|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package strconv | 
|  |  | 
|  | // An extFloat represents an extended floating-point number, with more | 
|  | // precision than a float64. It does not try to save bits: the | 
|  | // number represented by the structure is mant*(2^exp), with a negative | 
|  | // sign if neg is true. | 
|  | type extFloat struct { | 
|  | mant uint64 | 
|  | exp  int | 
|  | neg  bool | 
|  | } | 
|  |  | 
|  | // Powers of ten taken from double-conversion library. | 
|  | // http://code.google.com/p/double-conversion/ | 
|  | const ( | 
|  | firstPowerOfTen = -348 | 
|  | stepPowerOfTen  = 8 | 
|  | ) | 
|  |  | 
|  | var smallPowersOfTen = [...]extFloat{ | 
|  | {1 << 63, -63, false},        // 1 | 
|  | {0xa << 60, -60, false},      // 1e1 | 
|  | {0x64 << 57, -57, false},     // 1e2 | 
|  | {0x3e8 << 54, -54, false},    // 1e3 | 
|  | {0x2710 << 50, -50, false},   // 1e4 | 
|  | {0x186a0 << 47, -47, false},  // 1e5 | 
|  | {0xf4240 << 44, -44, false},  // 1e6 | 
|  | {0x989680 << 40, -40, false}, // 1e7 | 
|  | } | 
|  |  | 
|  | var powersOfTen = [...]extFloat{ | 
|  | {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 | 
|  | {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 | 
|  | {0x8b16fb203055ac76, -1166, false}, // 10^-332 | 
|  | {0xcf42894a5dce35ea, -1140, false}, // 10^-324 | 
|  | {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 | 
|  | {0xe61acf033d1a45df, -1087, false}, // 10^-308 | 
|  | {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 | 
|  | {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 | 
|  | {0xbe5691ef416bd60c, -1007, false}, // 10^-284 | 
|  | {0x8dd01fad907ffc3c, -980, false},  // 10^-276 | 
|  | {0xd3515c2831559a83, -954, false},  // 10^-268 | 
|  | {0x9d71ac8fada6c9b5, -927, false},  // 10^-260 | 
|  | {0xea9c227723ee8bcb, -901, false},  // 10^-252 | 
|  | {0xaecc49914078536d, -874, false},  // 10^-244 | 
|  | {0x823c12795db6ce57, -847, false},  // 10^-236 | 
|  | {0xc21094364dfb5637, -821, false},  // 10^-228 | 
|  | {0x9096ea6f3848984f, -794, false},  // 10^-220 | 
|  | {0xd77485cb25823ac7, -768, false},  // 10^-212 | 
|  | {0xa086cfcd97bf97f4, -741, false},  // 10^-204 | 
|  | {0xef340a98172aace5, -715, false},  // 10^-196 | 
|  | {0xb23867fb2a35b28e, -688, false},  // 10^-188 | 
|  | {0x84c8d4dfd2c63f3b, -661, false},  // 10^-180 | 
|  | {0xc5dd44271ad3cdba, -635, false},  // 10^-172 | 
|  | {0x936b9fcebb25c996, -608, false},  // 10^-164 | 
|  | {0xdbac6c247d62a584, -582, false},  // 10^-156 | 
|  | {0xa3ab66580d5fdaf6, -555, false},  // 10^-148 | 
|  | {0xf3e2f893dec3f126, -529, false},  // 10^-140 | 
|  | {0xb5b5ada8aaff80b8, -502, false},  // 10^-132 | 
|  | {0x87625f056c7c4a8b, -475, false},  // 10^-124 | 
|  | {0xc9bcff6034c13053, -449, false},  // 10^-116 | 
|  | {0x964e858c91ba2655, -422, false},  // 10^-108 | 
|  | {0xdff9772470297ebd, -396, false},  // 10^-100 | 
|  | {0xa6dfbd9fb8e5b88f, -369, false},  // 10^-92 | 
|  | {0xf8a95fcf88747d94, -343, false},  // 10^-84 | 
|  | {0xb94470938fa89bcf, -316, false},  // 10^-76 | 
|  | {0x8a08f0f8bf0f156b, -289, false},  // 10^-68 | 
|  | {0xcdb02555653131b6, -263, false},  // 10^-60 | 
|  | {0x993fe2c6d07b7fac, -236, false},  // 10^-52 | 
|  | {0xe45c10c42a2b3b06, -210, false},  // 10^-44 | 
|  | {0xaa242499697392d3, -183, false},  // 10^-36 | 
|  | {0xfd87b5f28300ca0e, -157, false},  // 10^-28 | 
|  | {0xbce5086492111aeb, -130, false},  // 10^-20 | 
|  | {0x8cbccc096f5088cc, -103, false},  // 10^-12 | 
|  | {0xd1b71758e219652c, -77, false},   // 10^-4 | 
|  | {0x9c40000000000000, -50, false},   // 10^4 | 
|  | {0xe8d4a51000000000, -24, false},   // 10^12 | 
|  | {0xad78ebc5ac620000, 3, false},     // 10^20 | 
|  | {0x813f3978f8940984, 30, false},    // 10^28 | 
|  | {0xc097ce7bc90715b3, 56, false},    // 10^36 | 
|  | {0x8f7e32ce7bea5c70, 83, false},    // 10^44 | 
|  | {0xd5d238a4abe98068, 109, false},   // 10^52 | 
|  | {0x9f4f2726179a2245, 136, false},   // 10^60 | 
|  | {0xed63a231d4c4fb27, 162, false},   // 10^68 | 
|  | {0xb0de65388cc8ada8, 189, false},   // 10^76 | 
|  | {0x83c7088e1aab65db, 216, false},   // 10^84 | 
|  | {0xc45d1df942711d9a, 242, false},   // 10^92 | 
|  | {0x924d692ca61be758, 269, false},   // 10^100 | 
|  | {0xda01ee641a708dea, 295, false},   // 10^108 | 
|  | {0xa26da3999aef774a, 322, false},   // 10^116 | 
|  | {0xf209787bb47d6b85, 348, false},   // 10^124 | 
|  | {0xb454e4a179dd1877, 375, false},   // 10^132 | 
|  | {0x865b86925b9bc5c2, 402, false},   // 10^140 | 
|  | {0xc83553c5c8965d3d, 428, false},   // 10^148 | 
|  | {0x952ab45cfa97a0b3, 455, false},   // 10^156 | 
|  | {0xde469fbd99a05fe3, 481, false},   // 10^164 | 
|  | {0xa59bc234db398c25, 508, false},   // 10^172 | 
|  | {0xf6c69a72a3989f5c, 534, false},   // 10^180 | 
|  | {0xb7dcbf5354e9bece, 561, false},   // 10^188 | 
|  | {0x88fcf317f22241e2, 588, false},   // 10^196 | 
|  | {0xcc20ce9bd35c78a5, 614, false},   // 10^204 | 
|  | {0x98165af37b2153df, 641, false},   // 10^212 | 
|  | {0xe2a0b5dc971f303a, 667, false},   // 10^220 | 
|  | {0xa8d9d1535ce3b396, 694, false},   // 10^228 | 
|  | {0xfb9b7cd9a4a7443c, 720, false},   // 10^236 | 
|  | {0xbb764c4ca7a44410, 747, false},   // 10^244 | 
|  | {0x8bab8eefb6409c1a, 774, false},   // 10^252 | 
|  | {0xd01fef10a657842c, 800, false},   // 10^260 | 
|  | {0x9b10a4e5e9913129, 827, false},   // 10^268 | 
|  | {0xe7109bfba19c0c9d, 853, false},   // 10^276 | 
|  | {0xac2820d9623bf429, 880, false},   // 10^284 | 
|  | {0x80444b5e7aa7cf85, 907, false},   // 10^292 | 
|  | {0xbf21e44003acdd2d, 933, false},   // 10^300 | 
|  | {0x8e679c2f5e44ff8f, 960, false},   // 10^308 | 
|  | {0xd433179d9c8cb841, 986, false},   // 10^316 | 
|  | {0x9e19db92b4e31ba9, 1013, false},  // 10^324 | 
|  | {0xeb96bf6ebadf77d9, 1039, false},  // 10^332 | 
|  | {0xaf87023b9bf0ee6b, 1066, false},  // 10^340 | 
|  | } | 
|  |  | 
|  | // floatBits returns the bits of the float64 that best approximates | 
|  | // the extFloat passed as receiver. Overflow is set to true if | 
|  | // the resulting float64 is ±Inf. | 
|  | func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) { | 
|  | f.Normalize() | 
|  |  | 
|  | exp := f.exp + 63 | 
|  |  | 
|  | // Exponent too small. | 
|  | if exp < flt.bias+1 { | 
|  | n := flt.bias + 1 - exp | 
|  | f.mant >>= uint(n) | 
|  | exp += n | 
|  | } | 
|  |  | 
|  | // Extract 1+flt.mantbits bits from the 64-bit mantissa. | 
|  | mant := f.mant >> (63 - flt.mantbits) | 
|  | if f.mant&(1<<(62-flt.mantbits)) != 0 { | 
|  | // Round up. | 
|  | mant += 1 | 
|  | } | 
|  |  | 
|  | // Rounding might have added a bit; shift down. | 
|  | if mant == 2<<flt.mantbits { | 
|  | mant >>= 1 | 
|  | exp++ | 
|  | } | 
|  |  | 
|  | // Infinities. | 
|  | if exp-flt.bias >= 1<<flt.expbits-1 { | 
|  | // ±Inf | 
|  | mant = 0 | 
|  | exp = 1<<flt.expbits - 1 + flt.bias | 
|  | overflow = true | 
|  | } else if mant&(1<<flt.mantbits) == 0 { | 
|  | // Denormalized? | 
|  | exp = flt.bias | 
|  | } | 
|  | // Assemble bits. | 
|  | bits = mant & (uint64(1)<<flt.mantbits - 1) | 
|  | bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits | 
|  | if f.neg { | 
|  | bits |= 1 << (flt.mantbits + flt.expbits) | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // AssignComputeBounds sets f to the floating point value | 
|  | // defined by mant, exp and precision given by flt. It returns | 
|  | // lower, upper such that any number in the closed interval | 
|  | // [lower, upper] is converted back to the same floating point number. | 
|  | func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) { | 
|  | f.mant = mant | 
|  | f.exp = exp - int(flt.mantbits) | 
|  | f.neg = neg | 
|  | if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) { | 
|  | // An exact integer | 
|  | f.mant >>= uint(-f.exp) | 
|  | f.exp = 0 | 
|  | return *f, *f | 
|  | } | 
|  | expBiased := exp - flt.bias | 
|  |  | 
|  | upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg} | 
|  | if mant != 1<<flt.mantbits || expBiased == 1 { | 
|  | lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg} | 
|  | } else { | 
|  | lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg} | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // Normalize normalizes f so that the highest bit of the mantissa is | 
|  | // set, and returns the number by which the mantissa was left-shifted. | 
|  | func (f *extFloat) Normalize() (shift uint) { | 
|  | mant, exp := f.mant, f.exp | 
|  | if mant == 0 { | 
|  | return 0 | 
|  | } | 
|  | if mant>>(64-32) == 0 { | 
|  | mant <<= 32 | 
|  | exp -= 32 | 
|  | } | 
|  | if mant>>(64-16) == 0 { | 
|  | mant <<= 16 | 
|  | exp -= 16 | 
|  | } | 
|  | if mant>>(64-8) == 0 { | 
|  | mant <<= 8 | 
|  | exp -= 8 | 
|  | } | 
|  | if mant>>(64-4) == 0 { | 
|  | mant <<= 4 | 
|  | exp -= 4 | 
|  | } | 
|  | if mant>>(64-2) == 0 { | 
|  | mant <<= 2 | 
|  | exp -= 2 | 
|  | } | 
|  | if mant>>(64-1) == 0 { | 
|  | mant <<= 1 | 
|  | exp -= 1 | 
|  | } | 
|  | shift = uint(f.exp - exp) | 
|  | f.mant, f.exp = mant, exp | 
|  | return | 
|  | } | 
|  |  | 
|  | // Multiply sets f to the product f*g: the result is correctly rounded, | 
|  | // but not normalized. | 
|  | func (f *extFloat) Multiply(g extFloat) { | 
|  | fhi, flo := f.mant>>32, uint64(uint32(f.mant)) | 
|  | ghi, glo := g.mant>>32, uint64(uint32(g.mant)) | 
|  |  | 
|  | // Cross products. | 
|  | cross1 := fhi * glo | 
|  | cross2 := flo * ghi | 
|  |  | 
|  | // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo | 
|  | f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32) | 
|  | rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32) | 
|  | // Round up. | 
|  | rem += (1 << 31) | 
|  |  | 
|  | f.mant += (rem >> 32) | 
|  | f.exp = f.exp + g.exp + 64 | 
|  | } | 
|  |  | 
|  | var uint64pow10 = [...]uint64{ | 
|  | 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | 
|  | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | 
|  | } | 
|  |  | 
|  | // AssignDecimal sets f to an approximate value mantissa*10^exp. It | 
|  | // returns true if the value represented by f is guaranteed to be the | 
|  | // best approximation of d after being rounded to a float64 or | 
|  | // float32 depending on flt. | 
|  | func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) { | 
|  | const uint64digits = 19 | 
|  | const errorscale = 8 | 
|  | errors := 0 // An upper bound for error, computed in errorscale*ulp. | 
|  | if trunc { | 
|  | // the decimal number was truncated. | 
|  | errors += errorscale / 2 | 
|  | } | 
|  |  | 
|  | f.mant = mantissa | 
|  | f.exp = 0 | 
|  | f.neg = neg | 
|  |  | 
|  | // Multiply by powers of ten. | 
|  | i := (exp10 - firstPowerOfTen) / stepPowerOfTen | 
|  | if exp10 < firstPowerOfTen || i >= len(powersOfTen) { | 
|  | return false | 
|  | } | 
|  | adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen | 
|  |  | 
|  | // We multiply by exp%step | 
|  | if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] { | 
|  | // We can multiply the mantissa exactly. | 
|  | f.mant *= uint64pow10[adjExp] | 
|  | f.Normalize() | 
|  | } else { | 
|  | f.Normalize() | 
|  | f.Multiply(smallPowersOfTen[adjExp]) | 
|  | errors += errorscale / 2 | 
|  | } | 
|  |  | 
|  | // We multiply by 10 to the exp - exp%step. | 
|  | f.Multiply(powersOfTen[i]) | 
|  | if errors > 0 { | 
|  | errors += 1 | 
|  | } | 
|  | errors += errorscale / 2 | 
|  |  | 
|  | // Normalize | 
|  | shift := f.Normalize() | 
|  | errors <<= shift | 
|  |  | 
|  | // Now f is a good approximation of the decimal. | 
|  | // Check whether the error is too large: that is, if the mantissa | 
|  | // is perturbated by the error, the resulting float64 will change. | 
|  | // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits. | 
|  | // | 
|  | // In many cases the approximation will be good enough. | 
|  | denormalExp := flt.bias - 63 | 
|  | var extrabits uint | 
|  | if f.exp <= denormalExp { | 
|  | // f.mant * 2^f.exp is smaller than 2^(flt.bias+1). | 
|  | extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp)) | 
|  | } else { | 
|  | extrabits = uint(63 - flt.mantbits) | 
|  | } | 
|  |  | 
|  | halfway := uint64(1) << (extrabits - 1) | 
|  | mant_extra := f.mant & (1<<extrabits - 1) | 
|  |  | 
|  | // Do a signed comparison here! If the error estimate could make | 
|  | // the mantissa round differently for the conversion to double, | 
|  | // then we can't give a definite answer. | 
|  | if int64(halfway)-int64(errors) < int64(mant_extra) && | 
|  | int64(mant_extra) < int64(halfway)+int64(errors) { | 
|  | return false | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | // Frexp10 is an analogue of math.Frexp for decimal powers. It scales | 
|  | // f by an approximate power of ten 10^-exp, and returns exp10, so | 
|  | // that f*10^exp10 has the same value as the old f, up to an ulp, | 
|  | // as well as the index of 10^-exp in the powersOfTen table. | 
|  | func (f *extFloat) frexp10() (exp10, index int) { | 
|  | // The constants expMin and expMax constrain the final value of the | 
|  | // binary exponent of f. We want a small integral part in the result | 
|  | // because finding digits of an integer requires divisions, whereas | 
|  | // digits of the fractional part can be found by repeatedly multiplying | 
|  | // by 10. | 
|  | const expMin = -60 | 
|  | const expMax = -32 | 
|  | // Find power of ten such that x * 10^n has a binary exponent | 
|  | // between expMin and expMax. | 
|  | approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28. | 
|  | i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen | 
|  | Loop: | 
|  | for { | 
|  | exp := f.exp + powersOfTen[i].exp + 64 | 
|  | switch { | 
|  | case exp < expMin: | 
|  | i++ | 
|  | case exp > expMax: | 
|  | i-- | 
|  | default: | 
|  | break Loop | 
|  | } | 
|  | } | 
|  | // Apply the desired decimal shift on f. It will have exponent | 
|  | // in the desired range. This is multiplication by 10^-exp10. | 
|  | f.Multiply(powersOfTen[i]) | 
|  |  | 
|  | return -(firstPowerOfTen + i*stepPowerOfTen), i | 
|  | } | 
|  |  | 
|  | // frexp10Many applies a common shift by a power of ten to a, b, c. | 
|  | func frexp10Many(a, b, c *extFloat) (exp10 int) { | 
|  | exp10, i := c.frexp10() | 
|  | a.Multiply(powersOfTen[i]) | 
|  | b.Multiply(powersOfTen[i]) | 
|  | return | 
|  | } | 
|  |  | 
|  | // FixedDecimal stores in d the first n significant digits | 
|  | // of the decimal representation of f. It returns false | 
|  | // if it cannot be sure of the answer. | 
|  | func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool { | 
|  | if f.mant == 0 { | 
|  | d.nd = 0 | 
|  | d.dp = 0 | 
|  | d.neg = f.neg | 
|  | return true | 
|  | } | 
|  | if n == 0 { | 
|  | panic("strconv: internal error: extFloat.FixedDecimal called with n == 0") | 
|  | } | 
|  | // Multiply by an appropriate power of ten to have a reasonable | 
|  | // number to process. | 
|  | f.Normalize() | 
|  | exp10, _ := f.frexp10() | 
|  |  | 
|  | shift := uint(-f.exp) | 
|  | integer := uint32(f.mant >> shift) | 
|  | fraction := f.mant - (uint64(integer) << shift) | 
|  | ε := uint64(1) // ε is the uncertainty we have on the mantissa of f. | 
|  |  | 
|  | // Write exactly n digits to d. | 
|  | needed := n        // how many digits are left to write. | 
|  | integerDigits := 0 // the number of decimal digits of integer. | 
|  | pow10 := uint64(1) // the power of ten by which f was scaled. | 
|  | for i, pow := 0, uint64(1); i < 20; i++ { | 
|  | if pow > uint64(integer) { | 
|  | integerDigits = i | 
|  | break | 
|  | } | 
|  | pow *= 10 | 
|  | } | 
|  | rest := integer | 
|  | if integerDigits > needed { | 
|  | // the integral part is already large, trim the last digits. | 
|  | pow10 = uint64pow10[integerDigits-needed] | 
|  | integer /= uint32(pow10) | 
|  | rest -= integer * uint32(pow10) | 
|  | } else { | 
|  | rest = 0 | 
|  | } | 
|  |  | 
|  | // Write the digits of integer: the digits of rest are omitted. | 
|  | var buf [32]byte | 
|  | pos := len(buf) | 
|  | for v := integer; v > 0; { | 
|  | v1 := v / 10 | 
|  | v -= 10 * v1 | 
|  | pos-- | 
|  | buf[pos] = byte(v + '0') | 
|  | v = v1 | 
|  | } | 
|  | for i := pos; i < len(buf); i++ { | 
|  | d.d[i-pos] = buf[i] | 
|  | } | 
|  | nd := len(buf) - pos | 
|  | d.nd = nd | 
|  | d.dp = integerDigits + exp10 | 
|  | needed -= nd | 
|  |  | 
|  | if needed > 0 { | 
|  | if rest != 0 || pow10 != 1 { | 
|  | panic("strconv: internal error, rest != 0 but needed > 0") | 
|  | } | 
|  | // Emit digits for the fractional part. Each time, 10*fraction | 
|  | // fits in a uint64 without overflow. | 
|  | for needed > 0 { | 
|  | fraction *= 10 | 
|  | ε *= 10 // the uncertainty scales as we multiply by ten. | 
|  | if 2*ε > 1<<shift { | 
|  | // the error is so large it could modify which digit to write, abort. | 
|  | return false | 
|  | } | 
|  | digit := fraction >> shift | 
|  | d.d[nd] = byte(digit + '0') | 
|  | fraction -= digit << shift | 
|  | nd++ | 
|  | needed-- | 
|  | } | 
|  | d.nd = nd | 
|  | } | 
|  |  | 
|  | // We have written a truncation of f (a numerator / 10^d.dp). The remaining part | 
|  | // can be interpreted as a small number (< 1) to be added to the last digit of the | 
|  | // numerator. | 
|  | // | 
|  | // If rest > 0, the amount is: | 
|  | //    (rest<<shift | fraction) / (pow10 << shift) | 
|  | //    fraction being known with a ±ε uncertainty. | 
|  | //    The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64. | 
|  | // | 
|  | // If rest = 0, pow10 == 1 and the amount is | 
|  | //    fraction / (1 << shift) | 
|  | //    fraction being known with a ±ε uncertainty. | 
|  | // | 
|  | // We pass this information to the rounding routine for adjustment. | 
|  |  | 
|  | ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε) | 
|  | if !ok { | 
|  | return false | 
|  | } | 
|  | // Trim trailing zeros. | 
|  | for i := d.nd - 1; i >= 0; i-- { | 
|  | if d.d[i] != '0' { | 
|  | d.nd = i + 1 | 
|  | break | 
|  | } | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | // adjustLastDigitFixed assumes d contains the representation of the integral part | 
|  | // of some number, whose fractional part is num / (den << shift). The numerator | 
|  | // num is only known up to an uncertainty of size ε, assumed to be less than | 
|  | // (den << shift)/2. | 
|  | // | 
|  | // It will increase the last digit by one to account for correct rounding, typically | 
|  | // when the fractional part is greater than 1/2, and will return false if ε is such | 
|  | // that no correct answer can be given. | 
|  | func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool { | 
|  | if num > den<<shift { | 
|  | panic("strconv: num > den<<shift in adjustLastDigitFixed") | 
|  | } | 
|  | if 2*ε > den<<shift { | 
|  | panic("strconv: ε > (den<<shift)/2") | 
|  | } | 
|  | if 2*(num+ε) < den<<shift { | 
|  | return true | 
|  | } | 
|  | if 2*(num-ε) > den<<shift { | 
|  | // increment d by 1. | 
|  | i := d.nd - 1 | 
|  | for ; i >= 0; i-- { | 
|  | if d.d[i] == '9' { | 
|  | d.nd-- | 
|  | } else { | 
|  | break | 
|  | } | 
|  | } | 
|  | if i < 0 { | 
|  | d.d[0] = '1' | 
|  | d.nd = 1 | 
|  | d.dp++ | 
|  | } else { | 
|  | d.d[i]++ | 
|  | } | 
|  | return true | 
|  | } | 
|  | return false | 
|  | } | 
|  |  | 
|  | // ShortestDecimal stores in d the shortest decimal representation of f | 
|  | // which belongs to the open interval (lower, upper), where f is supposed | 
|  | // to lie. It returns false whenever the result is unsure. The implementation | 
|  | // uses the Grisu3 algorithm. | 
|  | func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool { | 
|  | if f.mant == 0 { | 
|  | d.nd = 0 | 
|  | d.dp = 0 | 
|  | d.neg = f.neg | 
|  | return true | 
|  | } | 
|  | if f.exp == 0 && *lower == *f && *lower == *upper { | 
|  | // an exact integer. | 
|  | var buf [24]byte | 
|  | n := len(buf) - 1 | 
|  | for v := f.mant; v > 0; { | 
|  | v1 := v / 10 | 
|  | v -= 10 * v1 | 
|  | buf[n] = byte(v + '0') | 
|  | n-- | 
|  | v = v1 | 
|  | } | 
|  | nd := len(buf) - n - 1 | 
|  | for i := 0; i < nd; i++ { | 
|  | d.d[i] = buf[n+1+i] | 
|  | } | 
|  | d.nd, d.dp = nd, nd | 
|  | for d.nd > 0 && d.d[d.nd-1] == '0' { | 
|  | d.nd-- | 
|  | } | 
|  | if d.nd == 0 { | 
|  | d.dp = 0 | 
|  | } | 
|  | d.neg = f.neg | 
|  | return true | 
|  | } | 
|  | upper.Normalize() | 
|  | // Uniformize exponents. | 
|  | if f.exp > upper.exp { | 
|  | f.mant <<= uint(f.exp - upper.exp) | 
|  | f.exp = upper.exp | 
|  | } | 
|  | if lower.exp > upper.exp { | 
|  | lower.mant <<= uint(lower.exp - upper.exp) | 
|  | lower.exp = upper.exp | 
|  | } | 
|  |  | 
|  | exp10 := frexp10Many(lower, f, upper) | 
|  | // Take a safety margin due to rounding in frexp10Many, but we lose precision. | 
|  | upper.mant++ | 
|  | lower.mant-- | 
|  |  | 
|  | // The shortest representation of f is either rounded up or down, but | 
|  | // in any case, it is a truncation of upper. | 
|  | shift := uint(-upper.exp) | 
|  | integer := uint32(upper.mant >> shift) | 
|  | fraction := upper.mant - (uint64(integer) << shift) | 
|  |  | 
|  | // How far we can go down from upper until the result is wrong. | 
|  | allowance := upper.mant - lower.mant | 
|  | // How far we should go to get a very precise result. | 
|  | targetDiff := upper.mant - f.mant | 
|  |  | 
|  | // Count integral digits: there are at most 10. | 
|  | var integerDigits int | 
|  | for i, pow := 0, uint64(1); i < 20; i++ { | 
|  | if pow > uint64(integer) { | 
|  | integerDigits = i | 
|  | break | 
|  | } | 
|  | pow *= 10 | 
|  | } | 
|  | for i := 0; i < integerDigits; i++ { | 
|  | pow := uint64pow10[integerDigits-i-1] | 
|  | digit := integer / uint32(pow) | 
|  | d.d[i] = byte(digit + '0') | 
|  | integer -= digit * uint32(pow) | 
|  | // evaluate whether we should stop. | 
|  | if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance { | 
|  | d.nd = i + 1 | 
|  | d.dp = integerDigits + exp10 | 
|  | d.neg = f.neg | 
|  | // Sometimes allowance is so large the last digit might need to be | 
|  | // decremented to get closer to f. | 
|  | return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2) | 
|  | } | 
|  | } | 
|  | d.nd = integerDigits | 
|  | d.dp = d.nd + exp10 | 
|  | d.neg = f.neg | 
|  |  | 
|  | // Compute digits of the fractional part. At each step fraction does not | 
|  | // overflow. The choice of minExp implies that fraction is less than 2^60. | 
|  | var digit int | 
|  | multiplier := uint64(1) | 
|  | for { | 
|  | fraction *= 10 | 
|  | multiplier *= 10 | 
|  | digit = int(fraction >> shift) | 
|  | d.d[d.nd] = byte(digit + '0') | 
|  | d.nd++ | 
|  | fraction -= uint64(digit) << shift | 
|  | if fraction < allowance*multiplier { | 
|  | // We are in the admissible range. Note that if allowance is about to | 
|  | // overflow, that is, allowance > 2^64/10, the condition is automatically | 
|  | // true due to the limited range of fraction. | 
|  | return adjustLastDigit(d, | 
|  | fraction, targetDiff*multiplier, allowance*multiplier, | 
|  | 1<<shift, multiplier*2) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // adjustLastDigit modifies d = x-currentDiff*ε, to get closest to | 
|  | // d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε. | 
|  | // It assumes that a decimal digit is worth ulpDecimal*ε, and that | 
|  | // all data is known with a error estimate of ulpBinary*ε. | 
|  | func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool { | 
|  | if ulpDecimal < 2*ulpBinary { | 
|  | // Approximation is too wide. | 
|  | return false | 
|  | } | 
|  | for currentDiff+ulpDecimal/2+ulpBinary < targetDiff { | 
|  | d.d[d.nd-1]-- | 
|  | currentDiff += ulpDecimal | 
|  | } | 
|  | if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary { | 
|  | // we have two choices, and don't know what to do. | 
|  | return false | 
|  | } | 
|  | if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary { | 
|  | // we went too far | 
|  | return false | 
|  | } | 
|  | if d.nd == 1 && d.d[0] == '0' { | 
|  | // the number has actually reached zero. | 
|  | d.nd = 0 | 
|  | d.dp = 0 | 
|  | } | 
|  | return true | 
|  | } |