| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // CTR AES test vectors. |
| |
| // See U.S. National Institute of Standards and Technology (NIST) |
| // Special Publication 800-38A, ``Recommendation for Block Cipher |
| // Modes of Operation,'' 2001 Edition, pp. 55-58. |
| |
| package cipher_test |
| |
| import ( |
| "bytes" |
| "crypto/aes" |
| "crypto/cipher" |
| "crypto/internal/boring" |
| "crypto/internal/cryptotest" |
| fipsaes "crypto/internal/fips140/aes" |
| "encoding/hex" |
| "fmt" |
| "math/rand" |
| "sort" |
| "strings" |
| "testing" |
| ) |
| |
| var commonCounter = []byte{0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff} |
| |
| var ctrAESTests = []struct { |
| name string |
| key []byte |
| iv []byte |
| in []byte |
| out []byte |
| }{ |
| // NIST SP 800-38A pp 55-58 |
| { |
| "CTR-AES128", |
| commonKey128, |
| commonCounter, |
| commonInput, |
| []byte{ |
| 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, |
| 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff, |
| 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab, |
| 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee, |
| }, |
| }, |
| { |
| "CTR-AES192", |
| commonKey192, |
| commonCounter, |
| commonInput, |
| []byte{ |
| 0x1a, 0xbc, 0x93, 0x24, 0x17, 0x52, 0x1c, 0xa2, 0x4f, 0x2b, 0x04, 0x59, 0xfe, 0x7e, 0x6e, 0x0b, |
| 0x09, 0x03, 0x39, 0xec, 0x0a, 0xa6, 0xfa, 0xef, 0xd5, 0xcc, 0xc2, 0xc6, 0xf4, 0xce, 0x8e, 0x94, |
| 0x1e, 0x36, 0xb2, 0x6b, 0xd1, 0xeb, 0xc6, 0x70, 0xd1, 0xbd, 0x1d, 0x66, 0x56, 0x20, 0xab, 0xf7, |
| 0x4f, 0x78, 0xa7, 0xf6, 0xd2, 0x98, 0x09, 0x58, 0x5a, 0x97, 0xda, 0xec, 0x58, 0xc6, 0xb0, 0x50, |
| }, |
| }, |
| { |
| "CTR-AES256", |
| commonKey256, |
| commonCounter, |
| commonInput, |
| []byte{ |
| 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28, |
| 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5, |
| 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d, |
| 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6, |
| }, |
| }, |
| } |
| |
| func TestCTR_AES(t *testing.T) { |
| cryptotest.TestAllImplementations(t, "aes", testCTR_AES) |
| } |
| |
| func testCTR_AES(t *testing.T) { |
| for _, tt := range ctrAESTests { |
| test := tt.name |
| |
| c, err := aes.NewCipher(tt.key) |
| if err != nil { |
| t.Errorf("%s: NewCipher(%d bytes) = %s", test, len(tt.key), err) |
| continue |
| } |
| |
| for j := 0; j <= 5; j += 5 { |
| in := tt.in[0 : len(tt.in)-j] |
| ctr := cipher.NewCTR(c, tt.iv) |
| encrypted := make([]byte, len(in)) |
| ctr.XORKeyStream(encrypted, in) |
| if out := tt.out[:len(in)]; !bytes.Equal(out, encrypted) { |
| t.Errorf("%s/%d: CTR\ninpt %x\nhave %x\nwant %x", test, len(in), in, encrypted, out) |
| } |
| } |
| |
| for j := 0; j <= 7; j += 7 { |
| in := tt.out[0 : len(tt.out)-j] |
| ctr := cipher.NewCTR(c, tt.iv) |
| plain := make([]byte, len(in)) |
| ctr.XORKeyStream(plain, in) |
| if out := tt.in[:len(in)]; !bytes.Equal(out, plain) { |
| t.Errorf("%s/%d: CTRReader\nhave %x\nwant %x", test, len(out), plain, out) |
| } |
| } |
| |
| if t.Failed() { |
| break |
| } |
| } |
| } |
| |
| func makeTestingCiphers(aesBlock cipher.Block, iv []byte) (genericCtr, multiblockCtr cipher.Stream) { |
| return cipher.NewCTR(wrap(aesBlock), iv), cipher.NewCTR(aesBlock, iv) |
| } |
| |
| func randBytes(t *testing.T, r *rand.Rand, count int) []byte { |
| t.Helper() |
| buf := make([]byte, count) |
| n, err := r.Read(buf) |
| if err != nil { |
| t.Fatal(err) |
| } |
| if n != count { |
| t.Fatal("short read from Rand") |
| } |
| return buf |
| } |
| |
| const aesBlockSize = 16 |
| |
| type ctrAble interface { |
| NewCTR(iv []byte) cipher.Stream |
| } |
| |
| // Verify that multiblock AES CTR (src/crypto/aes/ctr_*.s) |
| // produces the same results as generic single-block implementation. |
| // This test runs checks on random IV. |
| func TestCTR_AES_multiblock_random_IV(t *testing.T) { |
| r := rand.New(rand.NewSource(54321)) |
| iv := randBytes(t, r, aesBlockSize) |
| const Size = 100 |
| |
| for _, keySize := range []int{16, 24, 32} { |
| keySize := keySize |
| t.Run(fmt.Sprintf("keySize=%d", keySize), func(t *testing.T) { |
| key := randBytes(t, r, keySize) |
| aesBlock, err := aes.NewCipher(key) |
| if err != nil { |
| t.Fatal(err) |
| } |
| genericCtr, _ := makeTestingCiphers(aesBlock, iv) |
| |
| plaintext := randBytes(t, r, Size) |
| |
| // Generate reference ciphertext. |
| genericCiphertext := make([]byte, len(plaintext)) |
| genericCtr.XORKeyStream(genericCiphertext, plaintext) |
| |
| // Split the text in 3 parts in all possible ways and encrypt them |
| // individually using multiblock implementation to catch edge cases. |
| |
| for part1 := 0; part1 <= Size; part1++ { |
| part1 := part1 |
| t.Run(fmt.Sprintf("part1=%d", part1), func(t *testing.T) { |
| for part2 := 0; part2 <= Size-part1; part2++ { |
| part2 := part2 |
| t.Run(fmt.Sprintf("part2=%d", part2), func(t *testing.T) { |
| _, multiblockCtr := makeTestingCiphers(aesBlock, iv) |
| multiblockCiphertext := make([]byte, len(plaintext)) |
| multiblockCtr.XORKeyStream(multiblockCiphertext[:part1], plaintext[:part1]) |
| multiblockCtr.XORKeyStream(multiblockCiphertext[part1:part1+part2], plaintext[part1:part1+part2]) |
| multiblockCtr.XORKeyStream(multiblockCiphertext[part1+part2:], plaintext[part1+part2:]) |
| if !bytes.Equal(genericCiphertext, multiblockCiphertext) { |
| t.Fatal("multiblock CTR's output does not match generic CTR's output") |
| } |
| }) |
| } |
| }) |
| } |
| }) |
| } |
| } |
| |
| func parseHex(str string) []byte { |
| b, err := hex.DecodeString(strings.ReplaceAll(str, " ", "")) |
| if err != nil { |
| panic(err) |
| } |
| return b |
| } |
| |
| // Verify that multiblock AES CTR (src/crypto/aes/ctr_*.s) |
| // produces the same results as generic single-block implementation. |
| // This test runs checks on edge cases (IV overflows). |
| func TestCTR_AES_multiblock_overflow_IV(t *testing.T) { |
| r := rand.New(rand.NewSource(987654)) |
| |
| const Size = 4096 |
| plaintext := randBytes(t, r, Size) |
| |
| ivs := [][]byte{ |
| parseHex("00 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF"), |
| parseHex("FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF"), |
| parseHex("FF FF FF FF FF FF FF FF 00 00 00 00 00 00 00 00"), |
| parseHex("FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF fe"), |
| parseHex("00 00 00 00 00 00 00 00 FF FF FF FF FF FF FF fe"), |
| parseHex("FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00"), |
| parseHex("00 00 00 00 00 00 00 01 FF FF FF FF FF FF FF 00"), |
| parseHex("00 00 00 00 00 00 00 01 FF FF FF FF FF FF FF FF"), |
| parseHex("00 00 00 00 00 00 00 01 FF FF FF FF FF FF FF fe"), |
| parseHex("00 00 00 00 00 00 00 01 FF FF FF FF FF FF FF 00"), |
| } |
| |
| for _, keySize := range []int{16, 24, 32} { |
| keySize := keySize |
| t.Run(fmt.Sprintf("keySize=%d", keySize), func(t *testing.T) { |
| for _, iv := range ivs { |
| key := randBytes(t, r, keySize) |
| aesBlock, err := aes.NewCipher(key) |
| if err != nil { |
| t.Fatal(err) |
| } |
| |
| t.Run(fmt.Sprintf("iv=%s", hex.EncodeToString(iv)), func(t *testing.T) { |
| for _, offset := range []int{0, 1, 16, 1024} { |
| offset := offset |
| t.Run(fmt.Sprintf("offset=%d", offset), func(t *testing.T) { |
| genericCtr, multiblockCtr := makeTestingCiphers(aesBlock, iv) |
| |
| // Generate reference ciphertext. |
| genericCiphertext := make([]byte, Size) |
| genericCtr.XORKeyStream(genericCiphertext, plaintext) |
| |
| multiblockCiphertext := make([]byte, Size) |
| multiblockCtr.XORKeyStream(multiblockCiphertext, plaintext[:offset]) |
| multiblockCtr.XORKeyStream(multiblockCiphertext[offset:], plaintext[offset:]) |
| if !bytes.Equal(genericCiphertext, multiblockCiphertext) { |
| t.Fatal("multiblock CTR's output does not match generic CTR's output") |
| } |
| }) |
| } |
| }) |
| } |
| }) |
| } |
| } |
| |
| // Check that method XORKeyStreamAt works correctly. |
| func TestCTR_AES_multiblock_XORKeyStreamAt(t *testing.T) { |
| if boring.Enabled { |
| t.Skip("XORKeyStreamAt is not available in boring mode") |
| } |
| |
| r := rand.New(rand.NewSource(12345)) |
| const Size = 32 * 1024 * 1024 |
| plaintext := randBytes(t, r, Size) |
| |
| for _, keySize := range []int{16, 24, 32} { |
| keySize := keySize |
| t.Run(fmt.Sprintf("keySize=%d", keySize), func(t *testing.T) { |
| key := randBytes(t, r, keySize) |
| iv := randBytes(t, r, aesBlockSize) |
| |
| aesBlock, err := aes.NewCipher(key) |
| if err != nil { |
| t.Fatal(err) |
| } |
| genericCtr, _ := makeTestingCiphers(aesBlock, iv) |
| ctrAt := fipsaes.NewCTR(aesBlock.(*fipsaes.Block), iv) |
| |
| // Generate reference ciphertext. |
| genericCiphertext := make([]byte, Size) |
| genericCtr.XORKeyStream(genericCiphertext, plaintext) |
| |
| multiblockCiphertext := make([]byte, Size) |
| // Split the range to random slices. |
| const N = 1000 |
| boundaries := make([]int, 0, N+2) |
| for i := 0; i < N; i++ { |
| boundaries = append(boundaries, r.Intn(Size)) |
| } |
| boundaries = append(boundaries, 0) |
| boundaries = append(boundaries, Size) |
| sort.Ints(boundaries) |
| |
| for _, i := range r.Perm(N + 1) { |
| begin := boundaries[i] |
| end := boundaries[i+1] |
| ctrAt.XORKeyStreamAt( |
| multiblockCiphertext[begin:end], |
| plaintext[begin:end], |
| uint64(begin), |
| ) |
| } |
| |
| if !bytes.Equal(genericCiphertext, multiblockCiphertext) { |
| t.Fatal("multiblock CTR's output does not match generic CTR's output") |
| } |
| }) |
| } |
| } |