|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package strings | 
|  |  | 
|  | import ( | 
|  | "io" | 
|  | "sync" | 
|  | ) | 
|  |  | 
|  | // Replacer replaces a list of strings with replacements. | 
|  | // It is safe for concurrent use by multiple goroutines. | 
|  | type Replacer struct { | 
|  | once   sync.Once // guards buildOnce method | 
|  | r      replacer | 
|  | oldnew []string | 
|  | } | 
|  |  | 
|  | // replacer is the interface that a replacement algorithm needs to implement. | 
|  | type replacer interface { | 
|  | Replace(s string) string | 
|  | WriteString(w io.Writer, s string) (n int, err error) | 
|  | } | 
|  |  | 
|  | // NewReplacer returns a new Replacer from a list of old, new string | 
|  | // pairs. Replacements are performed in the order they appear in the | 
|  | // target string, without overlapping matches. | 
|  | func NewReplacer(oldnew ...string) *Replacer { | 
|  | if len(oldnew)%2 == 1 { | 
|  | panic("strings.NewReplacer: odd argument count") | 
|  | } | 
|  | return &Replacer{oldnew: append([]string(nil), oldnew...)} | 
|  | } | 
|  |  | 
|  | func (r *Replacer) buildOnce() { | 
|  | r.r = r.build() | 
|  | r.oldnew = nil | 
|  | } | 
|  |  | 
|  | func (b *Replacer) build() replacer { | 
|  | oldnew := b.oldnew | 
|  | if len(oldnew) == 2 && len(oldnew[0]) > 1 { | 
|  | return makeSingleStringReplacer(oldnew[0], oldnew[1]) | 
|  | } | 
|  |  | 
|  | allNewBytes := true | 
|  | for i := 0; i < len(oldnew); i += 2 { | 
|  | if len(oldnew[i]) != 1 { | 
|  | return makeGenericReplacer(oldnew) | 
|  | } | 
|  | if len(oldnew[i+1]) != 1 { | 
|  | allNewBytes = false | 
|  | } | 
|  | } | 
|  |  | 
|  | if allNewBytes { | 
|  | r := byteReplacer{} | 
|  | for i := range r { | 
|  | r[i] = byte(i) | 
|  | } | 
|  | // The first occurrence of old->new map takes precedence | 
|  | // over the others with the same old string. | 
|  | for i := len(oldnew) - 2; i >= 0; i -= 2 { | 
|  | o := oldnew[i][0] | 
|  | n := oldnew[i+1][0] | 
|  | r[o] = n | 
|  | } | 
|  | return &r | 
|  | } | 
|  |  | 
|  | r := byteStringReplacer{toReplace: make([]string, 0, len(oldnew)/2)} | 
|  | // The first occurrence of old->new map takes precedence | 
|  | // over the others with the same old string. | 
|  | for i := len(oldnew) - 2; i >= 0; i -= 2 { | 
|  | o := oldnew[i][0] | 
|  | n := oldnew[i+1] | 
|  | // To avoid counting repetitions multiple times. | 
|  | if r.replacements[o] == nil { | 
|  | // We need to use string([]byte{o}) instead of string(o), | 
|  | // to avoid utf8 encoding of o. | 
|  | // E. g. byte(150) produces string of length 2. | 
|  | r.toReplace = append(r.toReplace, string([]byte{o})) | 
|  | } | 
|  | r.replacements[o] = []byte(n) | 
|  |  | 
|  | } | 
|  | return &r | 
|  | } | 
|  |  | 
|  | // Replace returns a copy of s with all replacements performed. | 
|  | func (r *Replacer) Replace(s string) string { | 
|  | r.once.Do(r.buildOnce) | 
|  | return r.r.Replace(s) | 
|  | } | 
|  |  | 
|  | // WriteString writes s to w with all replacements performed. | 
|  | func (r *Replacer) WriteString(w io.Writer, s string) (n int, err error) { | 
|  | r.once.Do(r.buildOnce) | 
|  | return r.r.WriteString(w, s) | 
|  | } | 
|  |  | 
|  | // trieNode is a node in a lookup trie for prioritized key/value pairs. Keys | 
|  | // and values may be empty. For example, the trie containing keys "ax", "ay", | 
|  | // "bcbc", "x" and "xy" could have eight nodes: | 
|  | // | 
|  | //  n0  - | 
|  | //  n1  a- | 
|  | //  n2  .x+ | 
|  | //  n3  .y+ | 
|  | //  n4  b- | 
|  | //  n5  .cbc+ | 
|  | //  n6  x+ | 
|  | //  n7  .y+ | 
|  | // | 
|  | // n0 is the root node, and its children are n1, n4 and n6; n1's children are | 
|  | // n2 and n3; n4's child is n5; n6's child is n7. Nodes n0, n1 and n4 (marked | 
|  | // with a trailing "-") are partial keys, and nodes n2, n3, n5, n6 and n7 | 
|  | // (marked with a trailing "+") are complete keys. | 
|  | type trieNode struct { | 
|  | // value is the value of the trie node's key/value pair. It is empty if | 
|  | // this node is not a complete key. | 
|  | value string | 
|  | // priority is the priority (higher is more important) of the trie node's | 
|  | // key/value pair; keys are not necessarily matched shortest- or longest- | 
|  | // first. Priority is positive if this node is a complete key, and zero | 
|  | // otherwise. In the example above, positive/zero priorities are marked | 
|  | // with a trailing "+" or "-". | 
|  | priority int | 
|  |  | 
|  | // A trie node may have zero, one or more child nodes: | 
|  | //  * if the remaining fields are zero, there are no children. | 
|  | //  * if prefix and next are non-zero, there is one child in next. | 
|  | //  * if table is non-zero, it defines all the children. | 
|  | // | 
|  | // Prefixes are preferred over tables when there is one child, but the | 
|  | // root node always uses a table for lookup efficiency. | 
|  |  | 
|  | // prefix is the difference in keys between this trie node and the next. | 
|  | // In the example above, node n4 has prefix "cbc" and n4's next node is n5. | 
|  | // Node n5 has no children and so has zero prefix, next and table fields. | 
|  | prefix string | 
|  | next   *trieNode | 
|  |  | 
|  | // table is a lookup table indexed by the next byte in the key, after | 
|  | // remapping that byte through genericReplacer.mapping to create a dense | 
|  | // index. In the example above, the keys only use 'a', 'b', 'c', 'x' and | 
|  | // 'y', which remap to 0, 1, 2, 3 and 4. All other bytes remap to 5, and | 
|  | // genericReplacer.tableSize will be 5. Node n0's table will be | 
|  | // []*trieNode{ 0:n1, 1:n4, 3:n6 }, where the 0, 1 and 3 are the remapped | 
|  | // 'a', 'b' and 'x'. | 
|  | table []*trieNode | 
|  | } | 
|  |  | 
|  | func (t *trieNode) add(key, val string, priority int, r *genericReplacer) { | 
|  | if key == "" { | 
|  | if t.priority == 0 { | 
|  | t.value = val | 
|  | t.priority = priority | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | if t.prefix != "" { | 
|  | // Need to split the prefix among multiple nodes. | 
|  | var n int // length of the longest common prefix | 
|  | for ; n < len(t.prefix) && n < len(key); n++ { | 
|  | if t.prefix[n] != key[n] { | 
|  | break | 
|  | } | 
|  | } | 
|  | if n == len(t.prefix) { | 
|  | t.next.add(key[n:], val, priority, r) | 
|  | } else if n == 0 { | 
|  | // First byte differs, start a new lookup table here. Looking up | 
|  | // what is currently t.prefix[0] will lead to prefixNode, and | 
|  | // looking up key[0] will lead to keyNode. | 
|  | var prefixNode *trieNode | 
|  | if len(t.prefix) == 1 { | 
|  | prefixNode = t.next | 
|  | } else { | 
|  | prefixNode = &trieNode{ | 
|  | prefix: t.prefix[1:], | 
|  | next:   t.next, | 
|  | } | 
|  | } | 
|  | keyNode := new(trieNode) | 
|  | t.table = make([]*trieNode, r.tableSize) | 
|  | t.table[r.mapping[t.prefix[0]]] = prefixNode | 
|  | t.table[r.mapping[key[0]]] = keyNode | 
|  | t.prefix = "" | 
|  | t.next = nil | 
|  | keyNode.add(key[1:], val, priority, r) | 
|  | } else { | 
|  | // Insert new node after the common section of the prefix. | 
|  | next := &trieNode{ | 
|  | prefix: t.prefix[n:], | 
|  | next:   t.next, | 
|  | } | 
|  | t.prefix = t.prefix[:n] | 
|  | t.next = next | 
|  | next.add(key[n:], val, priority, r) | 
|  | } | 
|  | } else if t.table != nil { | 
|  | // Insert into existing table. | 
|  | m := r.mapping[key[0]] | 
|  | if t.table[m] == nil { | 
|  | t.table[m] = new(trieNode) | 
|  | } | 
|  | t.table[m].add(key[1:], val, priority, r) | 
|  | } else { | 
|  | t.prefix = key | 
|  | t.next = new(trieNode) | 
|  | t.next.add("", val, priority, r) | 
|  | } | 
|  | } | 
|  |  | 
|  | func (r *genericReplacer) lookup(s string, ignoreRoot bool) (val string, keylen int, found bool) { | 
|  | // Iterate down the trie to the end, and grab the value and keylen with | 
|  | // the highest priority. | 
|  | bestPriority := 0 | 
|  | node := &r.root | 
|  | n := 0 | 
|  | for node != nil { | 
|  | if node.priority > bestPriority && !(ignoreRoot && node == &r.root) { | 
|  | bestPriority = node.priority | 
|  | val = node.value | 
|  | keylen = n | 
|  | found = true | 
|  | } | 
|  |  | 
|  | if s == "" { | 
|  | break | 
|  | } | 
|  | if node.table != nil { | 
|  | index := r.mapping[s[0]] | 
|  | if int(index) == r.tableSize { | 
|  | break | 
|  | } | 
|  | node = node.table[index] | 
|  | s = s[1:] | 
|  | n++ | 
|  | } else if node.prefix != "" && HasPrefix(s, node.prefix) { | 
|  | n += len(node.prefix) | 
|  | s = s[len(node.prefix):] | 
|  | node = node.next | 
|  | } else { | 
|  | break | 
|  | } | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // genericReplacer is the fully generic algorithm. | 
|  | // It's used as a fallback when nothing faster can be used. | 
|  | type genericReplacer struct { | 
|  | root trieNode | 
|  | // tableSize is the size of a trie node's lookup table. It is the number | 
|  | // of unique key bytes. | 
|  | tableSize int | 
|  | // mapping maps from key bytes to a dense index for trieNode.table. | 
|  | mapping [256]byte | 
|  | } | 
|  |  | 
|  | func makeGenericReplacer(oldnew []string) *genericReplacer { | 
|  | r := new(genericReplacer) | 
|  | // Find each byte used, then assign them each an index. | 
|  | for i := 0; i < len(oldnew); i += 2 { | 
|  | key := oldnew[i] | 
|  | for j := 0; j < len(key); j++ { | 
|  | r.mapping[key[j]] = 1 | 
|  | } | 
|  | } | 
|  |  | 
|  | for _, b := range r.mapping { | 
|  | r.tableSize += int(b) | 
|  | } | 
|  |  | 
|  | var index byte | 
|  | for i, b := range r.mapping { | 
|  | if b == 0 { | 
|  | r.mapping[i] = byte(r.tableSize) | 
|  | } else { | 
|  | r.mapping[i] = index | 
|  | index++ | 
|  | } | 
|  | } | 
|  | // Ensure root node uses a lookup table (for performance). | 
|  | r.root.table = make([]*trieNode, r.tableSize) | 
|  |  | 
|  | for i := 0; i < len(oldnew); i += 2 { | 
|  | r.root.add(oldnew[i], oldnew[i+1], len(oldnew)-i, r) | 
|  | } | 
|  | return r | 
|  | } | 
|  |  | 
|  | type appendSliceWriter []byte | 
|  |  | 
|  | // Write writes to the buffer to satisfy io.Writer. | 
|  | func (w *appendSliceWriter) Write(p []byte) (int, error) { | 
|  | *w = append(*w, p...) | 
|  | return len(p), nil | 
|  | } | 
|  |  | 
|  | // WriteString writes to the buffer without string->[]byte->string allocations. | 
|  | func (w *appendSliceWriter) WriteString(s string) (int, error) { | 
|  | *w = append(*w, s...) | 
|  | return len(s), nil | 
|  | } | 
|  |  | 
|  | type stringWriter struct { | 
|  | w io.Writer | 
|  | } | 
|  |  | 
|  | func (w stringWriter) WriteString(s string) (int, error) { | 
|  | return w.w.Write([]byte(s)) | 
|  | } | 
|  |  | 
|  | func getStringWriter(w io.Writer) io.StringWriter { | 
|  | sw, ok := w.(io.StringWriter) | 
|  | if !ok { | 
|  | sw = stringWriter{w} | 
|  | } | 
|  | return sw | 
|  | } | 
|  |  | 
|  | func (r *genericReplacer) Replace(s string) string { | 
|  | buf := make(appendSliceWriter, 0, len(s)) | 
|  | r.WriteString(&buf, s) | 
|  | return string(buf) | 
|  | } | 
|  |  | 
|  | func (r *genericReplacer) WriteString(w io.Writer, s string) (n int, err error) { | 
|  | sw := getStringWriter(w) | 
|  | var last, wn int | 
|  | var prevMatchEmpty bool | 
|  | for i := 0; i <= len(s); { | 
|  | // Fast path: s[i] is not a prefix of any pattern. | 
|  | if i != len(s) && r.root.priority == 0 { | 
|  | index := int(r.mapping[s[i]]) | 
|  | if index == r.tableSize || r.root.table[index] == nil { | 
|  | i++ | 
|  | continue | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ignore the empty match iff the previous loop found the empty match. | 
|  | val, keylen, match := r.lookup(s[i:], prevMatchEmpty) | 
|  | prevMatchEmpty = match && keylen == 0 | 
|  | if match { | 
|  | wn, err = sw.WriteString(s[last:i]) | 
|  | n += wn | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  | wn, err = sw.WriteString(val) | 
|  | n += wn | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  | i += keylen | 
|  | last = i | 
|  | continue | 
|  | } | 
|  | i++ | 
|  | } | 
|  | if last != len(s) { | 
|  | wn, err = sw.WriteString(s[last:]) | 
|  | n += wn | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // singleStringReplacer is the implementation that's used when there is only | 
|  | // one string to replace (and that string has more than one byte). | 
|  | type singleStringReplacer struct { | 
|  | finder *stringFinder | 
|  | // value is the new string that replaces that pattern when it's found. | 
|  | value string | 
|  | } | 
|  |  | 
|  | func makeSingleStringReplacer(pattern string, value string) *singleStringReplacer { | 
|  | return &singleStringReplacer{finder: makeStringFinder(pattern), value: value} | 
|  | } | 
|  |  | 
|  | func (r *singleStringReplacer) Replace(s string) string { | 
|  | var buf []byte | 
|  | i, matched := 0, false | 
|  | for { | 
|  | match := r.finder.next(s[i:]) | 
|  | if match == -1 { | 
|  | break | 
|  | } | 
|  | matched = true | 
|  | buf = append(buf, s[i:i+match]...) | 
|  | buf = append(buf, r.value...) | 
|  | i += match + len(r.finder.pattern) | 
|  | } | 
|  | if !matched { | 
|  | return s | 
|  | } | 
|  | buf = append(buf, s[i:]...) | 
|  | return string(buf) | 
|  | } | 
|  |  | 
|  | func (r *singleStringReplacer) WriteString(w io.Writer, s string) (n int, err error) { | 
|  | sw := getStringWriter(w) | 
|  | var i, wn int | 
|  | for { | 
|  | match := r.finder.next(s[i:]) | 
|  | if match == -1 { | 
|  | break | 
|  | } | 
|  | wn, err = sw.WriteString(s[i : i+match]) | 
|  | n += wn | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  | wn, err = sw.WriteString(r.value) | 
|  | n += wn | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  | i += match + len(r.finder.pattern) | 
|  | } | 
|  | wn, err = sw.WriteString(s[i:]) | 
|  | n += wn | 
|  | return | 
|  | } | 
|  |  | 
|  | // byteReplacer is the implementation that's used when all the "old" | 
|  | // and "new" values are single ASCII bytes. | 
|  | // The array contains replacement bytes indexed by old byte. | 
|  | type byteReplacer [256]byte | 
|  |  | 
|  | func (r *byteReplacer) Replace(s string) string { | 
|  | var buf []byte // lazily allocated | 
|  | for i := 0; i < len(s); i++ { | 
|  | b := s[i] | 
|  | if r[b] != b { | 
|  | if buf == nil { | 
|  | buf = []byte(s) | 
|  | } | 
|  | buf[i] = r[b] | 
|  | } | 
|  | } | 
|  | if buf == nil { | 
|  | return s | 
|  | } | 
|  | return string(buf) | 
|  | } | 
|  |  | 
|  | func (r *byteReplacer) WriteString(w io.Writer, s string) (n int, err error) { | 
|  | // TODO(bradfitz): use io.WriteString with slices of s, avoiding allocation. | 
|  | bufsize := 32 << 10 | 
|  | if len(s) < bufsize { | 
|  | bufsize = len(s) | 
|  | } | 
|  | buf := make([]byte, bufsize) | 
|  |  | 
|  | for len(s) > 0 { | 
|  | ncopy := copy(buf, s) | 
|  | s = s[ncopy:] | 
|  | for i, b := range buf[:ncopy] { | 
|  | buf[i] = r[b] | 
|  | } | 
|  | wn, err := w.Write(buf[:ncopy]) | 
|  | n += wn | 
|  | if err != nil { | 
|  | return n, err | 
|  | } | 
|  | } | 
|  | return n, nil | 
|  | } | 
|  |  | 
|  | // byteStringReplacer is the implementation that's used when all the | 
|  | // "old" values are single ASCII bytes but the "new" values vary in size. | 
|  | type byteStringReplacer struct { | 
|  | // replacements contains replacement byte slices indexed by old byte. | 
|  | // A nil []byte means that the old byte should not be replaced. | 
|  | replacements [256][]byte | 
|  | // toReplace keeps a list of bytes to replace. Depending on length of toReplace | 
|  | // and length of target string it may be faster to use Count, or a plain loop. | 
|  | // We store single byte as a string, because Count takes a string. | 
|  | toReplace []string | 
|  | } | 
|  |  | 
|  | // countCutOff controls the ratio of a string length to a number of replacements | 
|  | // at which (*byteStringReplacer).Replace switches algorithms. | 
|  | // For strings with higher ration of length to replacements than that value, | 
|  | // we call Count, for each replacement from toReplace. | 
|  | // For strings, with a lower ratio we use simple loop, because of Count overhead. | 
|  | // countCutOff is an empirically determined overhead multiplier. | 
|  | // TODO(tocarip) revisit once we have register-based abi/mid-stack inlining. | 
|  | const countCutOff = 8 | 
|  |  | 
|  | func (r *byteStringReplacer) Replace(s string) string { | 
|  | newSize := len(s) | 
|  | anyChanges := false | 
|  | // Is it faster to use Count? | 
|  | if len(r.toReplace)*countCutOff <= len(s) { | 
|  | for _, x := range r.toReplace { | 
|  | if c := Count(s, x); c != 0 { | 
|  | // The -1 is because we are replacing 1 byte with len(replacements[b]) bytes. | 
|  | newSize += c * (len(r.replacements[x[0]]) - 1) | 
|  | anyChanges = true | 
|  | } | 
|  |  | 
|  | } | 
|  | } else { | 
|  | for i := 0; i < len(s); i++ { | 
|  | b := s[i] | 
|  | if r.replacements[b] != nil { | 
|  | // See above for explanation of -1 | 
|  | newSize += len(r.replacements[b]) - 1 | 
|  | anyChanges = true | 
|  | } | 
|  | } | 
|  | } | 
|  | if !anyChanges { | 
|  | return s | 
|  | } | 
|  | buf := make([]byte, newSize) | 
|  | j := 0 | 
|  | for i := 0; i < len(s); i++ { | 
|  | b := s[i] | 
|  | if r.replacements[b] != nil { | 
|  | j += copy(buf[j:], r.replacements[b]) | 
|  | } else { | 
|  | buf[j] = b | 
|  | j++ | 
|  | } | 
|  | } | 
|  | return string(buf) | 
|  | } | 
|  |  | 
|  | func (r *byteStringReplacer) WriteString(w io.Writer, s string) (n int, err error) { | 
|  | sw := getStringWriter(w) | 
|  | last := 0 | 
|  | for i := 0; i < len(s); i++ { | 
|  | b := s[i] | 
|  | if r.replacements[b] == nil { | 
|  | continue | 
|  | } | 
|  | if last != i { | 
|  | nw, err := sw.WriteString(s[last:i]) | 
|  | n += nw | 
|  | if err != nil { | 
|  | return n, err | 
|  | } | 
|  | } | 
|  | last = i + 1 | 
|  | nw, err := w.Write(r.replacements[b]) | 
|  | n += nw | 
|  | if err != nil { | 
|  | return n, err | 
|  | } | 
|  | } | 
|  | if last != len(s) { | 
|  | var nw int | 
|  | nw, err = sw.WriteString(s[last:]) | 
|  | n += nw | 
|  | } | 
|  | return | 
|  | } |