|  | // Copyright 2014 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Memory allocator. | 
|  | // | 
|  | // This was originally based on tcmalloc, but has diverged quite a bit. | 
|  | // http://goog-perftools.sourceforge.net/doc/tcmalloc.html | 
|  |  | 
|  | // The main allocator works in runs of pages. | 
|  | // Small allocation sizes (up to and including 32 kB) are | 
|  | // rounded to one of about 70 size classes, each of which | 
|  | // has its own free set of objects of exactly that size. | 
|  | // Any free page of memory can be split into a set of objects | 
|  | // of one size class, which are then managed using a free bitmap. | 
|  | // | 
|  | // The allocator's data structures are: | 
|  | // | 
|  | //	fixalloc: a free-list allocator for fixed-size off-heap objects, | 
|  | //		used to manage storage used by the allocator. | 
|  | //	mheap: the malloc heap, managed at page (8192-byte) granularity. | 
|  | //	mspan: a run of in-use pages managed by the mheap. | 
|  | //	mcentral: collects all spans of a given size class. | 
|  | //	mcache: a per-P cache of mspans with free space. | 
|  | //	mstats: allocation statistics. | 
|  | // | 
|  | // Allocating a small object proceeds up a hierarchy of caches: | 
|  | // | 
|  | //	1. Round the size up to one of the small size classes | 
|  | //	   and look in the corresponding mspan in this P's mcache. | 
|  | //	   Scan the mspan's free bitmap to find a free slot. | 
|  | //	   If there is a free slot, allocate it. | 
|  | //	   This can all be done without acquiring a lock. | 
|  | // | 
|  | //	2. If the mspan has no free slots, obtain a new mspan | 
|  | //	   from the mcentral's list of mspans of the required size | 
|  | //	   class that have free space. | 
|  | //	   Obtaining a whole span amortizes the cost of locking | 
|  | //	   the mcentral. | 
|  | // | 
|  | //	3. If the mcentral's mspan list is empty, obtain a run | 
|  | //	   of pages from the mheap to use for the mspan. | 
|  | // | 
|  | //	4. If the mheap is empty or has no page runs large enough, | 
|  | //	   allocate a new group of pages (at least 1MB) from the | 
|  | //	   operating system. Allocating a large run of pages | 
|  | //	   amortizes the cost of talking to the operating system. | 
|  | // | 
|  | // Sweeping an mspan and freeing objects on it proceeds up a similar | 
|  | // hierarchy: | 
|  | // | 
|  | //	1. If the mspan is being swept in response to allocation, it | 
|  | //	   is returned to the mcache to satisfy the allocation. | 
|  | // | 
|  | //	2. Otherwise, if the mspan still has allocated objects in it, | 
|  | //	   it is placed on the mcentral free list for the mspan's size | 
|  | //	   class. | 
|  | // | 
|  | //	3. Otherwise, if all objects in the mspan are free, the mspan's | 
|  | //	   pages are returned to the mheap and the mspan is now dead. | 
|  | // | 
|  | // Allocating and freeing a large object uses the mheap | 
|  | // directly, bypassing the mcache and mcentral. | 
|  | // | 
|  | // If mspan.needzero is false, then free object slots in the mspan are | 
|  | // already zeroed. Otherwise if needzero is true, objects are zeroed as | 
|  | // they are allocated. There are various benefits to delaying zeroing | 
|  | // this way: | 
|  | // | 
|  | //	1. Stack frame allocation can avoid zeroing altogether. | 
|  | // | 
|  | //	2. It exhibits better temporal locality, since the program is | 
|  | //	   probably about to write to the memory. | 
|  | // | 
|  | //	3. We don't zero pages that never get reused. | 
|  |  | 
|  | // Virtual memory layout | 
|  | // | 
|  | // The heap consists of a set of arenas, which are 64MB on 64-bit and | 
|  | // 4MB on 32-bit (heapArenaBytes). Each arena's start address is also | 
|  | // aligned to the arena size. | 
|  | // | 
|  | // Each arena has an associated heapArena object that stores the | 
|  | // metadata for that arena: the heap bitmap for all words in the arena | 
|  | // and the span map for all pages in the arena. heapArena objects are | 
|  | // themselves allocated off-heap. | 
|  | // | 
|  | // Since arenas are aligned, the address space can be viewed as a | 
|  | // series of arena frames. The arena map (mheap_.arenas) maps from | 
|  | // arena frame number to *heapArena, or nil for parts of the address | 
|  | // space not backed by the Go heap. The arena map is structured as a | 
|  | // two-level array consisting of a "L1" arena map and many "L2" arena | 
|  | // maps; however, since arenas are large, on many architectures, the | 
|  | // arena map consists of a single, large L2 map. | 
|  | // | 
|  | // The arena map covers the entire possible address space, allowing | 
|  | // the Go heap to use any part of the address space. The allocator | 
|  | // attempts to keep arenas contiguous so that large spans (and hence | 
|  | // large objects) can cross arenas. | 
|  |  | 
|  | package runtime | 
|  |  | 
|  | import ( | 
|  | "runtime/internal/atomic" | 
|  | "runtime/internal/math" | 
|  | "runtime/internal/sys" | 
|  | "unsafe" | 
|  | ) | 
|  |  | 
|  | const ( | 
|  | debugMalloc = false | 
|  |  | 
|  | maxTinySize   = _TinySize | 
|  | tinySizeClass = _TinySizeClass | 
|  | maxSmallSize  = _MaxSmallSize | 
|  |  | 
|  | pageShift = _PageShift | 
|  | pageSize  = _PageSize | 
|  | pageMask  = _PageMask | 
|  | // By construction, single page spans of the smallest object class | 
|  | // have the most objects per span. | 
|  | maxObjsPerSpan = pageSize / 8 | 
|  |  | 
|  | concurrentSweep = _ConcurrentSweep | 
|  |  | 
|  | _PageSize = 1 << _PageShift | 
|  | _PageMask = _PageSize - 1 | 
|  |  | 
|  | // _64bit = 1 on 64-bit systems, 0 on 32-bit systems | 
|  | _64bit = 1 << (^uintptr(0) >> 63) / 2 | 
|  |  | 
|  | // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go. | 
|  | _TinySize      = 16 | 
|  | _TinySizeClass = int8(2) | 
|  |  | 
|  | _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc | 
|  |  | 
|  | // Per-P, per order stack segment cache size. | 
|  | _StackCacheSize = 32 * 1024 | 
|  |  | 
|  | // Number of orders that get caching. Order 0 is FixedStack | 
|  | // and each successive order is twice as large. | 
|  | // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks | 
|  | // will be allocated directly. | 
|  | // Since FixedStack is different on different systems, we | 
|  | // must vary NumStackOrders to keep the same maximum cached size. | 
|  | //   OS               | FixedStack | NumStackOrders | 
|  | //   -----------------+------------+--------------- | 
|  | //   linux/darwin/bsd | 2KB        | 4 | 
|  | //   windows/32       | 4KB        | 3 | 
|  | //   windows/64       | 8KB        | 2 | 
|  | //   plan9            | 4KB        | 3 | 
|  | _NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9 | 
|  |  | 
|  | // heapAddrBits is the number of bits in a heap address. On | 
|  | // amd64, addresses are sign-extended beyond heapAddrBits. On | 
|  | // other arches, they are zero-extended. | 
|  | // | 
|  | // On most 64-bit platforms, we limit this to 48 bits based on a | 
|  | // combination of hardware and OS limitations. | 
|  | // | 
|  | // amd64 hardware limits addresses to 48 bits, sign-extended | 
|  | // to 64 bits. Addresses where the top 16 bits are not either | 
|  | // all 0 or all 1 are "non-canonical" and invalid. Because of | 
|  | // these "negative" addresses, we offset addresses by 1<<47 | 
|  | // (arenaBaseOffset) on amd64 before computing indexes into | 
|  | // the heap arenas index. In 2017, amd64 hardware added | 
|  | // support for 57 bit addresses; however, currently only Linux | 
|  | // supports this extension and the kernel will never choose an | 
|  | // address above 1<<47 unless mmap is called with a hint | 
|  | // address above 1<<47 (which we never do). | 
|  | // | 
|  | // arm64 hardware (as of ARMv8) limits user addresses to 48 | 
|  | // bits, in the range [0, 1<<48). | 
|  | // | 
|  | // ppc64, mips64, and s390x support arbitrary 64 bit addresses | 
|  | // in hardware. On Linux, Go leans on stricter OS limits. Based | 
|  | // on Linux's processor.h, the user address space is limited as | 
|  | // follows on 64-bit architectures: | 
|  | // | 
|  | // Architecture  Name              Maximum Value (exclusive) | 
|  | // --------------------------------------------------------------------- | 
|  | // amd64         TASK_SIZE_MAX     0x007ffffffff000 (47 bit addresses) | 
|  | // arm64         TASK_SIZE_64      0x01000000000000 (48 bit addresses) | 
|  | // ppc64{,le}    TASK_SIZE_USER64  0x00400000000000 (46 bit addresses) | 
|  | // mips64{,le}   TASK_SIZE64       0x00010000000000 (40 bit addresses) | 
|  | // s390x         TASK_SIZE         1<<64 (64 bit addresses) | 
|  | // | 
|  | // These limits may increase over time, but are currently at | 
|  | // most 48 bits except on s390x. On all architectures, Linux | 
|  | // starts placing mmap'd regions at addresses that are | 
|  | // significantly below 48 bits, so even if it's possible to | 
|  | // exceed Go's 48 bit limit, it's extremely unlikely in | 
|  | // practice. | 
|  | // | 
|  | // On 32-bit platforms, we accept the full 32-bit address | 
|  | // space because doing so is cheap. | 
|  | // mips32 only has access to the low 2GB of virtual memory, so | 
|  | // we further limit it to 31 bits. | 
|  | // | 
|  | // On darwin/arm64, although 64-bit pointers are presumably | 
|  | // available, pointers are truncated to 33 bits. Furthermore, | 
|  | // only the top 4 GiB of the address space are actually available | 
|  | // to the application, but we allow the whole 33 bits anyway for | 
|  | // simplicity. | 
|  | // TODO(mknyszek): Consider limiting it to 32 bits and using | 
|  | // arenaBaseOffset to offset into the top 4 GiB. | 
|  | // | 
|  | // WebAssembly currently has a limit of 4GB linear memory. | 
|  | heapAddrBits = (_64bit*(1-sys.GoarchWasm)*(1-sys.GoosDarwin*sys.GoarchArm64))*48 + (1-_64bit+sys.GoarchWasm)*(32-(sys.GoarchMips+sys.GoarchMipsle)) + 33*sys.GoosDarwin*sys.GoarchArm64 | 
|  |  | 
|  | // maxAlloc is the maximum size of an allocation. On 64-bit, | 
|  | // it's theoretically possible to allocate 1<<heapAddrBits bytes. On | 
|  | // 32-bit, however, this is one less than 1<<32 because the | 
|  | // number of bytes in the address space doesn't actually fit | 
|  | // in a uintptr. | 
|  | maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1 | 
|  |  | 
|  | // The number of bits in a heap address, the size of heap | 
|  | // arenas, and the L1 and L2 arena map sizes are related by | 
|  | // | 
|  | //   (1 << addr bits) = arena size * L1 entries * L2 entries | 
|  | // | 
|  | // Currently, we balance these as follows: | 
|  | // | 
|  | //       Platform  Addr bits  Arena size  L1 entries   L2 entries | 
|  | // --------------  ---------  ----------  ----------  ----------- | 
|  | //       */64-bit         48        64MB           1    4M (32MB) | 
|  | // windows/64-bit         48         4MB          64    1M  (8MB) | 
|  | //       */32-bit         32         4MB           1  1024  (4KB) | 
|  | //     */mips(le)         31         4MB           1   512  (2KB) | 
|  |  | 
|  | // heapArenaBytes is the size of a heap arena. The heap | 
|  | // consists of mappings of size heapArenaBytes, aligned to | 
|  | // heapArenaBytes. The initial heap mapping is one arena. | 
|  | // | 
|  | // This is currently 64MB on 64-bit non-Windows and 4MB on | 
|  | // 32-bit and on Windows. We use smaller arenas on Windows | 
|  | // because all committed memory is charged to the process, | 
|  | // even if it's not touched. Hence, for processes with small | 
|  | // heaps, the mapped arena space needs to be commensurate. | 
|  | // This is particularly important with the race detector, | 
|  | // since it significantly amplifies the cost of committed | 
|  | // memory. | 
|  | heapArenaBytes = 1 << logHeapArenaBytes | 
|  |  | 
|  | // logHeapArenaBytes is log_2 of heapArenaBytes. For clarity, | 
|  | // prefer using heapArenaBytes where possible (we need the | 
|  | // constant to compute some other constants). | 
|  | logHeapArenaBytes = (6+20)*(_64bit*(1-sys.GoosWindows)*(1-sys.GoarchWasm)) + (2+20)*(_64bit*sys.GoosWindows) + (2+20)*(1-_64bit) + (2+20)*sys.GoarchWasm | 
|  |  | 
|  | // heapArenaBitmapBytes is the size of each heap arena's bitmap. | 
|  | heapArenaBitmapBytes = heapArenaBytes / (sys.PtrSize * 8 / 2) | 
|  |  | 
|  | pagesPerArena = heapArenaBytes / pageSize | 
|  |  | 
|  | // arenaL1Bits is the number of bits of the arena number | 
|  | // covered by the first level arena map. | 
|  | // | 
|  | // This number should be small, since the first level arena | 
|  | // map requires PtrSize*(1<<arenaL1Bits) of space in the | 
|  | // binary's BSS. It can be zero, in which case the first level | 
|  | // index is effectively unused. There is a performance benefit | 
|  | // to this, since the generated code can be more efficient, | 
|  | // but comes at the cost of having a large L2 mapping. | 
|  | // | 
|  | // We use the L1 map on 64-bit Windows because the arena size | 
|  | // is small, but the address space is still 48 bits, and | 
|  | // there's a high cost to having a large L2. | 
|  | arenaL1Bits = 6 * (_64bit * sys.GoosWindows) | 
|  |  | 
|  | // arenaL2Bits is the number of bits of the arena number | 
|  | // covered by the second level arena index. | 
|  | // | 
|  | // The size of each arena map allocation is proportional to | 
|  | // 1<<arenaL2Bits, so it's important that this not be too | 
|  | // large. 48 bits leads to 32MB arena index allocations, which | 
|  | // is about the practical threshold. | 
|  | arenaL2Bits = heapAddrBits - logHeapArenaBytes - arenaL1Bits | 
|  |  | 
|  | // arenaL1Shift is the number of bits to shift an arena frame | 
|  | // number by to compute an index into the first level arena map. | 
|  | arenaL1Shift = arenaL2Bits | 
|  |  | 
|  | // arenaBits is the total bits in a combined arena map index. | 
|  | // This is split between the index into the L1 arena map and | 
|  | // the L2 arena map. | 
|  | arenaBits = arenaL1Bits + arenaL2Bits | 
|  |  | 
|  | // arenaBaseOffset is the pointer value that corresponds to | 
|  | // index 0 in the heap arena map. | 
|  | // | 
|  | // On amd64, the address space is 48 bits, sign extended to 64 | 
|  | // bits. This offset lets us handle "negative" addresses (or | 
|  | // high addresses if viewed as unsigned). | 
|  | // | 
|  | // On aix/ppc64, this offset allows to keep the heapAddrBits to | 
|  | // 48. Otherwize, it would be 60 in order to handle mmap addresses | 
|  | // (in range 0x0a00000000000000 - 0x0afffffffffffff). But in this | 
|  | // case, the memory reserved in (s *pageAlloc).init for chunks | 
|  | // is causing important slowdowns. | 
|  | // | 
|  | // On other platforms, the user address space is contiguous | 
|  | // and starts at 0, so no offset is necessary. | 
|  | arenaBaseOffset = 0xffff800000000000*sys.GoarchAmd64 + 0x0a00000000000000*sys.GoosAix | 
|  | // A typed version of this constant that will make it into DWARF (for viewcore). | 
|  | arenaBaseOffsetUintptr = uintptr(arenaBaseOffset) | 
|  |  | 
|  | // Max number of threads to run garbage collection. | 
|  | // 2, 3, and 4 are all plausible maximums depending | 
|  | // on the hardware details of the machine. The garbage | 
|  | // collector scales well to 32 cpus. | 
|  | _MaxGcproc = 32 | 
|  |  | 
|  | // minLegalPointer is the smallest possible legal pointer. | 
|  | // This is the smallest possible architectural page size, | 
|  | // since we assume that the first page is never mapped. | 
|  | // | 
|  | // This should agree with minZeroPage in the compiler. | 
|  | minLegalPointer uintptr = 4096 | 
|  | ) | 
|  |  | 
|  | // physPageSize is the size in bytes of the OS's physical pages. | 
|  | // Mapping and unmapping operations must be done at multiples of | 
|  | // physPageSize. | 
|  | // | 
|  | // This must be set by the OS init code (typically in osinit) before | 
|  | // mallocinit. | 
|  | var physPageSize uintptr | 
|  |  | 
|  | // physHugePageSize is the size in bytes of the OS's default physical huge | 
|  | // page size whose allocation is opaque to the application. It is assumed | 
|  | // and verified to be a power of two. | 
|  | // | 
|  | // If set, this must be set by the OS init code (typically in osinit) before | 
|  | // mallocinit. However, setting it at all is optional, and leaving the default | 
|  | // value is always safe (though potentially less efficient). | 
|  | // | 
|  | // Since physHugePageSize is always assumed to be a power of two, | 
|  | // physHugePageShift is defined as physHugePageSize == 1 << physHugePageShift. | 
|  | // The purpose of physHugePageShift is to avoid doing divisions in | 
|  | // performance critical functions. | 
|  | var ( | 
|  | physHugePageSize  uintptr | 
|  | physHugePageShift uint | 
|  | ) | 
|  |  | 
|  | // OS memory management abstraction layer | 
|  | // | 
|  | // Regions of the address space managed by the runtime may be in one of four | 
|  | // states at any given time: | 
|  | // 1) None - Unreserved and unmapped, the default state of any region. | 
|  | // 2) Reserved - Owned by the runtime, but accessing it would cause a fault. | 
|  | //               Does not count against the process' memory footprint. | 
|  | // 3) Prepared - Reserved, intended not to be backed by physical memory (though | 
|  | //               an OS may implement this lazily). Can transition efficiently to | 
|  | //               Ready. Accessing memory in such a region is undefined (may | 
|  | //               fault, may give back unexpected zeroes, etc.). | 
|  | // 4) Ready - may be accessed safely. | 
|  | // | 
|  | // This set of states is more than is strictly necessary to support all the | 
|  | // currently supported platforms. One could get by with just None, Reserved, and | 
|  | // Ready. However, the Prepared state gives us flexibility for performance | 
|  | // purposes. For example, on POSIX-y operating systems, Reserved is usually a | 
|  | // private anonymous mmap'd region with PROT_NONE set, and to transition | 
|  | // to Ready would require setting PROT_READ|PROT_WRITE. However the | 
|  | // underspecification of Prepared lets us use just MADV_FREE to transition from | 
|  | // Ready to Prepared. Thus with the Prepared state we can set the permission | 
|  | // bits just once early on, we can efficiently tell the OS that it's free to | 
|  | // take pages away from us when we don't strictly need them. | 
|  | // | 
|  | // For each OS there is a common set of helpers defined that transition | 
|  | // memory regions between these states. The helpers are as follows: | 
|  | // | 
|  | // sysAlloc transitions an OS-chosen region of memory from None to Ready. | 
|  | // More specifically, it obtains a large chunk of zeroed memory from the | 
|  | // operating system, typically on the order of a hundred kilobytes | 
|  | // or a megabyte. This memory is always immediately available for use. | 
|  | // | 
|  | // sysFree transitions a memory region from any state to None. Therefore, it | 
|  | // returns memory unconditionally. It is used if an out-of-memory error has been | 
|  | // detected midway through an allocation or to carve out an aligned section of | 
|  | // the address space. It is okay if sysFree is a no-op only if sysReserve always | 
|  | // returns a memory region aligned to the heap allocator's alignment | 
|  | // restrictions. | 
|  | // | 
|  | // sysReserve transitions a memory region from None to Reserved. It reserves | 
|  | // address space in such a way that it would cause a fatal fault upon access | 
|  | // (either via permissions or not committing the memory). Such a reservation is | 
|  | // thus never backed by physical memory. | 
|  | // If the pointer passed to it is non-nil, the caller wants the | 
|  | // reservation there, but sysReserve can still choose another | 
|  | // location if that one is unavailable. | 
|  | // NOTE: sysReserve returns OS-aligned memory, but the heap allocator | 
|  | // may use larger alignment, so the caller must be careful to realign the | 
|  | // memory obtained by sysReserve. | 
|  | // | 
|  | // sysMap transitions a memory region from Reserved to Prepared. It ensures the | 
|  | // memory region can be efficiently transitioned to Ready. | 
|  | // | 
|  | // sysUsed transitions a memory region from Prepared to Ready. It notifies the | 
|  | // operating system that the memory region is needed and ensures that the region | 
|  | // may be safely accessed. This is typically a no-op on systems that don't have | 
|  | // an explicit commit step and hard over-commit limits, but is critical on | 
|  | // Windows, for example. | 
|  | // | 
|  | // sysUnused transitions a memory region from Ready to Prepared. It notifies the | 
|  | // operating system that the physical pages backing this memory region are no | 
|  | // longer needed and can be reused for other purposes. The contents of a | 
|  | // sysUnused memory region are considered forfeit and the region must not be | 
|  | // accessed again until sysUsed is called. | 
|  | // | 
|  | // sysFault transitions a memory region from Ready or Prepared to Reserved. It | 
|  | // marks a region such that it will always fault if accessed. Used only for | 
|  | // debugging the runtime. | 
|  |  | 
|  | func mallocinit() { | 
|  | if class_to_size[_TinySizeClass] != _TinySize { | 
|  | throw("bad TinySizeClass") | 
|  | } | 
|  |  | 
|  | testdefersizes() | 
|  |  | 
|  | if heapArenaBitmapBytes&(heapArenaBitmapBytes-1) != 0 { | 
|  | // heapBits expects modular arithmetic on bitmap | 
|  | // addresses to work. | 
|  | throw("heapArenaBitmapBytes not a power of 2") | 
|  | } | 
|  |  | 
|  | // Copy class sizes out for statistics table. | 
|  | for i := range class_to_size { | 
|  | memstats.by_size[i].size = uint32(class_to_size[i]) | 
|  | } | 
|  |  | 
|  | // Check physPageSize. | 
|  | if physPageSize == 0 { | 
|  | // The OS init code failed to fetch the physical page size. | 
|  | throw("failed to get system page size") | 
|  | } | 
|  | if physPageSize > maxPhysPageSize { | 
|  | print("system page size (", physPageSize, ") is larger than maximum page size (", maxPhysPageSize, ")\n") | 
|  | throw("bad system page size") | 
|  | } | 
|  | if physPageSize < minPhysPageSize { | 
|  | print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n") | 
|  | throw("bad system page size") | 
|  | } | 
|  | if physPageSize&(physPageSize-1) != 0 { | 
|  | print("system page size (", physPageSize, ") must be a power of 2\n") | 
|  | throw("bad system page size") | 
|  | } | 
|  | if physHugePageSize&(physHugePageSize-1) != 0 { | 
|  | print("system huge page size (", physHugePageSize, ") must be a power of 2\n") | 
|  | throw("bad system huge page size") | 
|  | } | 
|  | if physHugePageSize > maxPhysHugePageSize { | 
|  | // physHugePageSize is greater than the maximum supported huge page size. | 
|  | // Don't throw here, like in the other cases, since a system configured | 
|  | // in this way isn't wrong, we just don't have the code to support them. | 
|  | // Instead, silently set the huge page size to zero. | 
|  | physHugePageSize = 0 | 
|  | } | 
|  | if physHugePageSize != 0 { | 
|  | // Since physHugePageSize is a power of 2, it suffices to increase | 
|  | // physHugePageShift until 1<<physHugePageShift == physHugePageSize. | 
|  | for 1<<physHugePageShift != physHugePageSize { | 
|  | physHugePageShift++ | 
|  | } | 
|  | } | 
|  | if pagesPerArena%pagesPerSpanRoot != 0 { | 
|  | print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerSpanRoot (", pagesPerSpanRoot, ")\n") | 
|  | throw("bad pagesPerSpanRoot") | 
|  | } | 
|  | if pagesPerArena%pagesPerReclaimerChunk != 0 { | 
|  | print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerReclaimerChunk (", pagesPerReclaimerChunk, ")\n") | 
|  | throw("bad pagesPerReclaimerChunk") | 
|  | } | 
|  |  | 
|  | // Initialize the heap. | 
|  | mheap_.init() | 
|  | mcache0 = allocmcache() | 
|  | lockInit(&gcBitsArenas.lock, lockRankGcBitsArenas) | 
|  | lockInit(&proflock, lockRankProf) | 
|  | lockInit(&globalAlloc.mutex, lockRankGlobalAlloc) | 
|  |  | 
|  | // Create initial arena growth hints. | 
|  | if sys.PtrSize == 8 { | 
|  | // On a 64-bit machine, we pick the following hints | 
|  | // because: | 
|  | // | 
|  | // 1. Starting from the middle of the address space | 
|  | // makes it easier to grow out a contiguous range | 
|  | // without running in to some other mapping. | 
|  | // | 
|  | // 2. This makes Go heap addresses more easily | 
|  | // recognizable when debugging. | 
|  | // | 
|  | // 3. Stack scanning in gccgo is still conservative, | 
|  | // so it's important that addresses be distinguishable | 
|  | // from other data. | 
|  | // | 
|  | // Starting at 0x00c0 means that the valid memory addresses | 
|  | // will begin 0x00c0, 0x00c1, ... | 
|  | // In little-endian, that's c0 00, c1 00, ... None of those are valid | 
|  | // UTF-8 sequences, and they are otherwise as far away from | 
|  | // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 | 
|  | // addresses. An earlier attempt to use 0x11f8 caused out of memory errors | 
|  | // on OS X during thread allocations.  0x00c0 causes conflicts with | 
|  | // AddressSanitizer which reserves all memory up to 0x0100. | 
|  | // These choices reduce the odds of a conservative garbage collector | 
|  | // not collecting memory because some non-pointer block of memory | 
|  | // had a bit pattern that matched a memory address. | 
|  | // | 
|  | // However, on arm64, we ignore all this advice above and slam the | 
|  | // allocation at 0x40 << 32 because when using 4k pages with 3-level | 
|  | // translation buffers, the user address space is limited to 39 bits | 
|  | // On darwin/arm64, the address space is even smaller. | 
|  | // | 
|  | // On AIX, mmaps starts at 0x0A00000000000000 for 64-bit. | 
|  | // processes. | 
|  | for i := 0x7f; i >= 0; i-- { | 
|  | var p uintptr | 
|  | switch { | 
|  | case GOARCH == "arm64" && GOOS == "darwin": | 
|  | p = uintptr(i)<<40 | uintptrMask&(0x0013<<28) | 
|  | case GOARCH == "arm64": | 
|  | p = uintptr(i)<<40 | uintptrMask&(0x0040<<32) | 
|  | case GOOS == "aix": | 
|  | if i == 0 { | 
|  | // We don't use addresses directly after 0x0A00000000000000 | 
|  | // to avoid collisions with others mmaps done by non-go programs. | 
|  | continue | 
|  | } | 
|  | p = uintptr(i)<<40 | uintptrMask&(0xa0<<52) | 
|  | case raceenabled: | 
|  | // The TSAN runtime requires the heap | 
|  | // to be in the range [0x00c000000000, | 
|  | // 0x00e000000000). | 
|  | p = uintptr(i)<<32 | uintptrMask&(0x00c0<<32) | 
|  | if p >= uintptrMask&0x00e000000000 { | 
|  | continue | 
|  | } | 
|  | default: | 
|  | p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32) | 
|  | } | 
|  | hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) | 
|  | hint.addr = p | 
|  | hint.next, mheap_.arenaHints = mheap_.arenaHints, hint | 
|  | } | 
|  | } else { | 
|  | // On a 32-bit machine, we're much more concerned | 
|  | // about keeping the usable heap contiguous. | 
|  | // Hence: | 
|  | // | 
|  | // 1. We reserve space for all heapArenas up front so | 
|  | // they don't get interleaved with the heap. They're | 
|  | // ~258MB, so this isn't too bad. (We could reserve a | 
|  | // smaller amount of space up front if this is a | 
|  | // problem.) | 
|  | // | 
|  | // 2. We hint the heap to start right above the end of | 
|  | // the binary so we have the best chance of keeping it | 
|  | // contiguous. | 
|  | // | 
|  | // 3. We try to stake out a reasonably large initial | 
|  | // heap reservation. | 
|  |  | 
|  | const arenaMetaSize = (1 << arenaBits) * unsafe.Sizeof(heapArena{}) | 
|  | meta := uintptr(sysReserve(nil, arenaMetaSize)) | 
|  | if meta != 0 { | 
|  | mheap_.heapArenaAlloc.init(meta, arenaMetaSize) | 
|  | } | 
|  |  | 
|  | // We want to start the arena low, but if we're linked | 
|  | // against C code, it's possible global constructors | 
|  | // have called malloc and adjusted the process' brk. | 
|  | // Query the brk so we can avoid trying to map the | 
|  | // region over it (which will cause the kernel to put | 
|  | // the region somewhere else, likely at a high | 
|  | // address). | 
|  | procBrk := sbrk0() | 
|  |  | 
|  | // If we ask for the end of the data segment but the | 
|  | // operating system requires a little more space | 
|  | // before we can start allocating, it will give out a | 
|  | // slightly higher pointer. Except QEMU, which is | 
|  | // buggy, as usual: it won't adjust the pointer | 
|  | // upward. So adjust it upward a little bit ourselves: | 
|  | // 1/4 MB to get away from the running binary image. | 
|  | p := firstmoduledata.end | 
|  | if p < procBrk { | 
|  | p = procBrk | 
|  | } | 
|  | if mheap_.heapArenaAlloc.next <= p && p < mheap_.heapArenaAlloc.end { | 
|  | p = mheap_.heapArenaAlloc.end | 
|  | } | 
|  | p = alignUp(p+(256<<10), heapArenaBytes) | 
|  | // Because we're worried about fragmentation on | 
|  | // 32-bit, we try to make a large initial reservation. | 
|  | arenaSizes := []uintptr{ | 
|  | 512 << 20, | 
|  | 256 << 20, | 
|  | 128 << 20, | 
|  | } | 
|  | for _, arenaSize := range arenaSizes { | 
|  | a, size := sysReserveAligned(unsafe.Pointer(p), arenaSize, heapArenaBytes) | 
|  | if a != nil { | 
|  | mheap_.arena.init(uintptr(a), size) | 
|  | p = mheap_.arena.end // For hint below | 
|  | break | 
|  | } | 
|  | } | 
|  | hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) | 
|  | hint.addr = p | 
|  | hint.next, mheap_.arenaHints = mheap_.arenaHints, hint | 
|  | } | 
|  | } | 
|  |  | 
|  | // sysAlloc allocates heap arena space for at least n bytes. The | 
|  | // returned pointer is always heapArenaBytes-aligned and backed by | 
|  | // h.arenas metadata. The returned size is always a multiple of | 
|  | // heapArenaBytes. sysAlloc returns nil on failure. | 
|  | // There is no corresponding free function. | 
|  | // | 
|  | // sysAlloc returns a memory region in the Prepared state. This region must | 
|  | // be transitioned to Ready before use. | 
|  | // | 
|  | // h must be locked. | 
|  | func (h *mheap) sysAlloc(n uintptr) (v unsafe.Pointer, size uintptr) { | 
|  | n = alignUp(n, heapArenaBytes) | 
|  |  | 
|  | // First, try the arena pre-reservation. | 
|  | v = h.arena.alloc(n, heapArenaBytes, &memstats.heap_sys) | 
|  | if v != nil { | 
|  | size = n | 
|  | goto mapped | 
|  | } | 
|  |  | 
|  | // Try to grow the heap at a hint address. | 
|  | for h.arenaHints != nil { | 
|  | hint := h.arenaHints | 
|  | p := hint.addr | 
|  | if hint.down { | 
|  | p -= n | 
|  | } | 
|  | if p+n < p { | 
|  | // We can't use this, so don't ask. | 
|  | v = nil | 
|  | } else if arenaIndex(p+n-1) >= 1<<arenaBits { | 
|  | // Outside addressable heap. Can't use. | 
|  | v = nil | 
|  | } else { | 
|  | v = sysReserve(unsafe.Pointer(p), n) | 
|  | } | 
|  | if p == uintptr(v) { | 
|  | // Success. Update the hint. | 
|  | if !hint.down { | 
|  | p += n | 
|  | } | 
|  | hint.addr = p | 
|  | size = n | 
|  | break | 
|  | } | 
|  | // Failed. Discard this hint and try the next. | 
|  | // | 
|  | // TODO: This would be cleaner if sysReserve could be | 
|  | // told to only return the requested address. In | 
|  | // particular, this is already how Windows behaves, so | 
|  | // it would simplify things there. | 
|  | if v != nil { | 
|  | sysFree(v, n, nil) | 
|  | } | 
|  | h.arenaHints = hint.next | 
|  | h.arenaHintAlloc.free(unsafe.Pointer(hint)) | 
|  | } | 
|  |  | 
|  | if size == 0 { | 
|  | if raceenabled { | 
|  | // The race detector assumes the heap lives in | 
|  | // [0x00c000000000, 0x00e000000000), but we | 
|  | // just ran out of hints in this region. Give | 
|  | // a nice failure. | 
|  | throw("too many address space collisions for -race mode") | 
|  | } | 
|  |  | 
|  | // All of the hints failed, so we'll take any | 
|  | // (sufficiently aligned) address the kernel will give | 
|  | // us. | 
|  | v, size = sysReserveAligned(nil, n, heapArenaBytes) | 
|  | if v == nil { | 
|  | return nil, 0 | 
|  | } | 
|  |  | 
|  | // Create new hints for extending this region. | 
|  | hint := (*arenaHint)(h.arenaHintAlloc.alloc()) | 
|  | hint.addr, hint.down = uintptr(v), true | 
|  | hint.next, mheap_.arenaHints = mheap_.arenaHints, hint | 
|  | hint = (*arenaHint)(h.arenaHintAlloc.alloc()) | 
|  | hint.addr = uintptr(v) + size | 
|  | hint.next, mheap_.arenaHints = mheap_.arenaHints, hint | 
|  | } | 
|  |  | 
|  | // Check for bad pointers or pointers we can't use. | 
|  | { | 
|  | var bad string | 
|  | p := uintptr(v) | 
|  | if p+size < p { | 
|  | bad = "region exceeds uintptr range" | 
|  | } else if arenaIndex(p) >= 1<<arenaBits { | 
|  | bad = "base outside usable address space" | 
|  | } else if arenaIndex(p+size-1) >= 1<<arenaBits { | 
|  | bad = "end outside usable address space" | 
|  | } | 
|  | if bad != "" { | 
|  | // This should be impossible on most architectures, | 
|  | // but it would be really confusing to debug. | 
|  | print("runtime: memory allocated by OS [", hex(p), ", ", hex(p+size), ") not in usable address space: ", bad, "\n") | 
|  | throw("memory reservation exceeds address space limit") | 
|  | } | 
|  | } | 
|  |  | 
|  | if uintptr(v)&(heapArenaBytes-1) != 0 { | 
|  | throw("misrounded allocation in sysAlloc") | 
|  | } | 
|  |  | 
|  | // Transition from Reserved to Prepared. | 
|  | sysMap(v, size, &memstats.heap_sys) | 
|  |  | 
|  | mapped: | 
|  | // Create arena metadata. | 
|  | for ri := arenaIndex(uintptr(v)); ri <= arenaIndex(uintptr(v)+size-1); ri++ { | 
|  | l2 := h.arenas[ri.l1()] | 
|  | if l2 == nil { | 
|  | // Allocate an L2 arena map. | 
|  | l2 = (*[1 << arenaL2Bits]*heapArena)(persistentalloc(unsafe.Sizeof(*l2), sys.PtrSize, nil)) | 
|  | if l2 == nil { | 
|  | throw("out of memory allocating heap arena map") | 
|  | } | 
|  | atomic.StorepNoWB(unsafe.Pointer(&h.arenas[ri.l1()]), unsafe.Pointer(l2)) | 
|  | } | 
|  |  | 
|  | if l2[ri.l2()] != nil { | 
|  | throw("arena already initialized") | 
|  | } | 
|  | var r *heapArena | 
|  | r = (*heapArena)(h.heapArenaAlloc.alloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gc_sys)) | 
|  | if r == nil { | 
|  | r = (*heapArena)(persistentalloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gc_sys)) | 
|  | if r == nil { | 
|  | throw("out of memory allocating heap arena metadata") | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the arena to the arenas list. | 
|  | if len(h.allArenas) == cap(h.allArenas) { | 
|  | size := 2 * uintptr(cap(h.allArenas)) * sys.PtrSize | 
|  | if size == 0 { | 
|  | size = physPageSize | 
|  | } | 
|  | newArray := (*notInHeap)(persistentalloc(size, sys.PtrSize, &memstats.gc_sys)) | 
|  | if newArray == nil { | 
|  | throw("out of memory allocating allArenas") | 
|  | } | 
|  | oldSlice := h.allArenas | 
|  | *(*notInHeapSlice)(unsafe.Pointer(&h.allArenas)) = notInHeapSlice{newArray, len(h.allArenas), int(size / sys.PtrSize)} | 
|  | copy(h.allArenas, oldSlice) | 
|  | // Do not free the old backing array because | 
|  | // there may be concurrent readers. Since we | 
|  | // double the array each time, this can lead | 
|  | // to at most 2x waste. | 
|  | } | 
|  | h.allArenas = h.allArenas[:len(h.allArenas)+1] | 
|  | h.allArenas[len(h.allArenas)-1] = ri | 
|  |  | 
|  | // Store atomically just in case an object from the | 
|  | // new heap arena becomes visible before the heap lock | 
|  | // is released (which shouldn't happen, but there's | 
|  | // little downside to this). | 
|  | atomic.StorepNoWB(unsafe.Pointer(&l2[ri.l2()]), unsafe.Pointer(r)) | 
|  | } | 
|  |  | 
|  | // Tell the race detector about the new heap memory. | 
|  | if raceenabled { | 
|  | racemapshadow(v, size) | 
|  | } | 
|  |  | 
|  | return | 
|  | } | 
|  |  | 
|  | // sysReserveAligned is like sysReserve, but the returned pointer is | 
|  | // aligned to align bytes. It may reserve either n or n+align bytes, | 
|  | // so it returns the size that was reserved. | 
|  | func sysReserveAligned(v unsafe.Pointer, size, align uintptr) (unsafe.Pointer, uintptr) { | 
|  | // Since the alignment is rather large in uses of this | 
|  | // function, we're not likely to get it by chance, so we ask | 
|  | // for a larger region and remove the parts we don't need. | 
|  | retries := 0 | 
|  | retry: | 
|  | p := uintptr(sysReserve(v, size+align)) | 
|  | switch { | 
|  | case p == 0: | 
|  | return nil, 0 | 
|  | case p&(align-1) == 0: | 
|  | // We got lucky and got an aligned region, so we can | 
|  | // use the whole thing. | 
|  | return unsafe.Pointer(p), size + align | 
|  | case GOOS == "windows": | 
|  | // On Windows we can't release pieces of a | 
|  | // reservation, so we release the whole thing and | 
|  | // re-reserve the aligned sub-region. This may race, | 
|  | // so we may have to try again. | 
|  | sysFree(unsafe.Pointer(p), size+align, nil) | 
|  | p = alignUp(p, align) | 
|  | p2 := sysReserve(unsafe.Pointer(p), size) | 
|  | if p != uintptr(p2) { | 
|  | // Must have raced. Try again. | 
|  | sysFree(p2, size, nil) | 
|  | if retries++; retries == 100 { | 
|  | throw("failed to allocate aligned heap memory; too many retries") | 
|  | } | 
|  | goto retry | 
|  | } | 
|  | // Success. | 
|  | return p2, size | 
|  | default: | 
|  | // Trim off the unaligned parts. | 
|  | pAligned := alignUp(p, align) | 
|  | sysFree(unsafe.Pointer(p), pAligned-p, nil) | 
|  | end := pAligned + size | 
|  | endLen := (p + size + align) - end | 
|  | if endLen > 0 { | 
|  | sysFree(unsafe.Pointer(end), endLen, nil) | 
|  | } | 
|  | return unsafe.Pointer(pAligned), size | 
|  | } | 
|  | } | 
|  |  | 
|  | // base address for all 0-byte allocations | 
|  | var zerobase uintptr | 
|  |  | 
|  | // nextFreeFast returns the next free object if one is quickly available. | 
|  | // Otherwise it returns 0. | 
|  | func nextFreeFast(s *mspan) gclinkptr { | 
|  | theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache? | 
|  | if theBit < 64 { | 
|  | result := s.freeindex + uintptr(theBit) | 
|  | if result < s.nelems { | 
|  | freeidx := result + 1 | 
|  | if freeidx%64 == 0 && freeidx != s.nelems { | 
|  | return 0 | 
|  | } | 
|  | s.allocCache >>= uint(theBit + 1) | 
|  | s.freeindex = freeidx | 
|  | s.allocCount++ | 
|  | return gclinkptr(result*s.elemsize + s.base()) | 
|  | } | 
|  | } | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | // nextFree returns the next free object from the cached span if one is available. | 
|  | // Otherwise it refills the cache with a span with an available object and | 
|  | // returns that object along with a flag indicating that this was a heavy | 
|  | // weight allocation. If it is a heavy weight allocation the caller must | 
|  | // determine whether a new GC cycle needs to be started or if the GC is active | 
|  | // whether this goroutine needs to assist the GC. | 
|  | // | 
|  | // Must run in a non-preemptible context since otherwise the owner of | 
|  | // c could change. | 
|  | func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) { | 
|  | s = c.alloc[spc] | 
|  | shouldhelpgc = false | 
|  | freeIndex := s.nextFreeIndex() | 
|  | if freeIndex == s.nelems { | 
|  | // The span is full. | 
|  | if uintptr(s.allocCount) != s.nelems { | 
|  | println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems) | 
|  | throw("s.allocCount != s.nelems && freeIndex == s.nelems") | 
|  | } | 
|  | c.refill(spc) | 
|  | shouldhelpgc = true | 
|  | s = c.alloc[spc] | 
|  |  | 
|  | freeIndex = s.nextFreeIndex() | 
|  | } | 
|  |  | 
|  | if freeIndex >= s.nelems { | 
|  | throw("freeIndex is not valid") | 
|  | } | 
|  |  | 
|  | v = gclinkptr(freeIndex*s.elemsize + s.base()) | 
|  | s.allocCount++ | 
|  | if uintptr(s.allocCount) > s.nelems { | 
|  | println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems) | 
|  | throw("s.allocCount > s.nelems") | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // Allocate an object of size bytes. | 
|  | // Small objects are allocated from the per-P cache's free lists. | 
|  | // Large objects (> 32 kB) are allocated straight from the heap. | 
|  | func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { | 
|  | if gcphase == _GCmarktermination { | 
|  | throw("mallocgc called with gcphase == _GCmarktermination") | 
|  | } | 
|  |  | 
|  | if size == 0 { | 
|  | return unsafe.Pointer(&zerobase) | 
|  | } | 
|  |  | 
|  | if debug.sbrk != 0 { | 
|  | align := uintptr(16) | 
|  | if typ != nil { | 
|  | // TODO(austin): This should be just | 
|  | //   align = uintptr(typ.align) | 
|  | // but that's only 4 on 32-bit platforms, | 
|  | // even if there's a uint64 field in typ (see #599). | 
|  | // This causes 64-bit atomic accesses to panic. | 
|  | // Hence, we use stricter alignment that matches | 
|  | // the normal allocator better. | 
|  | if size&7 == 0 { | 
|  | align = 8 | 
|  | } else if size&3 == 0 { | 
|  | align = 4 | 
|  | } else if size&1 == 0 { | 
|  | align = 2 | 
|  | } else { | 
|  | align = 1 | 
|  | } | 
|  | } | 
|  | return persistentalloc(size, align, &memstats.other_sys) | 
|  | } | 
|  |  | 
|  | // assistG is the G to charge for this allocation, or nil if | 
|  | // GC is not currently active. | 
|  | var assistG *g | 
|  | if gcBlackenEnabled != 0 { | 
|  | // Charge the current user G for this allocation. | 
|  | assistG = getg() | 
|  | if assistG.m.curg != nil { | 
|  | assistG = assistG.m.curg | 
|  | } | 
|  | // Charge the allocation against the G. We'll account | 
|  | // for internal fragmentation at the end of mallocgc. | 
|  | assistG.gcAssistBytes -= int64(size) | 
|  |  | 
|  | if assistG.gcAssistBytes < 0 { | 
|  | // This G is in debt. Assist the GC to correct | 
|  | // this before allocating. This must happen | 
|  | // before disabling preemption. | 
|  | gcAssistAlloc(assistG) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set mp.mallocing to keep from being preempted by GC. | 
|  | mp := acquirem() | 
|  | if mp.mallocing != 0 { | 
|  | throw("malloc deadlock") | 
|  | } | 
|  | if mp.gsignal == getg() { | 
|  | throw("malloc during signal") | 
|  | } | 
|  | mp.mallocing = 1 | 
|  |  | 
|  | shouldhelpgc := false | 
|  | dataSize := size | 
|  | var c *mcache | 
|  | if mp.p != 0 { | 
|  | c = mp.p.ptr().mcache | 
|  | } else { | 
|  | // We will be called without a P while bootstrapping, | 
|  | // in which case we use mcache0, which is set in mallocinit. | 
|  | // mcache0 is cleared when bootstrapping is complete, | 
|  | // by procresize. | 
|  | c = mcache0 | 
|  | if c == nil { | 
|  | throw("malloc called with no P") | 
|  | } | 
|  | } | 
|  | var span *mspan | 
|  | var x unsafe.Pointer | 
|  | noscan := typ == nil || typ.ptrdata == 0 | 
|  | if size <= maxSmallSize { | 
|  | if noscan && size < maxTinySize { | 
|  | // Tiny allocator. | 
|  | // | 
|  | // Tiny allocator combines several tiny allocation requests | 
|  | // into a single memory block. The resulting memory block | 
|  | // is freed when all subobjects are unreachable. The subobjects | 
|  | // must be noscan (don't have pointers), this ensures that | 
|  | // the amount of potentially wasted memory is bounded. | 
|  | // | 
|  | // Size of the memory block used for combining (maxTinySize) is tunable. | 
|  | // Current setting is 16 bytes, which relates to 2x worst case memory | 
|  | // wastage (when all but one subobjects are unreachable). | 
|  | // 8 bytes would result in no wastage at all, but provides less | 
|  | // opportunities for combining. | 
|  | // 32 bytes provides more opportunities for combining, | 
|  | // but can lead to 4x worst case wastage. | 
|  | // The best case winning is 8x regardless of block size. | 
|  | // | 
|  | // Objects obtained from tiny allocator must not be freed explicitly. | 
|  | // So when an object will be freed explicitly, we ensure that | 
|  | // its size >= maxTinySize. | 
|  | // | 
|  | // SetFinalizer has a special case for objects potentially coming | 
|  | // from tiny allocator, it such case it allows to set finalizers | 
|  | // for an inner byte of a memory block. | 
|  | // | 
|  | // The main targets of tiny allocator are small strings and | 
|  | // standalone escaping variables. On a json benchmark | 
|  | // the allocator reduces number of allocations by ~12% and | 
|  | // reduces heap size by ~20%. | 
|  | off := c.tinyoffset | 
|  | // Align tiny pointer for required (conservative) alignment. | 
|  | if size&7 == 0 { | 
|  | off = alignUp(off, 8) | 
|  | } else if size&3 == 0 { | 
|  | off = alignUp(off, 4) | 
|  | } else if size&1 == 0 { | 
|  | off = alignUp(off, 2) | 
|  | } | 
|  | if off+size <= maxTinySize && c.tiny != 0 { | 
|  | // The object fits into existing tiny block. | 
|  | x = unsafe.Pointer(c.tiny + off) | 
|  | c.tinyoffset = off + size | 
|  | c.local_tinyallocs++ | 
|  | mp.mallocing = 0 | 
|  | releasem(mp) | 
|  | return x | 
|  | } | 
|  | // Allocate a new maxTinySize block. | 
|  | span = c.alloc[tinySpanClass] | 
|  | v := nextFreeFast(span) | 
|  | if v == 0 { | 
|  | v, span, shouldhelpgc = c.nextFree(tinySpanClass) | 
|  | } | 
|  | x = unsafe.Pointer(v) | 
|  | (*[2]uint64)(x)[0] = 0 | 
|  | (*[2]uint64)(x)[1] = 0 | 
|  | // See if we need to replace the existing tiny block with the new one | 
|  | // based on amount of remaining free space. | 
|  | if size < c.tinyoffset || c.tiny == 0 { | 
|  | c.tiny = uintptr(x) | 
|  | c.tinyoffset = size | 
|  | } | 
|  | size = maxTinySize | 
|  | } else { | 
|  | var sizeclass uint8 | 
|  | if size <= smallSizeMax-8 { | 
|  | sizeclass = size_to_class8[divRoundUp(size, smallSizeDiv)] | 
|  | } else { | 
|  | sizeclass = size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)] | 
|  | } | 
|  | size = uintptr(class_to_size[sizeclass]) | 
|  | spc := makeSpanClass(sizeclass, noscan) | 
|  | span = c.alloc[spc] | 
|  | v := nextFreeFast(span) | 
|  | if v == 0 { | 
|  | v, span, shouldhelpgc = c.nextFree(spc) | 
|  | } | 
|  | x = unsafe.Pointer(v) | 
|  | if needzero && span.needzero != 0 { | 
|  | memclrNoHeapPointers(unsafe.Pointer(v), size) | 
|  | } | 
|  | } | 
|  | } else { | 
|  | shouldhelpgc = true | 
|  | systemstack(func() { | 
|  | span = largeAlloc(size, needzero, noscan) | 
|  | }) | 
|  | span.freeindex = 1 | 
|  | span.allocCount = 1 | 
|  | x = unsafe.Pointer(span.base()) | 
|  | size = span.elemsize | 
|  | } | 
|  |  | 
|  | var scanSize uintptr | 
|  | if !noscan { | 
|  | // If allocating a defer+arg block, now that we've picked a malloc size | 
|  | // large enough to hold everything, cut the "asked for" size down to | 
|  | // just the defer header, so that the GC bitmap will record the arg block | 
|  | // as containing nothing at all (as if it were unused space at the end of | 
|  | // a malloc block caused by size rounding). | 
|  | // The defer arg areas are scanned as part of scanstack. | 
|  | if typ == deferType { | 
|  | dataSize = unsafe.Sizeof(_defer{}) | 
|  | } | 
|  | heapBitsSetType(uintptr(x), size, dataSize, typ) | 
|  | if dataSize > typ.size { | 
|  | // Array allocation. If there are any | 
|  | // pointers, GC has to scan to the last | 
|  | // element. | 
|  | if typ.ptrdata != 0 { | 
|  | scanSize = dataSize - typ.size + typ.ptrdata | 
|  | } | 
|  | } else { | 
|  | scanSize = typ.ptrdata | 
|  | } | 
|  | c.local_scan += scanSize | 
|  | } | 
|  |  | 
|  | // Ensure that the stores above that initialize x to | 
|  | // type-safe memory and set the heap bits occur before | 
|  | // the caller can make x observable to the garbage | 
|  | // collector. Otherwise, on weakly ordered machines, | 
|  | // the garbage collector could follow a pointer to x, | 
|  | // but see uninitialized memory or stale heap bits. | 
|  | publicationBarrier() | 
|  |  | 
|  | // Allocate black during GC. | 
|  | // All slots hold nil so no scanning is needed. | 
|  | // This may be racing with GC so do it atomically if there can be | 
|  | // a race marking the bit. | 
|  | if gcphase != _GCoff { | 
|  | gcmarknewobject(span, uintptr(x), size, scanSize) | 
|  | } | 
|  |  | 
|  | if raceenabled { | 
|  | racemalloc(x, size) | 
|  | } | 
|  |  | 
|  | if msanenabled { | 
|  | msanmalloc(x, size) | 
|  | } | 
|  |  | 
|  | mp.mallocing = 0 | 
|  | releasem(mp) | 
|  |  | 
|  | if debug.allocfreetrace != 0 { | 
|  | tracealloc(x, size, typ) | 
|  | } | 
|  |  | 
|  | if rate := MemProfileRate; rate > 0 { | 
|  | if rate != 1 && size < c.next_sample { | 
|  | c.next_sample -= size | 
|  | } else { | 
|  | mp := acquirem() | 
|  | profilealloc(mp, x, size) | 
|  | releasem(mp) | 
|  | } | 
|  | } | 
|  |  | 
|  | if assistG != nil { | 
|  | // Account for internal fragmentation in the assist | 
|  | // debt now that we know it. | 
|  | assistG.gcAssistBytes -= int64(size - dataSize) | 
|  | } | 
|  |  | 
|  | if shouldhelpgc { | 
|  | if t := (gcTrigger{kind: gcTriggerHeap}); t.test() { | 
|  | gcStart(t) | 
|  | } | 
|  | } | 
|  |  | 
|  | return x | 
|  | } | 
|  |  | 
|  | func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan { | 
|  | // print("largeAlloc size=", size, "\n") | 
|  |  | 
|  | if size+_PageSize < size { | 
|  | throw("out of memory") | 
|  | } | 
|  | npages := size >> _PageShift | 
|  | if size&_PageMask != 0 { | 
|  | npages++ | 
|  | } | 
|  |  | 
|  | // Deduct credit for this span allocation and sweep if | 
|  | // necessary. mHeap_Alloc will also sweep npages, so this only | 
|  | // pays the debt down to npage pages. | 
|  | deductSweepCredit(npages*_PageSize, npages) | 
|  |  | 
|  | spc := makeSpanClass(0, noscan) | 
|  | s := mheap_.alloc(npages, spc, needzero) | 
|  | if s == nil { | 
|  | throw("out of memory") | 
|  | } | 
|  | // Put the large span in the mcentral swept list so that it's | 
|  | // visible to the background sweeper. | 
|  | mheap_.central[spc].mcentral.fullSwept(mheap_.sweepgen).push(s) | 
|  | s.limit = s.base() + size | 
|  | heapBitsForAddr(s.base()).initSpan(s) | 
|  | return s | 
|  | } | 
|  |  | 
|  | // implementation of new builtin | 
|  | // compiler (both frontend and SSA backend) knows the signature | 
|  | // of this function | 
|  | func newobject(typ *_type) unsafe.Pointer { | 
|  | return mallocgc(typ.size, typ, true) | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_unsafe_New reflect.unsafe_New | 
|  | func reflect_unsafe_New(typ *_type) unsafe.Pointer { | 
|  | return mallocgc(typ.size, typ, true) | 
|  | } | 
|  |  | 
|  | //go:linkname reflectlite_unsafe_New internal/reflectlite.unsafe_New | 
|  | func reflectlite_unsafe_New(typ *_type) unsafe.Pointer { | 
|  | return mallocgc(typ.size, typ, true) | 
|  | } | 
|  |  | 
|  | // newarray allocates an array of n elements of type typ. | 
|  | func newarray(typ *_type, n int) unsafe.Pointer { | 
|  | if n == 1 { | 
|  | return mallocgc(typ.size, typ, true) | 
|  | } | 
|  | mem, overflow := math.MulUintptr(typ.size, uintptr(n)) | 
|  | if overflow || mem > maxAlloc || n < 0 { | 
|  | panic(plainError("runtime: allocation size out of range")) | 
|  | } | 
|  | return mallocgc(mem, typ, true) | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray | 
|  | func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer { | 
|  | return newarray(typ, n) | 
|  | } | 
|  |  | 
|  | func profilealloc(mp *m, x unsafe.Pointer, size uintptr) { | 
|  | var c *mcache | 
|  | if mp.p != 0 { | 
|  | c = mp.p.ptr().mcache | 
|  | } else { | 
|  | c = mcache0 | 
|  | if c == nil { | 
|  | throw("profilealloc called with no P") | 
|  | } | 
|  | } | 
|  | c.next_sample = nextSample() | 
|  | mProf_Malloc(x, size) | 
|  | } | 
|  |  | 
|  | // nextSample returns the next sampling point for heap profiling. The goal is | 
|  | // to sample allocations on average every MemProfileRate bytes, but with a | 
|  | // completely random distribution over the allocation timeline; this | 
|  | // corresponds to a Poisson process with parameter MemProfileRate. In Poisson | 
|  | // processes, the distance between two samples follows the exponential | 
|  | // distribution (exp(MemProfileRate)), so the best return value is a random | 
|  | // number taken from an exponential distribution whose mean is MemProfileRate. | 
|  | func nextSample() uintptr { | 
|  | if GOOS == "plan9" { | 
|  | // Plan 9 doesn't support floating point in note handler. | 
|  | if g := getg(); g == g.m.gsignal { | 
|  | return nextSampleNoFP() | 
|  | } | 
|  | } | 
|  |  | 
|  | return uintptr(fastexprand(MemProfileRate)) | 
|  | } | 
|  |  | 
|  | // fastexprand returns a random number from an exponential distribution with | 
|  | // the specified mean. | 
|  | func fastexprand(mean int) int32 { | 
|  | // Avoid overflow. Maximum possible step is | 
|  | // -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean. | 
|  | switch { | 
|  | case mean > 0x7000000: | 
|  | mean = 0x7000000 | 
|  | case mean == 0: | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | // Take a random sample of the exponential distribution exp(-mean*x). | 
|  | // The probability distribution function is mean*exp(-mean*x), so the CDF is | 
|  | // p = 1 - exp(-mean*x), so | 
|  | // q = 1 - p == exp(-mean*x) | 
|  | // log_e(q) = -mean*x | 
|  | // -log_e(q)/mean = x | 
|  | // x = -log_e(q) * mean | 
|  | // x = log_2(q) * (-log_e(2)) * mean    ; Using log_2 for efficiency | 
|  | const randomBitCount = 26 | 
|  | q := fastrand()%(1<<randomBitCount) + 1 | 
|  | qlog := fastlog2(float64(q)) - randomBitCount | 
|  | if qlog > 0 { | 
|  | qlog = 0 | 
|  | } | 
|  | const minusLog2 = -0.6931471805599453 // -ln(2) | 
|  | return int32(qlog*(minusLog2*float64(mean))) + 1 | 
|  | } | 
|  |  | 
|  | // nextSampleNoFP is similar to nextSample, but uses older, | 
|  | // simpler code to avoid floating point. | 
|  | func nextSampleNoFP() uintptr { | 
|  | // Set first allocation sample size. | 
|  | rate := MemProfileRate | 
|  | if rate > 0x3fffffff { // make 2*rate not overflow | 
|  | rate = 0x3fffffff | 
|  | } | 
|  | if rate != 0 { | 
|  | return uintptr(fastrand() % uint32(2*rate)) | 
|  | } | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | type persistentAlloc struct { | 
|  | base *notInHeap | 
|  | off  uintptr | 
|  | } | 
|  |  | 
|  | var globalAlloc struct { | 
|  | mutex | 
|  | persistentAlloc | 
|  | } | 
|  |  | 
|  | // persistentChunkSize is the number of bytes we allocate when we grow | 
|  | // a persistentAlloc. | 
|  | const persistentChunkSize = 256 << 10 | 
|  |  | 
|  | // persistentChunks is a list of all the persistent chunks we have | 
|  | // allocated. The list is maintained through the first word in the | 
|  | // persistent chunk. This is updated atomically. | 
|  | var persistentChunks *notInHeap | 
|  |  | 
|  | // Wrapper around sysAlloc that can allocate small chunks. | 
|  | // There is no associated free operation. | 
|  | // Intended for things like function/type/debug-related persistent data. | 
|  | // If align is 0, uses default align (currently 8). | 
|  | // The returned memory will be zeroed. | 
|  | // | 
|  | // Consider marking persistentalloc'd types go:notinheap. | 
|  | func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer { | 
|  | var p *notInHeap | 
|  | systemstack(func() { | 
|  | p = persistentalloc1(size, align, sysStat) | 
|  | }) | 
|  | return unsafe.Pointer(p) | 
|  | } | 
|  |  | 
|  | // Must run on system stack because stack growth can (re)invoke it. | 
|  | // See issue 9174. | 
|  | //go:systemstack | 
|  | func persistentalloc1(size, align uintptr, sysStat *uint64) *notInHeap { | 
|  | const ( | 
|  | maxBlock = 64 << 10 // VM reservation granularity is 64K on windows | 
|  | ) | 
|  |  | 
|  | if size == 0 { | 
|  | throw("persistentalloc: size == 0") | 
|  | } | 
|  | if align != 0 { | 
|  | if align&(align-1) != 0 { | 
|  | throw("persistentalloc: align is not a power of 2") | 
|  | } | 
|  | if align > _PageSize { | 
|  | throw("persistentalloc: align is too large") | 
|  | } | 
|  | } else { | 
|  | align = 8 | 
|  | } | 
|  |  | 
|  | if size >= maxBlock { | 
|  | return (*notInHeap)(sysAlloc(size, sysStat)) | 
|  | } | 
|  |  | 
|  | mp := acquirem() | 
|  | var persistent *persistentAlloc | 
|  | if mp != nil && mp.p != 0 { | 
|  | persistent = &mp.p.ptr().palloc | 
|  | } else { | 
|  | lock(&globalAlloc.mutex) | 
|  | persistent = &globalAlloc.persistentAlloc | 
|  | } | 
|  | persistent.off = alignUp(persistent.off, align) | 
|  | if persistent.off+size > persistentChunkSize || persistent.base == nil { | 
|  | persistent.base = (*notInHeap)(sysAlloc(persistentChunkSize, &memstats.other_sys)) | 
|  | if persistent.base == nil { | 
|  | if persistent == &globalAlloc.persistentAlloc { | 
|  | unlock(&globalAlloc.mutex) | 
|  | } | 
|  | throw("runtime: cannot allocate memory") | 
|  | } | 
|  |  | 
|  | // Add the new chunk to the persistentChunks list. | 
|  | for { | 
|  | chunks := uintptr(unsafe.Pointer(persistentChunks)) | 
|  | *(*uintptr)(unsafe.Pointer(persistent.base)) = chunks | 
|  | if atomic.Casuintptr((*uintptr)(unsafe.Pointer(&persistentChunks)), chunks, uintptr(unsafe.Pointer(persistent.base))) { | 
|  | break | 
|  | } | 
|  | } | 
|  | persistent.off = alignUp(sys.PtrSize, align) | 
|  | } | 
|  | p := persistent.base.add(persistent.off) | 
|  | persistent.off += size | 
|  | releasem(mp) | 
|  | if persistent == &globalAlloc.persistentAlloc { | 
|  | unlock(&globalAlloc.mutex) | 
|  | } | 
|  |  | 
|  | if sysStat != &memstats.other_sys { | 
|  | mSysStatInc(sysStat, size) | 
|  | mSysStatDec(&memstats.other_sys, size) | 
|  | } | 
|  | return p | 
|  | } | 
|  |  | 
|  | // inPersistentAlloc reports whether p points to memory allocated by | 
|  | // persistentalloc. This must be nosplit because it is called by the | 
|  | // cgo checker code, which is called by the write barrier code. | 
|  | //go:nosplit | 
|  | func inPersistentAlloc(p uintptr) bool { | 
|  | chunk := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&persistentChunks))) | 
|  | for chunk != 0 { | 
|  | if p >= chunk && p < chunk+persistentChunkSize { | 
|  | return true | 
|  | } | 
|  | chunk = *(*uintptr)(unsafe.Pointer(chunk)) | 
|  | } | 
|  | return false | 
|  | } | 
|  |  | 
|  | // linearAlloc is a simple linear allocator that pre-reserves a region | 
|  | // of memory and then maps that region into the Ready state as needed. The | 
|  | // caller is responsible for locking. | 
|  | type linearAlloc struct { | 
|  | next   uintptr // next free byte | 
|  | mapped uintptr // one byte past end of mapped space | 
|  | end    uintptr // end of reserved space | 
|  | } | 
|  |  | 
|  | func (l *linearAlloc) init(base, size uintptr) { | 
|  | if base+size < base { | 
|  | // Chop off the last byte. The runtime isn't prepared | 
|  | // to deal with situations where the bounds could overflow. | 
|  | // Leave that memory reserved, though, so we don't map it | 
|  | // later. | 
|  | size -= 1 | 
|  | } | 
|  | l.next, l.mapped = base, base | 
|  | l.end = base + size | 
|  | } | 
|  |  | 
|  | func (l *linearAlloc) alloc(size, align uintptr, sysStat *uint64) unsafe.Pointer { | 
|  | p := alignUp(l.next, align) | 
|  | if p+size > l.end { | 
|  | return nil | 
|  | } | 
|  | l.next = p + size | 
|  | if pEnd := alignUp(l.next-1, physPageSize); pEnd > l.mapped { | 
|  | // Transition from Reserved to Prepared to Ready. | 
|  | sysMap(unsafe.Pointer(l.mapped), pEnd-l.mapped, sysStat) | 
|  | sysUsed(unsafe.Pointer(l.mapped), pEnd-l.mapped) | 
|  | l.mapped = pEnd | 
|  | } | 
|  | return unsafe.Pointer(p) | 
|  | } | 
|  |  | 
|  | // notInHeap is off-heap memory allocated by a lower-level allocator | 
|  | // like sysAlloc or persistentAlloc. | 
|  | // | 
|  | // In general, it's better to use real types marked as go:notinheap, | 
|  | // but this serves as a generic type for situations where that isn't | 
|  | // possible (like in the allocators). | 
|  | // | 
|  | // TODO: Use this as the return type of sysAlloc, persistentAlloc, etc? | 
|  | // | 
|  | //go:notinheap | 
|  | type notInHeap struct{} | 
|  |  | 
|  | func (p *notInHeap) add(bytes uintptr) *notInHeap { | 
|  | return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes)) | 
|  | } |