|  | // $G $D/$F.go && $L $F.$A && ./$A.out | 
|  |  | 
|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Power series package | 
|  | // A power series is a channel, along which flow rational | 
|  | // coefficients.  A denominator of zero signifies the end. | 
|  | // Original code in Newsqueak by Doug McIlroy. | 
|  | // See Squinting at Power Series by Doug McIlroy, | 
|  | //   http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf | 
|  | // Like powser1.go but uses channels of interfaces. | 
|  | // Has not been cleaned up as much as powser1.go, to keep | 
|  | // it distinct and therefore a different test. | 
|  |  | 
|  | package main | 
|  |  | 
|  | import "os" | 
|  |  | 
|  | type rat struct  { | 
|  | num, den  int64	// numerator, denominator | 
|  | } | 
|  |  | 
|  | type item interface { | 
|  | pr() | 
|  | eq(c item) bool | 
|  | } | 
|  |  | 
|  | func (u *rat) pr(){ | 
|  | if u.den==1 { | 
|  | print(u.num) | 
|  | } else { | 
|  | print(u.num, "/", u.den) | 
|  | } | 
|  | print(" ") | 
|  | } | 
|  |  | 
|  | func (u *rat) eq(c item) bool { | 
|  | c1 := c.(*rat) | 
|  | return u.num == c1.num && u.den == c1.den | 
|  | } | 
|  |  | 
|  | type dch struct { | 
|  | req chan  int | 
|  | dat chan  item | 
|  | nam int | 
|  | } | 
|  |  | 
|  | type dch2 [2] *dch | 
|  |  | 
|  | var chnames string | 
|  | var chnameserial int | 
|  | var seqno int | 
|  |  | 
|  | func mkdch() *dch { | 
|  | c := chnameserial % len(chnames) | 
|  | chnameserial++ | 
|  | d := new(dch) | 
|  | d.req = make(chan int) | 
|  | d.dat = make(chan item) | 
|  | d.nam = c | 
|  | return d | 
|  | } | 
|  |  | 
|  | func mkdch2() *dch2 { | 
|  | d2 := new(dch2) | 
|  | d2[0] = mkdch() | 
|  | d2[1] = mkdch() | 
|  | return d2 | 
|  | } | 
|  |  | 
|  | // split reads a single demand channel and replicates its | 
|  | // output onto two, which may be read at different rates. | 
|  | // A process is created at first demand for an item and dies | 
|  | // after the item has been sent to both outputs. | 
|  |  | 
|  | // When multiple generations of split exist, the newest | 
|  | // will service requests on one channel, which is | 
|  | // always renamed to be out[0]; the oldest will service | 
|  | // requests on the other channel, out[1].  All generations but the | 
|  | // newest hold queued data that has already been sent to | 
|  | // out[0].  When data has finally been sent to out[1], | 
|  | // a signal on the release-wait channel tells the next newer | 
|  | // generation to begin servicing out[1]. | 
|  |  | 
|  | func dosplit(in *dch, out *dch2, wait chan int ){ | 
|  | both := false	// do not service both channels | 
|  |  | 
|  | select { | 
|  | case <-out[0].req: | 
|  |  | 
|  | case <-wait: | 
|  | both = true | 
|  | select { | 
|  | case <-out[0].req: | 
|  |  | 
|  | case <-out[1].req: | 
|  | out[0],out[1] = out[1], out[0] | 
|  | } | 
|  | } | 
|  |  | 
|  | seqno++ | 
|  | in.req <- seqno | 
|  | release := make(chan  int) | 
|  | go dosplit(in, out, release) | 
|  | dat := <-in.dat | 
|  | out[0].dat <- dat | 
|  | if !both { | 
|  | <-wait | 
|  | } | 
|  | <-out[1].req | 
|  | out[1].dat <- dat | 
|  | release <- 0 | 
|  | } | 
|  |  | 
|  | func split(in *dch, out *dch2){ | 
|  | release := make(chan int) | 
|  | go dosplit(in, out, release) | 
|  | release <- 0 | 
|  | } | 
|  |  | 
|  | func put(dat item, out *dch){ | 
|  | <-out.req | 
|  | out.dat <- dat | 
|  | } | 
|  |  | 
|  | func get(in *dch) *rat { | 
|  | seqno++ | 
|  | in.req <- seqno | 
|  | return (<-in.dat).(*rat) | 
|  | } | 
|  |  | 
|  | // Get one item from each of n demand channels | 
|  |  | 
|  | func getn(in []*dch) []item { | 
|  | n:=len(in) | 
|  | if n != 2 { panic("bad n in getn") } | 
|  | req := make([] chan int, 2) | 
|  | dat := make([] chan item, 2) | 
|  | out := make([]item, 2) | 
|  | var i int | 
|  | var it item | 
|  | for i=0; i<n; i++ { | 
|  | req[i] = in[i].req | 
|  | dat[i] = nil | 
|  | } | 
|  | for n=2*n; n>0; n-- { | 
|  | seqno++ | 
|  |  | 
|  | select{ | 
|  | case req[0] <- seqno: | 
|  | dat[0] = in[0].dat | 
|  | req[0] = nil | 
|  | case req[1] <- seqno: | 
|  | dat[1] = in[1].dat | 
|  | req[1] = nil | 
|  | case it = <-dat[0]: | 
|  | out[0] = it | 
|  | dat[0] = nil | 
|  | case it = <-dat[1]: | 
|  | out[1] = it | 
|  | dat[1] = nil | 
|  | } | 
|  | } | 
|  | return out | 
|  | } | 
|  |  | 
|  | // Get one item from each of 2 demand channels | 
|  |  | 
|  | func get2(in0 *dch, in1 *dch)  []item { | 
|  | return getn([]*dch{in0, in1}) | 
|  | } | 
|  |  | 
|  | func copy(in *dch, out *dch){ | 
|  | for { | 
|  | <-out.req | 
|  | out.dat <- get(in) | 
|  | } | 
|  | } | 
|  |  | 
|  | func repeat(dat item, out *dch){ | 
|  | for { | 
|  | put(dat, out) | 
|  | } | 
|  | } | 
|  |  | 
|  | type PS *dch	// power series | 
|  | type PS2 *[2] PS // pair of power series | 
|  |  | 
|  | var Ones PS | 
|  | var Twos PS | 
|  |  | 
|  | func mkPS() *dch { | 
|  | return mkdch() | 
|  | } | 
|  |  | 
|  | func mkPS2() *dch2 { | 
|  | return mkdch2() | 
|  | } | 
|  |  | 
|  | // Conventions | 
|  | // Upper-case for power series. | 
|  | // Lower-case for rationals. | 
|  | // Input variables: U,V,... | 
|  | // Output variables: ...,Y,Z | 
|  |  | 
|  | // Integer gcd; needed for rational arithmetic | 
|  |  | 
|  | func gcd (u, v int64) int64{ | 
|  | if u < 0 { return gcd(-u, v) } | 
|  | if u == 0 { return v } | 
|  | return gcd(v%u, u) | 
|  | } | 
|  |  | 
|  | // Make a rational from two ints and from one int | 
|  |  | 
|  | func i2tor(u, v int64) *rat{ | 
|  | g := gcd(u,v) | 
|  | r := new(rat) | 
|  | if v > 0 { | 
|  | r.num = u/g | 
|  | r.den = v/g | 
|  | } else { | 
|  | r.num = -u/g | 
|  | r.den = -v/g | 
|  | } | 
|  | return r | 
|  | } | 
|  |  | 
|  | func itor(u int64) *rat{ | 
|  | return i2tor(u, 1) | 
|  | } | 
|  |  | 
|  | var zero *rat | 
|  | var one *rat | 
|  |  | 
|  |  | 
|  | // End mark and end test | 
|  |  | 
|  | var finis *rat | 
|  |  | 
|  | func end(u *rat) int64 { | 
|  | if u.den==0 { return 1 } | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | // Operations on rationals | 
|  |  | 
|  | func add(u, v *rat) *rat { | 
|  | g := gcd(u.den,v.den) | 
|  | return  i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g)) | 
|  | } | 
|  |  | 
|  | func mul(u, v *rat) *rat{ | 
|  | g1 := gcd(u.num,v.den) | 
|  | g2 := gcd(u.den,v.num) | 
|  | r := new(rat) | 
|  | r.num =(u.num/g1)*(v.num/g2) | 
|  | r.den = (u.den/g2)*(v.den/g1) | 
|  | return r | 
|  | } | 
|  |  | 
|  | func neg(u *rat) *rat{ | 
|  | return i2tor(-u.num, u.den) | 
|  | } | 
|  |  | 
|  | func sub(u, v *rat) *rat{ | 
|  | return add(u, neg(v)) | 
|  | } | 
|  |  | 
|  | func inv(u *rat) *rat{	// invert a rat | 
|  | if u.num == 0 { panic("zero divide in inv") } | 
|  | return i2tor(u.den, u.num) | 
|  | } | 
|  |  | 
|  | // print eval in floating point of PS at x=c to n terms | 
|  | func Evaln(c *rat, U PS, n int) { | 
|  | xn := float64(1) | 
|  | x := float64(c.num)/float64(c.den) | 
|  | val := float64(0) | 
|  | for i:=0; i<n; i++ { | 
|  | u := get(U) | 
|  | if end(u) != 0 { | 
|  | break | 
|  | } | 
|  | val = val + x * float64(u.num)/float64(u.den) | 
|  | xn = xn*x | 
|  | } | 
|  | print(val, "\n") | 
|  | } | 
|  |  | 
|  | // Print n terms of a power series | 
|  | func Printn(U PS, n int){ | 
|  | done := false | 
|  | for ; !done && n>0; n-- { | 
|  | u := get(U) | 
|  | if end(u) != 0 { | 
|  | done = true | 
|  | } else { | 
|  | u.pr() | 
|  | } | 
|  | } | 
|  | print(("\n")) | 
|  | } | 
|  |  | 
|  | func Print(U PS){ | 
|  | Printn(U,1000000000) | 
|  | } | 
|  |  | 
|  | // Evaluate n terms of power series U at x=c | 
|  | func eval(c *rat, U PS, n int) *rat{ | 
|  | if n==0 { return zero } | 
|  | y := get(U) | 
|  | if end(y) != 0 { return zero } | 
|  | return add(y,mul(c,eval(c,U,n-1))) | 
|  | } | 
|  |  | 
|  | // Power-series constructors return channels on which power | 
|  | // series flow.  They start an encapsulated generator that | 
|  | // puts the terms of the series on the channel. | 
|  |  | 
|  | // Make a pair of power series identical to a given power series | 
|  |  | 
|  | func Split(U PS) *dch2{ | 
|  | UU := mkdch2() | 
|  | go split(U,UU) | 
|  | return UU | 
|  | } | 
|  |  | 
|  | // Add two power series | 
|  | func Add(U, V PS) PS{ | 
|  | Z := mkPS() | 
|  | go func(U, V, Z PS){ | 
|  | var uv [] item | 
|  | for { | 
|  | <-Z.req | 
|  | uv = get2(U,V) | 
|  | switch end(uv[0].(*rat))+2*end(uv[1].(*rat)) { | 
|  | case 0: | 
|  | Z.dat <- add(uv[0].(*rat), uv[1].(*rat)) | 
|  | case 1: | 
|  | Z.dat <- uv[1] | 
|  | copy(V,Z) | 
|  | case 2: | 
|  | Z.dat <- uv[0] | 
|  | copy(U,Z) | 
|  | case 3: | 
|  | Z.dat <- finis | 
|  | } | 
|  | } | 
|  | }(U, V, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Multiply a power series by a constant | 
|  | func Cmul(c *rat,U PS) PS{ | 
|  | Z := mkPS() | 
|  | go func(c *rat, U, Z PS){ | 
|  | done := false | 
|  | for !done { | 
|  | <-Z.req | 
|  | u := get(U) | 
|  | if end(u) != 0 { | 
|  | done = true | 
|  | } else { | 
|  | Z.dat <- mul(c,u) | 
|  | } | 
|  | } | 
|  | Z.dat <- finis | 
|  | }(c, U, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Subtract | 
|  |  | 
|  | func Sub(U, V PS) PS{ | 
|  | return Add(U, Cmul(neg(one), V)) | 
|  | } | 
|  |  | 
|  | // Multiply a power series by the monomial x^n | 
|  |  | 
|  | func Monmul(U PS, n int) PS{ | 
|  | Z := mkPS() | 
|  | go func(n int, U PS, Z PS){ | 
|  | for ; n>0; n-- { put(zero,Z) } | 
|  | copy(U,Z) | 
|  | }(n, U, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Multiply by x | 
|  |  | 
|  | func Xmul(U PS) PS{ | 
|  | return Monmul(U,1) | 
|  | } | 
|  |  | 
|  | func Rep(c *rat) PS{ | 
|  | Z := mkPS() | 
|  | go repeat(c,Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Monomial c*x^n | 
|  |  | 
|  | func Mon(c *rat, n int) PS{ | 
|  | Z:=mkPS() | 
|  | go func(c *rat, n int, Z PS){ | 
|  | if(c.num!=0) { | 
|  | for ; n>0; n=n-1 { put(zero,Z) } | 
|  | put(c,Z) | 
|  | } | 
|  | put(finis,Z) | 
|  | }(c, n, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | func Shift(c *rat, U PS) PS{ | 
|  | Z := mkPS() | 
|  | go func(c *rat, U, Z PS){ | 
|  | put(c,Z) | 
|  | copy(U,Z) | 
|  | }(c, U, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ... | 
|  |  | 
|  | // Convert array of coefficients, constant term first | 
|  | // to a (finite) power series | 
|  |  | 
|  | /* | 
|  | func Poly(a [] *rat) PS{ | 
|  | Z:=mkPS() | 
|  | begin func(a [] *rat, Z PS){ | 
|  | j:=0 | 
|  | done:=0 | 
|  | for j=len(a); !done&&j>0; j=j-1) | 
|  | if(a[j-1].num!=0) done=1 | 
|  | i:=0 | 
|  | for(; i<j; i=i+1) put(a[i],Z) | 
|  | put(finis,Z) | 
|  | }() | 
|  | return Z | 
|  | } | 
|  | */ | 
|  |  | 
|  | // Multiply. The algorithm is | 
|  | //	let U = u + x*UU | 
|  | //	let V = v + x*VV | 
|  | //	then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV | 
|  |  | 
|  | func Mul(U, V PS) PS{ | 
|  | Z:=mkPS() | 
|  | go func(U, V, Z PS){ | 
|  | <-Z.req | 
|  | uv := get2(U,V) | 
|  | if end(uv[0].(*rat))!=0 || end(uv[1].(*rat)) != 0 { | 
|  | Z.dat <- finis | 
|  | } else { | 
|  | Z.dat <- mul(uv[0].(*rat),uv[1].(*rat)) | 
|  | UU := Split(U) | 
|  | VV := Split(V) | 
|  | W := Add(Cmul(uv[0].(*rat),VV[0]),Cmul(uv[1].(*rat),UU[0])) | 
|  | <-Z.req | 
|  | Z.dat <- get(W) | 
|  | copy(Add(W,Mul(UU[1],VV[1])),Z) | 
|  | } | 
|  | }(U, V, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Differentiate | 
|  |  | 
|  | func Diff(U PS) PS{ | 
|  | Z:=mkPS() | 
|  | go func(U, Z PS){ | 
|  | <-Z.req | 
|  | u := get(U) | 
|  | if end(u) == 0 { | 
|  | done:=false | 
|  | for i:=1; !done; i++ { | 
|  | u = get(U) | 
|  | if end(u) != 0 { | 
|  | done=true | 
|  | } else { | 
|  | Z.dat <- mul(itor(int64(i)),u) | 
|  | <-Z.req | 
|  | } | 
|  | } | 
|  | } | 
|  | Z.dat <- finis | 
|  | }(U, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Integrate, with const of integration | 
|  | func Integ(c *rat,U PS) PS{ | 
|  | Z:=mkPS() | 
|  | go func(c *rat, U, Z PS){ | 
|  | put(c,Z) | 
|  | done:=false | 
|  | for i:=1; !done; i++ { | 
|  | <-Z.req | 
|  | u := get(U) | 
|  | if end(u) != 0 { done= true } | 
|  | Z.dat <- mul(i2tor(1,int64(i)),u) | 
|  | } | 
|  | Z.dat <- finis | 
|  | }(c, U, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Binomial theorem (1+x)^c | 
|  |  | 
|  | func Binom(c *rat) PS{ | 
|  | Z:=mkPS() | 
|  | go func(c *rat, Z PS){ | 
|  | n := 1 | 
|  | t := itor(1) | 
|  | for c.num!=0 { | 
|  | put(t,Z) | 
|  | t = mul(mul(t,c),i2tor(1,int64(n))) | 
|  | c = sub(c,one) | 
|  | n++ | 
|  | } | 
|  | put(finis,Z) | 
|  | }(c, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Reciprocal of a power series | 
|  | //	let U = u + x*UU | 
|  | //	let Z = z + x*ZZ | 
|  | //	(u+x*UU)*(z+x*ZZ) = 1 | 
|  | //	z = 1/u | 
|  | //	u*ZZ + z*UU +x*UU*ZZ = 0 | 
|  | //	ZZ = -UU*(z+x*ZZ)/u | 
|  |  | 
|  | func Recip(U PS) PS{ | 
|  | Z:=mkPS() | 
|  | go func(U, Z PS){ | 
|  | ZZ:=mkPS2() | 
|  | <-Z.req | 
|  | z := inv(get(U)) | 
|  | Z.dat <- z | 
|  | split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ) | 
|  | copy(ZZ[1],Z) | 
|  | }(U, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Exponential of a power series with constant term 0 | 
|  | // (nonzero constant term would make nonrational coefficients) | 
|  | // bug: the constant term is simply ignored | 
|  | //	Z = exp(U) | 
|  | //	DZ = Z*DU | 
|  | //	integrate to get Z | 
|  |  | 
|  | func Exp(U PS) PS{ | 
|  | ZZ := mkPS2() | 
|  | split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ) | 
|  | return ZZ[1] | 
|  | } | 
|  |  | 
|  | // Substitute V for x in U, where the leading term of V is zero | 
|  | //	let U = u + x*UU | 
|  | //	let V = v + x*VV | 
|  | //	then S(U,V) = u + VV*S(V,UU) | 
|  | // bug: a nonzero constant term is ignored | 
|  |  | 
|  | func Subst(U, V PS) PS { | 
|  | Z:= mkPS() | 
|  | go func(U, V, Z PS) { | 
|  | VV := Split(V) | 
|  | <-Z.req | 
|  | u := get(U) | 
|  | Z.dat <- u | 
|  | if end(u) == 0 { | 
|  | if end(get(VV[0])) != 0 { | 
|  | put(finis,Z) | 
|  | } else { | 
|  | copy(Mul(VV[0],Subst(U,VV[1])),Z) | 
|  | } | 
|  | } | 
|  | }(U, V, Z) | 
|  | return Z | 
|  | } | 
|  |  | 
|  | // Monomial Substition: U(c x^n) | 
|  | // Each Ui is multiplied by c^i and followed by n-1 zeros | 
|  |  | 
|  | func MonSubst(U PS, c0 *rat, n int) PS { | 
|  | Z:= mkPS() | 
|  | go func(U, Z PS, c0 *rat, n int) { | 
|  | c := one | 
|  | for { | 
|  | <-Z.req | 
|  | u := get(U) | 
|  | Z.dat <- mul(u, c) | 
|  | c = mul(c, c0) | 
|  | if end(u) != 0 { | 
|  | Z.dat <- finis | 
|  | break | 
|  | } | 
|  | for i := 1; i < n; i++ { | 
|  | <-Z.req | 
|  | Z.dat <- zero | 
|  | } | 
|  | } | 
|  | }(U, Z, c0, n) | 
|  | return Z | 
|  | } | 
|  |  | 
|  |  | 
|  | func Init() { | 
|  | chnameserial = -1 | 
|  | seqno = 0 | 
|  | chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" | 
|  | zero = itor(0) | 
|  | one = itor(1) | 
|  | finis = i2tor(1,0) | 
|  | Ones = Rep(one) | 
|  | Twos = Rep(itor(2)) | 
|  | } | 
|  |  | 
|  | func check(U PS, c *rat, count int, str string) { | 
|  | for i := 0; i < count; i++ { | 
|  | r := get(U) | 
|  | if !r.eq(c) { | 
|  | print("got: ") | 
|  | r.pr() | 
|  | print("should get ") | 
|  | c.pr() | 
|  | print("\n") | 
|  | panic(str) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const N=10 | 
|  | func checka(U PS, a []*rat, str string) { | 
|  | for i := 0; i < N; i++ { | 
|  | check(U, a[i], 1, str) | 
|  | } | 
|  | } | 
|  |  | 
|  | func main() { | 
|  | Init() | 
|  | if len(os.Args) > 1 {  // print | 
|  | print("Ones: "); Printn(Ones, 10) | 
|  | print("Twos: "); Printn(Twos, 10) | 
|  | print("Add: "); Printn(Add(Ones, Twos), 10) | 
|  | print("Diff: "); Printn(Diff(Ones), 10) | 
|  | print("Integ: "); Printn(Integ(zero, Ones), 10) | 
|  | print("CMul: "); Printn(Cmul(neg(one), Ones), 10) | 
|  | print("Sub: "); Printn(Sub(Ones, Twos), 10) | 
|  | print("Mul: "); Printn(Mul(Ones, Ones), 10) | 
|  | print("Exp: "); Printn(Exp(Ones), 15) | 
|  | print("MonSubst: "); Printn(MonSubst(Ones, neg(one), 2), 10) | 
|  | print("ATan: "); Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10) | 
|  | } else {  // test | 
|  | check(Ones, one, 5, "Ones") | 
|  | check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones")  // 1 1 1 1 1 | 
|  | check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3 | 
|  | a := make([]*rat, N) | 
|  | d := Diff(Ones) | 
|  | for i:=0; i < N; i++ { | 
|  | a[i] = itor(int64(i+1)) | 
|  | } | 
|  | checka(d, a, "Diff")  // 1 2 3 4 5 | 
|  | in := Integ(zero, Ones) | 
|  | a[0] = zero  // integration constant | 
|  | for i:=1; i < N; i++ { | 
|  | a[i] = i2tor(1, int64(i)) | 
|  | } | 
|  | checka(in, a, "Integ")  // 0 1 1/2 1/3 1/4 1/5 | 
|  | check(Cmul(neg(one), Twos), itor(-2), 10, "CMul")  // -1 -1 -1 -1 -1 | 
|  | check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos")  // -1 -1 -1 -1 -1 | 
|  | m := Mul(Ones, Ones) | 
|  | for i:=0; i < N; i++ { | 
|  | a[i] = itor(int64(i+1)) | 
|  | } | 
|  | checka(m, a, "Mul")  // 1 2 3 4 5 | 
|  | e := Exp(Ones) | 
|  | a[0] = itor(1) | 
|  | a[1] = itor(1) | 
|  | a[2] = i2tor(3,2) | 
|  | a[3] = i2tor(13,6) | 
|  | a[4] = i2tor(73,24) | 
|  | a[5] = i2tor(167,40) | 
|  | a[6] = i2tor(4051,720) | 
|  | a[7] = i2tor(37633,5040) | 
|  | a[8] = i2tor(43817,4480) | 
|  | a[9] = i2tor(4596553,362880) | 
|  | checka(e, a, "Exp")  // 1 1 3/2 13/6 73/24 | 
|  | at := Integ(zero, MonSubst(Ones, neg(one), 2)) | 
|  | for c, i := 1, 0; i < N; i++ { | 
|  | if i%2 == 0 { | 
|  | a[i] = zero | 
|  | } else { | 
|  | a[i] = i2tor(int64(c), int64(i)) | 
|  | c *= -1 | 
|  | } | 
|  | } | 
|  | checka(at, a, "ATan");  // 0 -1 0 -1/3 0 -1/5 | 
|  | /* | 
|  | t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2))) | 
|  | a[0] = zero | 
|  | a[1] = itor(1) | 
|  | a[2] = zero | 
|  | a[3] = i2tor(1,3) | 
|  | a[4] = zero | 
|  | a[5] = i2tor(2,15) | 
|  | a[6] = zero | 
|  | a[7] = i2tor(17,315) | 
|  | a[8] = zero | 
|  | a[9] = i2tor(62,2835) | 
|  | checka(t, a, "Tan")  // 0 1 0 1/3 0 2/15 | 
|  | */ | 
|  | } | 
|  | } |