blob: 898c0344853e3c833740c8df79a20817b09e6aa6 [file] [log] [blame] [edit]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// fuseIntInRange transforms integer range checks to remove the short-circuit operator. For example,
// it would convert `if 1 <= x && x < 5 { ... }` into `if (1 <= x) & (x < 5) { ... }`. Rewrite rules
// can then optimize these into unsigned range checks, `if unsigned(x-1) < 4 { ... }` in this case.
func fuseIntInRange(b *Block) bool {
return fuseComparisons(b, canOptIntInRange)
}
// fuseNanCheck replaces the short-circuit operators between NaN checks and comparisons with
// constants. For example, it would transform `if x != x || x > 1.0 { ... }` into
// `if (x != x) | (x > 1.0) { ... }`. Rewrite rules can then merge the NaN check with the comparison,
// in this case generating `if !(x <= 1.0) { ... }`.
func fuseNanCheck(b *Block) bool {
return fuseComparisons(b, canOptNanCheck)
}
// fuseSingleBitDifference replaces the short-circuit operators between equality checks with
// constants that only differ by a single bit. For example, it would convert
// `if x == 4 || x == 6 { ... }` into `if (x == 4) | (x == 6) { ... }`. Rewrite rules can
// then optimize these using a bitwise operation, in this case generating `if x|2 == 6 { ... }`.
func fuseSingleBitDifference(b *Block) bool {
return fuseComparisons(b, canOptSingleBitDifference)
}
// fuseComparisons looks for control graphs that match this pattern:
//
// p - predecessor
// |\
// | b - block
// |/ \
// s0 s1 - successors
//
// This pattern is typical for if statements such as `if x || y { ... }` and `if x && y { ... }`.
//
// If canOptControls returns true when passed the control values for p and b then fuseComparisons
// will try to convert p into a plain block with only one successor (b) and modify b's control
// value to include p's control value (effectively causing b to be speculatively executed).
//
// This transformation results in a control graph that will now look like this:
//
// p
// \
// b
// / \
// s0 s1
//
// Later passes will then fuse p and b.
//
// In other words `if x || y { ... }` will become `if x | y { ... }` and `if x && y { ... }` will
// become `if x & y { ... }`. This is a useful transformation because we can then use rewrite
// rules to optimize `x | y` and `x & y`.
func fuseComparisons(b *Block, canOptControls func(a, b *Value, op Op) bool) bool {
if len(b.Preds) != 1 {
return false
}
p := b.Preds[0].Block()
if b.Kind != BlockIf || p.Kind != BlockIf {
return false
}
// Don't merge control values if b is likely to be bypassed anyway.
if p.Likely == BranchLikely && p.Succs[0].Block() != b {
return false
}
if p.Likely == BranchUnlikely && p.Succs[1].Block() != b {
return false
}
// If the first (true) successors match then we have a disjunction (||).
// If the second (false) successors match then we have a conjunction (&&).
for i, op := range [2]Op{OpOrB, OpAndB} {
if p.Succs[i].Block() != b.Succs[i].Block() {
continue
}
// Check if the control values can be usefully combined.
bc := b.Controls[0]
pc := p.Controls[0]
if !canOptControls(bc, pc, op) {
return false
}
// TODO(mundaym): should we also check the cost of executing b?
// Currently we might speculatively execute b even if b contains
// a lot of instructions. We could just check that len(b.Values)
// is lower than a fixed amount. Bear in mind however that the
// other optimization passes might yet reduce the cost of b
// significantly so we shouldn't be overly conservative.
if !canSpeculativelyExecute(b) {
return false
}
// Logically combine the control values for p and b.
v := b.NewValue0(bc.Pos, op, bc.Type)
v.AddArg(pc)
v.AddArg(bc)
// Set the combined control value as the control value for b.
b.SetControl(v)
// Modify p so that it jumps directly to b.
p.removeEdge(i)
p.Kind = BlockPlain
p.Likely = BranchUnknown
p.ResetControls()
return true
}
// TODO: could negate condition(s) to merge controls.
return false
}
// getConstIntArgIndex returns the index of the first argument that is a
// constant integer or -1 if no such argument exists.
func getConstIntArgIndex(v *Value) int {
for i, a := range v.Args {
switch a.Op {
case OpConst8, OpConst16, OpConst32, OpConst64:
return i
}
}
return -1
}
// isSignedInequality reports whether op represents the inequality < or ≤
// in the signed domain.
func isSignedInequality(v *Value) bool {
switch v.Op {
case OpLess64, OpLess32, OpLess16, OpLess8,
OpLeq64, OpLeq32, OpLeq16, OpLeq8:
return true
}
return false
}
// isUnsignedInequality reports whether op represents the inequality < or ≤
// in the unsigned domain.
func isUnsignedInequality(v *Value) bool {
switch v.Op {
case OpLess64U, OpLess32U, OpLess16U, OpLess8U,
OpLeq64U, OpLeq32U, OpLeq16U, OpLeq8U:
return true
}
return false
}
func canOptIntInRange(x, y *Value, op Op) bool {
// We need both inequalities to be either in the signed or unsigned domain.
// TODO(mundaym): it would also be good to merge when we have an Eq op that
// could be transformed into a Less/Leq. For example in the unsigned
// domain 'x == 0 || 3 < x' is equivalent to 'x <= 0 || 3 < x'
inequalityChecks := [...]func(*Value) bool{
isSignedInequality,
isUnsignedInequality,
}
for _, f := range inequalityChecks {
if !f(x) || !f(y) {
continue
}
// Check that both inequalities are comparisons with constants.
xi := getConstIntArgIndex(x)
if xi < 0 {
return false
}
yi := getConstIntArgIndex(y)
if yi < 0 {
return false
}
// Check that the non-constant arguments to the inequalities
// are the same.
return x.Args[xi^1] == y.Args[yi^1]
}
return false
}
// canOptNanCheck reports whether one of arguments is a NaN check and the other
// is a comparison with a constant that can be combined together.
//
// Examples (c must be a constant):
//
// v != v || v < c => !(c <= v)
// v != v || v <= c => !(c < v)
// v != v || c < v => !(v <= c)
// v != v || c <= v => !(v < c)
func canOptNanCheck(x, y *Value, op Op) bool {
if op != OpOrB {
return false
}
for i := 0; i <= 1; i, x, y = i+1, y, x {
if len(x.Args) != 2 || x.Args[0] != x.Args[1] {
continue
}
v := x.Args[0]
switch x.Op {
case OpNeq64F:
if y.Op != OpLess64F && y.Op != OpLeq64F {
return false
}
for j := 0; j <= 1; j++ {
a, b := y.Args[j], y.Args[j^1]
if a.Op != OpConst64F {
continue
}
// Sign bit operations not affect NaN check results. This special case allows us
// to optimize statements like `if v != v || Abs(v) > c { ... }`.
if (b.Op == OpAbs || b.Op == OpNeg64F) && b.Args[0] == v {
return true
}
return b == v
}
case OpNeq32F:
if y.Op != OpLess32F && y.Op != OpLeq32F {
return false
}
for j := 0; j <= 1; j++ {
a, b := y.Args[j], y.Args[j^1]
if a.Op != OpConst32F {
continue
}
// Sign bit operations not affect NaN check results. This special case allows us
// to optimize statements like `if v != v || -v > c { ... }`.
if b.Op == OpNeg32F && b.Args[0] == v {
return true
}
return b == v
}
}
}
return false
}
// canOptSingleBitDifference returns true if x op y matches either:
//
// v == c || v == d
// v != c && v != d
//
// Where c and d are constant values that differ by a single bit.
func canOptSingleBitDifference(x, y *Value, op Op) bool {
if x.Op != y.Op {
return false
}
switch x.Op {
case OpEq64, OpEq32, OpEq16, OpEq8:
if op != OpOrB {
return false
}
case OpNeq64, OpNeq32, OpNeq16, OpNeq8:
if op != OpAndB {
return false
}
default:
return false
}
xi := getConstIntArgIndex(x)
if xi < 0 {
return false
}
yi := getConstIntArgIndex(y)
if yi < 0 {
return false
}
if x.Args[xi^1] != y.Args[yi^1] {
return false
}
return oneBit(x.Args[xi].AuxInt ^ y.Args[yi].AuxInt)
}