|  | // Copyright 2019 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package linalg | 
|  |  | 
|  | import "math" | 
|  |  | 
|  | // Numeric is type bound that matches any numeric type. | 
|  | // It would likely be in a constraints package in the standard library. | 
|  | type Numeric interface { | 
|  | ~int | ~int8 | ~int16 | ~int32 | ~int64 | | 
|  | uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | | 
|  | float32 | ~float64 | | 
|  | complex64 | ~complex128 | 
|  | } | 
|  |  | 
|  | func DotProduct[T Numeric](s1, s2 []T) T { | 
|  | if len(s1) != len(s2) { | 
|  | panic("DotProduct: slices of unequal length") | 
|  | } | 
|  | var r T | 
|  | for i := range s1 { | 
|  | r += s1[i] * s2[i] | 
|  | } | 
|  | return r | 
|  | } | 
|  |  | 
|  | // NumericAbs matches numeric types with an Abs method. | 
|  | type NumericAbs[T any] interface { | 
|  | Numeric | 
|  |  | 
|  | Abs() T | 
|  | } | 
|  |  | 
|  | // AbsDifference computes the absolute value of the difference of | 
|  | // a and b, where the absolute value is determined by the Abs method. | 
|  | func AbsDifference[T NumericAbs[T]](a, b T) T { | 
|  | d := a - b | 
|  | return d.Abs() | 
|  | } | 
|  |  | 
|  | // OrderedNumeric is a type bound that matches numeric types that support the < operator. | 
|  | type OrderedNumeric interface { | 
|  | ~int | ~int8 | ~int16 | ~int32 | ~int64 | | 
|  | uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | | 
|  | float32 | ~float64 | 
|  | } | 
|  |  | 
|  | // Complex is a type bound that matches the two complex types, which do not have a < operator. | 
|  | type Complex interface { | 
|  | ~complex64 | ~complex128 | 
|  | } | 
|  |  | 
|  | // OrderedAbs is a helper type that defines an Abs method for | 
|  | // ordered numeric types. | 
|  | type OrderedAbs[T OrderedNumeric] T | 
|  |  | 
|  | func (a OrderedAbs[T]) Abs() OrderedAbs[T] { | 
|  | if a < 0 { | 
|  | return -a | 
|  | } | 
|  | return a | 
|  | } | 
|  |  | 
|  | // ComplexAbs is a helper type that defines an Abs method for | 
|  | // complex types. | 
|  | type ComplexAbs[T Complex] T | 
|  |  | 
|  | func (a ComplexAbs[T]) Abs() ComplexAbs[T] { | 
|  | r := float64(real(a)) | 
|  | i := float64(imag(a)) | 
|  | d := math.Sqrt(r * r + i * i) | 
|  | return ComplexAbs[T](complex(d, 0)) | 
|  | } | 
|  |  | 
|  | func OrderedAbsDifference[T OrderedNumeric](a, b T) T { | 
|  | return T(AbsDifference(OrderedAbs[T](a), OrderedAbs[T](b))) | 
|  | } | 
|  |  | 
|  | func ComplexAbsDifference[T Complex](a, b T) T { | 
|  | return T(AbsDifference(ComplexAbs[T](a), ComplexAbs[T](b))) | 
|  | } |