
// [FIPS 186-5]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
package ecdsa
import (
"crypto"
"crypto/ecdh"
"crypto/elliptic"
"crypto/internal/boring"
"crypto/internal/boring/bbig"
"crypto/internal/fips140/ecdsa"
"crypto/internal/fips140/nistec"
"crypto/internal/fips140cache"
"crypto/internal/fips140hash"
"crypto/internal/fips140only"
"crypto/internal/randutil"
"crypto/sha512"
"crypto/subtle"
"errors"
"io"
"math/big"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// PublicKey represents an ECDSA public key.
type PublicKey struct {
elliptic.Curve
// X, Y are the coordinates of the public key point.
//
// Deprecated: modifying the raw coordinates can produce invalid keys, and may
// invalidate internal optimizations; moreover, [big.Int] methods are not
// suitable for operating on cryptographic values. To encode and decode
// PublicKey values, use [PublicKey.Bytes] and [ParseUncompressedPublicKey]
// or [crypto/x509.MarshalPKIXPublicKey] and [crypto/x509.ParsePKIXPublicKey].
// For ECDH, use [crypto/ecdh]. For lower-level elliptic curve operations,
// use a third-party module like filippo.io/nistec.
X, Y *big.Int
}
// Any methods implemented on PublicKey might need to also be implemented on
// PrivateKey, as the latter embeds the former and will expose its methods.
// ECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is
// invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the
// Curve is not supported by crypto/ecdh.
func (k *PublicKey) ECDH() (*ecdh.PublicKey, error) {
c := curveToECDH(k.Curve)
if c == nil {
return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
}
if !k.Curve.IsOnCurve(k.X, k.Y) {
return nil, errors.New("ecdsa: invalid public key")
}
return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y))
}
// Equal reports whether pub and x have the same value.
//
// Two keys are only considered to have the same value if they have the same Curve value.
// Note that for example [elliptic.P256] and elliptic.P256().Params() are different
// values, as the latter is a generic not constant time implementation.
func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
xx, ok := x.(*PublicKey)
if !ok {
return false
}
return bigIntEqual(pub.X, xx.X) && bigIntEqual(pub.Y, xx.Y) &&
// Standard library Curve implementations are singletons, so this check
// will work for those. Other Curves might be equivalent even if not
// singletons, but there is no definitive way to check for that, and
// better to err on the side of safety.
pub.Curve == xx.Curve
}
// ParseUncompressedPublicKey parses a public key encoded as an uncompressed
// point according to SEC 1, Version 2.0, Section 2.3.3 (also known as the X9.62
// uncompressed format). It returns an error if the point is not in uncompressed
// form, is not on the curve, or is the point at infinity.
//
// curve must be one of [elliptic.P224], [elliptic.P256], [elliptic.P384], or
// [elliptic.P521], or ParseUncompressedPublicKey returns an error.
//
// ParseUncompressedPublicKey accepts the same format as
// [ecdh.Curve.NewPublicKey] does for NIST curves, but returns a [PublicKey]
// instead of an [ecdh.PublicKey].
//
// Note that public keys are more commonly encoded in DER (or PEM) format, which
// can be parsed with [crypto/x509.ParsePKIXPublicKey] (and [encoding/pem]).
func ParseUncompressedPublicKey(curve elliptic.Curve, data []byte) (*PublicKey, error) {
if len(data) < 1 || data[0] != 4 {
return nil, errors.New("ecdsa: invalid uncompressed public key")
}
switch curve {
case elliptic.P224():
return parseUncompressedPublicKey(ecdsa.P224(), curve, data)
case elliptic.P256():
return parseUncompressedPublicKey(ecdsa.P256(), curve, data)
case elliptic.P384():
return parseUncompressedPublicKey(ecdsa.P384(), curve, data)
case elliptic.P521():
return parseUncompressedPublicKey(ecdsa.P521(), curve, data)
default:
return nil, errors.New("ecdsa: curve not supported by ParseUncompressedPublicKey")
}
}
func parseUncompressedPublicKey[P ecdsa.Point[P]](c *ecdsa.Curve[P], curve elliptic.Curve, data []byte) (*PublicKey, error) {
k, err := ecdsa.NewPublicKey(c, data)
if err != nil {
return nil, err
}
return publicKeyFromFIPS(curve, k)
}
// Bytes encodes the public key as an uncompressed point according to SEC 1,
// Version 2.0, Section 2.3.3 (also known as the X9.62 uncompressed format).
// It returns an error if the public key is invalid.
//
// PublicKey.Curve must be one of [elliptic.P224], [elliptic.P256],
// [elliptic.P384], or [elliptic.P521], or Bytes returns an error.
//
// Bytes returns the same format as [ecdh.PublicKey.Bytes] does for NIST curves.
//
// Note that public keys are more commonly encoded in DER (or PEM) format, which
// can be generated with [crypto/x509.MarshalPKIXPublicKey] (and [encoding/pem]).
func (pub *PublicKey) Bytes() ([]byte, error) {
switch pub.Curve {
case elliptic.P224():
return publicKeyBytes(ecdsa.P224(), pub)
case elliptic.P256():
return publicKeyBytes(ecdsa.P256(), pub)
case elliptic.P384():
return publicKeyBytes(ecdsa.P384(), pub)
case elliptic.P521():
return publicKeyBytes(ecdsa.P521(), pub)
default:
return nil, errors.New("ecdsa: curve not supported by PublicKey.Bytes")
}
}
func publicKeyBytes[P ecdsa.Point[P]](c *ecdsa.Curve[P], pub *PublicKey) ([]byte, error) {
k, err := publicKeyToFIPS(c, pub)
if err != nil {
return nil, err
}
return k.Bytes(), nil
}
// PrivateKey represents an ECDSA private key.
type PrivateKey struct {
PublicKey
// D is the private scalar value.
//
// Deprecated: modifying the raw value can produce invalid keys, and may
// invalidate internal optimizations; moreover, [big.Int] methods are not
// suitable for operating on cryptographic values. To encode and decode
// PrivateKey values, use [PrivateKey.Bytes] and [ParseRawPrivateKey] or
// [crypto/x509.MarshalPKCS8PrivateKey] and [crypto/x509.ParsePKCS8PrivateKey].
// For ECDH, use [crypto/ecdh].
D *big.Int
}
// ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is
// invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the
// Curve is not supported by [crypto/ecdh].
func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) {
c := curveToECDH(k.Curve)
if c == nil {
return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
}
size := (k.Curve.Params().N.BitLen() + 7) / 8
if k.D.BitLen() > size*8 {
return nil, errors.New("ecdsa: invalid private key")
}
return c.NewPrivateKey(k.D.FillBytes(make([]byte, size)))
}
func curveToECDH(c elliptic.Curve) ecdh.Curve {
switch c {
case elliptic.P256():
return ecdh.P256()
case elliptic.P384():
return ecdh.P384()
case elliptic.P521():
return ecdh.P521()
default:
return nil
}
}
// Public returns the public key corresponding to priv.
func (priv *PrivateKey) Public() crypto.PublicKey {
return &priv.PublicKey
}
// Equal reports whether priv and x have the same value.
//
// See [PublicKey.Equal] for details on how Curve is compared.
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(*PrivateKey)
if !ok {
return false
}
return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D)
}
// bigIntEqual reports whether a and b are equal leaking only their bit length
// through timing side-channels.
func bigIntEqual(a, b *big.Int) bool {
return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1
}
// ParseRawPrivateKey parses a private key encoded as a fixed-length big-endian
// integer, according to SEC 1, Version 2.0, Section 2.3.6 (sometimes referred
// to as the raw format). It returns an error if the value is not reduced modulo
// the curve's order, or if it's zero.
//
// curve must be one of [elliptic.P224], [elliptic.P256], [elliptic.P384], or
// [elliptic.P521], or ParseRawPrivateKey returns an error.
//
// ParseRawPrivateKey accepts the same format as [ecdh.Curve.NewPrivateKey] does
// for NIST curves, but returns a [PrivateKey] instead of an [ecdh.PrivateKey].
//
// Note that private keys are more commonly encoded in ASN.1 or PKCS#8 format,
// which can be parsed with [crypto/x509.ParseECPrivateKey] or
// [crypto/x509.ParsePKCS8PrivateKey] (and [encoding/pem]).
func ParseRawPrivateKey(curve elliptic.Curve, data []byte) (*PrivateKey, error) {
switch curve {
case elliptic.P224():
return parseRawPrivateKey(ecdsa.P224(), nistec.NewP224Point, curve, data)
case elliptic.P256():
return parseRawPrivateKey(ecdsa.P256(), nistec.NewP256Point, curve, data)
case elliptic.P384():
return parseRawPrivateKey(ecdsa.P384(), nistec.NewP384Point, curve, data)
case elliptic.P521():
return parseRawPrivateKey(ecdsa.P521(), nistec.NewP521Point, curve, data)
default:
return nil, errors.New("ecdsa: curve not supported by ParseRawPrivateKey")
}
}
func parseRawPrivateKey[P ecdsa.Point[P]](c *ecdsa.Curve[P], newPoint func() P, curve elliptic.Curve, data []byte) (*PrivateKey, error) {
q, err := newPoint().ScalarBaseMult(data)
if err != nil {
return nil, err
}
k, err := ecdsa.NewPrivateKey(c, data, q.Bytes())
if err != nil {
return nil, err
}
return privateKeyFromFIPS(curve, k)
}
// Bytes encodes the private key as a fixed-length big-endian integer according
// to SEC 1, Version 2.0, Section 2.3.6 (sometimes referred to as the raw
// format). It returns an error if the private key is invalid.
//
// PrivateKey.Curve must be one of [elliptic.P224], [elliptic.P256],
// [elliptic.P384], or [elliptic.P521], or Bytes returns an error.
//
// Bytes returns the same format as [ecdh.PrivateKey.Bytes] does for NIST curves.
//
// Note that private keys are more commonly encoded in ASN.1 or PKCS#8 format,
// which can be generated with [crypto/x509.MarshalECPrivateKey] or
// [crypto/x509.MarshalPKCS8PrivateKey] (and [encoding/pem]).
func (priv *PrivateKey) Bytes() ([]byte, error) {
switch priv.Curve {
case elliptic.P224():
return privateKeyBytes(ecdsa.P224(), priv)
case elliptic.P256():
return privateKeyBytes(ecdsa.P256(), priv)
case elliptic.P384():
return privateKeyBytes(ecdsa.P384(), priv)
case elliptic.P521():
return privateKeyBytes(ecdsa.P521(), priv)
default:
return nil, errors.New("ecdsa: curve not supported by PrivateKey.Bytes")
}
}
func privateKeyBytes[P ecdsa.Point[P]](c *ecdsa.Curve[P], priv *PrivateKey) ([]byte, error) {
k, err := privateKeyToFIPS(c, priv)
if err != nil {
return nil, err
}
return k.Bytes(), nil
}
// Sign signs a hash (which should be the result of hashing a larger message
// with opts.HashFunc()) using the private key, priv. If the hash is longer than
// the bit-length of the private key's curve order, the hash will be truncated
// to that length. It returns the ASN.1 encoded signature, like [SignASN1].
//
// If rand is not nil, the signature is randomized. Most applications should use
// [crypto/rand.Reader] as rand. Note that the returned signature does not
// depend deterministically on the bytes read from rand, and may change between
// calls and/or between versions.
//
// If rand is nil, Sign will produce a deterministic signature according to RFC
// 6979. When producing a deterministic signature, opts.HashFunc() must be the
// function used to produce digest and priv.Curve must be one of
// [elliptic.P224], [elliptic.P256], [elliptic.P384], or [elliptic.P521].
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
if rand == nil {
return signRFC6979(priv, digest, opts)
}
return SignASN1(rand, priv, digest)
}
// GenerateKey generates a new ECDSA private key for the specified curve.
//
// Most applications should use [crypto/rand.Reader] as rand. Note that the
// returned key does not depend deterministically on the bytes read from rand,
// and may change between calls and/or between versions.
func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
randutil.MaybeReadByte(rand)
if boring.Enabled && rand == boring.RandReader {
x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name)
if err != nil {
return nil, err
}
return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil
}
boring.UnreachableExceptTests()
switch c.Params() {
case elliptic.P224().Params():
return generateFIPS(c, ecdsa.P224(), rand)
case elliptic.P256().Params():
return generateFIPS(c, ecdsa.P256(), rand)
case elliptic.P384().Params():
return generateFIPS(c, ecdsa.P384(), rand)
case elliptic.P521().Params():
return generateFIPS(c, ecdsa.P521(), rand)
default:
return generateLegacy(c, rand)
}
}
func generateFIPS[P ecdsa.Point[P]](curve elliptic.Curve, c *ecdsa.Curve[P], rand io.Reader) (*PrivateKey, error) {
if fips140only.Enabled && !fips140only.ApprovedRandomReader(rand) {
return nil, errors.New("crypto/ecdsa: only crypto/rand.Reader is allowed in FIPS 140-only mode")
}
privateKey, err := ecdsa.GenerateKey(c, rand)
if err != nil {
return nil, err
}
return privateKeyFromFIPS(curve, privateKey)
}
// errNoAsm is returned by signAsm and verifyAsm when the assembly
// implementation is not available.
var errNoAsm = errors.New("no assembly implementation available")
// SignASN1 signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the ASN.1 encoded signature.
//
// The signature is randomized. Most applications should use [crypto/rand.Reader]
// as rand. Note that the returned signature does not depend deterministically on
// the bytes read from rand, and may change between calls and/or between versions.
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
randutil.MaybeReadByte(rand)
if boring.Enabled && rand == boring.RandReader {
b, err := boringPrivateKey(priv)
if err != nil {
return nil, err
}
return boring.SignMarshalECDSA(b, hash)
}
boring.UnreachableExceptTests()
switch priv.Curve.Params() {
case elliptic.P224().Params():
return signFIPS(ecdsa.P224(), priv, rand, hash)
case elliptic.P256().Params():
return signFIPS(ecdsa.P256(), priv, rand, hash)
case elliptic.P384().Params():
return signFIPS(ecdsa.P384(), priv, rand, hash)
case elliptic.P521().Params():
return signFIPS(ecdsa.P521(), priv, rand, hash)
default:
return signLegacy(priv, rand, hash)
}
}
func signFIPS[P ecdsa.Point[P]](c *ecdsa.Curve[P], priv *PrivateKey, rand io.Reader, hash []byte) ([]byte, error) {
if fips140only.Enabled && !fips140only.ApprovedRandomReader(rand) {
return nil, errors.New("crypto/ecdsa: only crypto/rand.Reader is allowed in FIPS 140-only mode")
}
k, err := privateKeyToFIPS(c, priv)
if err != nil {
return nil, err
}
// Always using SHA-512 instead of the hash that computed hash is
// technically a violation of draft-irtf-cfrg-det-sigs-with-noise-04 but in
// our API we don't get to know what it was, and this has no security impact.
sig, err := ecdsa.Sign(c, sha512.New, k, rand, hash)
if err != nil {
return nil, err
}
return encodeSignature(sig.R, sig.S)
}
func signRFC6979(priv *PrivateKey, hash []byte, opts crypto.SignerOpts) ([]byte, error) {
if opts == nil {
return nil, errors.New("ecdsa: Sign called with nil opts")
}
h := opts.HashFunc()
if h.Size() != len(hash) {
return nil, errors.New("ecdsa: hash length does not match hash function")
}
switch priv.Curve.Params() {
case elliptic.P224().Params():
return signFIPSDeterministic(ecdsa.P224(), h, priv, hash)
case elliptic.P256().Params():
return signFIPSDeterministic(ecdsa.P256(), h, priv, hash)
case elliptic.P384().Params():
return signFIPSDeterministic(ecdsa.P384(), h, priv, hash)
case elliptic.P521().Params():
return signFIPSDeterministic(ecdsa.P521(), h, priv, hash)
default:
return nil, errors.New("ecdsa: curve not supported by deterministic signatures")
}
}
func signFIPSDeterministic[P ecdsa.Point[P]](c *ecdsa.Curve[P], hashFunc crypto.Hash, priv *PrivateKey, hash []byte) ([]byte, error) {
k, err := privateKeyToFIPS(c, priv)
if err != nil {
return nil, err
}
h := fips140hash.UnwrapNew(hashFunc.New)
if fips140only.Enabled && !fips140only.ApprovedHash(h()) {
return nil, errors.New("crypto/ecdsa: use of hash functions other than SHA-2 or SHA-3 is not allowed in FIPS 140-only mode")
}
sig, err := ecdsa.SignDeterministic(c, h, k, hash)
if err != nil {
return nil, err
}
return encodeSignature(sig.R, sig.S)
}
func encodeSignature(r, s []byte) ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
addASN1IntBytes(b, r)
addASN1IntBytes(b, s)
})
return b.Bytes()
}
// addASN1IntBytes encodes in ASN.1 a positive integer represented as
// a big-endian byte slice with zero or more leading zeroes.
func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) {
for len(bytes) > 0 && bytes[0] == 0 {
bytes = bytes[1:]
}
if len(bytes) == 0 {
b.SetError(errors.New("invalid integer"))
return
}
b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) {
if bytes[0]&0x80 != 0 {
c.AddUint8(0)
}
c.AddBytes(bytes)
})
}
// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
//
// The inputs are not considered confidential, and may leak through timing side
// channels, or if an attacker has control of part of the inputs.
func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
if boring.Enabled {
key, err := boringPublicKey(pub)
if err != nil {
return false
}
return boring.VerifyECDSA(key, hash, sig)
}
boring.UnreachableExceptTests()
switch pub.Curve.Params() {
case elliptic.P224().Params():
return verifyFIPS(ecdsa.P224(), pub, hash, sig)
case elliptic.P256().Params():
return verifyFIPS(ecdsa.P256(), pub, hash, sig)
case elliptic.P384().Params():
return verifyFIPS(ecdsa.P384(), pub, hash, sig)
case elliptic.P521().Params():
return verifyFIPS(ecdsa.P521(), pub, hash, sig)
default:
return verifyLegacy(pub, hash, sig)
}
}
func verifyFIPS[P ecdsa.Point[P]](c *ecdsa.Curve[P], pub *PublicKey, hash, sig []byte) bool {
r, s, err := parseSignature(sig)
if err != nil {
return false
}
k, err := publicKeyToFIPS(c, pub)
if err != nil {
return false
}
if err := ecdsa.Verify(c, k, hash, &ecdsa.Signature{R: r, S: s}); err != nil {
return false
}
return true
}
func parseSignature(sig []byte) (r, s []byte, err error) {
var inner cryptobyte.String
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(&r) ||
!inner.ReadASN1Integer(&s) ||
!inner.Empty() {
return nil, nil, errors.New("invalid ASN.1")
}
return r, s, nil
}
func publicKeyFromFIPS(curve elliptic.Curve, pub *ecdsa.PublicKey) (*PublicKey, error) {
x, y, err := pointToAffine(curve, pub.Bytes())
if err != nil {
return nil, err
}
return &PublicKey{Curve: curve, X: x, Y: y}, nil
}
func privateKeyFromFIPS(curve elliptic.Curve, priv *ecdsa.PrivateKey) (*PrivateKey, error) {
pub, err := publicKeyFromFIPS(curve, priv.PublicKey())
if err != nil {
return nil, err
}
return &PrivateKey{PublicKey: *pub, D: new(big.Int).SetBytes(priv.Bytes())}, nil
}
func publicKeyToFIPS[P ecdsa.Point[P]](c *ecdsa.Curve[P], pub *PublicKey) (*ecdsa.PublicKey, error) {
Q, err := pointFromAffine(pub.Curve, pub.X, pub.Y)
if err != nil {
return nil, err
}
return ecdsa.NewPublicKey(c, Q)
}
var privateKeyCache fips140cache.Cache[PrivateKey, ecdsa.PrivateKey]
func privateKeyToFIPS[P ecdsa.Point[P]](c *ecdsa.Curve[P], priv *PrivateKey) (*ecdsa.PrivateKey, error) {
Q, err := pointFromAffine(priv.Curve, priv.X, priv.Y)
if err != nil {
return nil, err
}
return privateKeyCache.Get(priv, func() (*ecdsa.PrivateKey, error) {
return ecdsa.NewPrivateKey(c, priv.D.Bytes(), Q)
}, func(k *ecdsa.PrivateKey) bool {
return subtle.ConstantTimeCompare(k.PublicKey().Bytes(), Q) == 1 &&
leftPadBytesEqual(k.Bytes(), priv.D.Bytes())
})
}
func leftPadBytesEqual(a, b []byte) bool {
if len(a) < len(b) {
a, b = b, a
}
if len(a) > len(b) {
x := make([]byte, 0, 66 /* enough for a P-521 private key */)
x = append(x, make([]byte, len(a)-len(b))...)
x = append(x, b...)
b = x
}
return subtle.ConstantTimeCompare(a, b) == 1
}
// pointFromAffine is used to convert the PublicKey to a nistec SetBytes input.
func pointFromAffine(curve elliptic.Curve, x, y *big.Int) ([]byte, error) {
bitSize := curve.Params().BitSize
// Reject values that would not get correctly encoded.
if x.Sign() < 0 || y.Sign() < 0 {
return nil, errors.New("negative coordinate")
}
if x.BitLen() > bitSize || y.BitLen() > bitSize {
return nil, errors.New("overflowing coordinate")
}
// Encode the coordinates and let SetBytes reject invalid points.
byteLen := (bitSize + 7) / 8
buf := make([]byte, 1+2*byteLen)
buf[0] = 4 // uncompressed point
x.FillBytes(buf[1 : 1+byteLen])
y.FillBytes(buf[1+byteLen : 1+2*byteLen])
return buf, nil
}
// pointToAffine is used to convert a nistec Bytes encoding to a PublicKey.
func pointToAffine(curve elliptic.Curve, p []byte) (x, y *big.Int, err error) {
if len(p) == 1 && p[0] == 0 {
// This is the encoding of the point at infinity.
return nil, nil, errors.New("ecdsa: public key point is the infinity")
}
byteLen := (curve.Params().BitSize + 7) / 8
x = new(big.Int).SetBytes(p[1 : 1+byteLen])
y = new(big.Int).SetBytes(p[1+byteLen:])
return x, y, nil
}