| // Copyright 2011 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as | 
 | // defined in FIPS 186-3. | 
 | // | 
 | // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: | 
 | // | 
 | // SHA2-512(priv.D || entropy || hash)[:32] | 
 | // | 
 | // The CSPRNG key is indifferentiable from a random oracle as shown in | 
 | // [Coron], the AES-CTR stream is indifferentiable from a random oracle | 
 | // under standard cryptographic assumptions (see [Larsson] for examples). | 
 | // | 
 | // References: | 
 | //   [Coron] | 
 | //     https://cs.nyu.edu/~dodis/ps/merkle.pdf | 
 | //   [Larsson] | 
 | //     https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf | 
 | package ecdsa | 
 |  | 
 | // Further references: | 
 | //   [NSA]: Suite B implementer's guide to FIPS 186-3 | 
 | //     https://apps.nsa.gov/iaarchive/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/suite-b-implementers-guide-to-fips-186-3-ecdsa.cfm | 
 | //   [SECG]: SECG, SEC1 | 
 | //     http://www.secg.org/sec1-v2.pdf | 
 |  | 
 | import ( | 
 | 	"crypto" | 
 | 	"crypto/aes" | 
 | 	"crypto/cipher" | 
 | 	"crypto/elliptic" | 
 | 	"crypto/internal/randutil" | 
 | 	"crypto/sha512" | 
 | 	"errors" | 
 | 	"io" | 
 | 	"math/big" | 
 |  | 
 | 	"golang.org/x/crypto/cryptobyte" | 
 | 	"golang.org/x/crypto/cryptobyte/asn1" | 
 | ) | 
 |  | 
 | import ( | 
 | 	"crypto/internal/boring" | 
 | 	"unsafe" | 
 | ) | 
 |  | 
 | // A invertible implements fast inverse mod Curve.Params().N | 
 | type invertible interface { | 
 | 	// Inverse returns the inverse of k in GF(P) | 
 | 	Inverse(k *big.Int) *big.Int | 
 | } | 
 |  | 
 | // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) | 
 | type combinedMult interface { | 
 | 	CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) | 
 | } | 
 |  | 
 | const ( | 
 | 	aesIV = "IV for ECDSA CTR" | 
 | ) | 
 |  | 
 | // PublicKey represents an ECDSA public key. | 
 | type PublicKey struct { | 
 | 	elliptic.Curve | 
 | 	X, Y *big.Int | 
 |  | 
 | 	boring unsafe.Pointer | 
 | } | 
 |  | 
 | // Any methods implemented on PublicKey might need to also be implemented on | 
 | // PrivateKey, as the latter embeds the former and will expose its methods. | 
 |  | 
 | // Equal reports whether pub and x have the same value. | 
 | // | 
 | // Two keys are only considered to have the same value if they have the same Curve value. | 
 | // Note that for example elliptic.P256() and elliptic.P256().Params() are different | 
 | // values, as the latter is a generic not constant time implementation. | 
 | func (pub *PublicKey) Equal(x crypto.PublicKey) bool { | 
 | 	xx, ok := x.(*PublicKey) | 
 | 	if !ok { | 
 | 		return false | 
 | 	} | 
 | 	return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 && | 
 | 		// Standard library Curve implementations are singletons, so this check | 
 | 		// will work for those. Other Curves might be equivalent even if not | 
 | 		// singletons, but there is no definitive way to check for that, and | 
 | 		// better to err on the side of safety. | 
 | 		pub.Curve == xx.Curve | 
 | } | 
 |  | 
 | // PrivateKey represents an ECDSA private key. | 
 | type PrivateKey struct { | 
 | 	PublicKey | 
 | 	D *big.Int | 
 |  | 
 | 	boring unsafe.Pointer | 
 | } | 
 |  | 
 | // Public returns the public key corresponding to priv. | 
 | func (priv *PrivateKey) Public() crypto.PublicKey { | 
 | 	return &priv.PublicKey | 
 | } | 
 |  | 
 | // Equal reports whether priv and x have the same value. | 
 | // | 
 | // See PublicKey.Equal for details on how Curve is compared. | 
 | func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { | 
 | 	xx, ok := x.(*PrivateKey) | 
 | 	if !ok { | 
 | 		return false | 
 | 	} | 
 | 	return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0 | 
 | } | 
 |  | 
 | // Sign signs digest with priv, reading randomness from rand. The opts argument | 
 | // is not currently used but, in keeping with the crypto.Signer interface, | 
 | // should be the hash function used to digest the message. | 
 | // | 
 | // This method implements crypto.Signer, which is an interface to support keys | 
 | // where the private part is kept in, for example, a hardware module. Common | 
 | // uses should use the Sign function in this package directly. | 
 | func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { | 
 | 	if boring.Enabled && rand == boring.RandReader { | 
 | 		b, err := boringPrivateKey(priv) | 
 | 		if err != nil { | 
 | 			return nil, err | 
 | 		} | 
 | 		return boring.SignMarshalECDSA(b, digest) | 
 | 	} | 
 | 	boring.UnreachableExceptTests() | 
 |  | 
 | 	r, s, err := Sign(rand, priv, digest) | 
 | 	if err != nil { | 
 | 		return nil, err | 
 | 	} | 
 |  | 
 | 	var b cryptobyte.Builder | 
 | 	b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { | 
 | 		b.AddASN1BigInt(r) | 
 | 		b.AddASN1BigInt(s) | 
 | 	}) | 
 | 	return b.Bytes() | 
 | } | 
 |  | 
 | var one = new(big.Int).SetInt64(1) | 
 |  | 
 | // randFieldElement returns a random element of the field underlying the given | 
 | // curve using the procedure given in [NSA] A.2.1. | 
 | func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { | 
 | 	params := c.Params() | 
 | 	b := make([]byte, params.BitSize/8+8) | 
 | 	_, err = io.ReadFull(rand, b) | 
 | 	if err != nil { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	k = new(big.Int).SetBytes(b) | 
 | 	n := new(big.Int).Sub(params.N, one) | 
 | 	k.Mod(k, n) | 
 | 	k.Add(k, one) | 
 | 	return | 
 | } | 
 |  | 
 | // GenerateKey generates a public and private key pair. | 
 | func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { | 
 | 	if boring.Enabled && rand == boring.RandReader { | 
 | 		x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name) | 
 | 		if err != nil { | 
 | 			return nil, err | 
 | 		} | 
 | 		return &PrivateKey{PublicKey: PublicKey{Curve: c, X: x, Y: y}, D: d}, nil | 
 | 	} | 
 | 	boring.UnreachableExceptTests() | 
 |  | 
 | 	k, err := randFieldElement(c, rand) | 
 | 	if err != nil { | 
 | 		return nil, err | 
 | 	} | 
 |  | 
 | 	priv := new(PrivateKey) | 
 | 	priv.PublicKey.Curve = c | 
 | 	priv.D = k | 
 | 	priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) | 
 | 	return priv, nil | 
 | } | 
 |  | 
 | // hashToInt converts a hash value to an integer. There is some disagreement | 
 | // about how this is done. [NSA] suggests that this is done in the obvious | 
 | // manner, but [SECG] truncates the hash to the bit-length of the curve order | 
 | // first. We follow [SECG] because that's what OpenSSL does. Additionally, | 
 | // OpenSSL right shifts excess bits from the number if the hash is too large | 
 | // and we mirror that too. | 
 | func hashToInt(hash []byte, c elliptic.Curve) *big.Int { | 
 | 	orderBits := c.Params().N.BitLen() | 
 | 	orderBytes := (orderBits + 7) / 8 | 
 | 	if len(hash) > orderBytes { | 
 | 		hash = hash[:orderBytes] | 
 | 	} | 
 |  | 
 | 	ret := new(big.Int).SetBytes(hash) | 
 | 	excess := len(hash)*8 - orderBits | 
 | 	if excess > 0 { | 
 | 		ret.Rsh(ret, uint(excess)) | 
 | 	} | 
 | 	return ret | 
 | } | 
 |  | 
 | // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. | 
 | // This has better constant-time properties than Euclid's method (implemented | 
 | // in math/big.Int.ModInverse) although math/big itself isn't strictly | 
 | // constant-time so it's not perfect. | 
 | func fermatInverse(k, N *big.Int) *big.Int { | 
 | 	two := big.NewInt(2) | 
 | 	nMinus2 := new(big.Int).Sub(N, two) | 
 | 	return new(big.Int).Exp(k, nMinus2, N) | 
 | } | 
 |  | 
 | var errZeroParam = errors.New("zero parameter") | 
 |  | 
 | // Sign signs a hash (which should be the result of hashing a larger message) | 
 | // using the private key, priv. If the hash is longer than the bit-length of the | 
 | // private key's curve order, the hash will be truncated to that length. It | 
 | // returns the signature as a pair of integers. The security of the private key | 
 | // depends on the entropy of rand. | 
 | func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { | 
 | 	randutil.MaybeReadByte(rand) | 
 |  | 
 | 	if boring.Enabled && rand == boring.RandReader { | 
 | 		b, err := boringPrivateKey(priv) | 
 | 		if err != nil { | 
 | 			return nil, nil, err | 
 | 		} | 
 | 		return boring.SignECDSA(b, hash) | 
 | 	} | 
 | 	boring.UnreachableExceptTests() | 
 |  | 
 | 	// Get min(log2(q) / 2, 256) bits of entropy from rand. | 
 | 	entropylen := (priv.Curve.Params().BitSize + 7) / 16 | 
 | 	if entropylen > 32 { | 
 | 		entropylen = 32 | 
 | 	} | 
 | 	entropy := make([]byte, entropylen) | 
 | 	_, err = io.ReadFull(rand, entropy) | 
 | 	if err != nil { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	// Initialize an SHA-512 hash context; digest ... | 
 | 	md := sha512.New() | 
 | 	md.Write(priv.D.Bytes()) // the private key, | 
 | 	md.Write(entropy)        // the entropy, | 
 | 	md.Write(hash)           // and the input hash; | 
 | 	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512), | 
 | 	// which is an indifferentiable MAC. | 
 |  | 
 | 	// Create an AES-CTR instance to use as a CSPRNG. | 
 | 	block, err := aes.NewCipher(key) | 
 | 	if err != nil { | 
 | 		return nil, nil, err | 
 | 	} | 
 |  | 
 | 	// Create a CSPRNG that xors a stream of zeros with | 
 | 	// the output of the AES-CTR instance. | 
 | 	csprng := cipher.StreamReader{ | 
 | 		R: zeroReader, | 
 | 		S: cipher.NewCTR(block, []byte(aesIV)), | 
 | 	} | 
 |  | 
 | 	// See [NSA] 3.4.1 | 
 | 	c := priv.PublicKey.Curve | 
 | 	return sign(priv, &csprng, c, hash) | 
 | } | 
 |  | 
 | func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) { | 
 | 	N := c.Params().N | 
 | 	if N.Sign() == 0 { | 
 | 		return nil, nil, errZeroParam | 
 | 	} | 
 | 	var k, kInv *big.Int | 
 | 	for { | 
 | 		for { | 
 | 			k, err = randFieldElement(c, *csprng) | 
 | 			if err != nil { | 
 | 				r = nil | 
 | 				return | 
 | 			} | 
 |  | 
 | 			if in, ok := priv.Curve.(invertible); ok { | 
 | 				kInv = in.Inverse(k) | 
 | 			} else { | 
 | 				kInv = fermatInverse(k, N) // N != 0 | 
 | 			} | 
 |  | 
 | 			r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) | 
 | 			r.Mod(r, N) | 
 | 			if r.Sign() != 0 { | 
 | 				break | 
 | 			} | 
 | 		} | 
 |  | 
 | 		e := hashToInt(hash, c) | 
 | 		s = new(big.Int).Mul(priv.D, r) | 
 | 		s.Add(s, e) | 
 | 		s.Mul(s, kInv) | 
 | 		s.Mod(s, N) // N != 0 | 
 | 		if s.Sign() != 0 { | 
 | 			break | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return | 
 | } | 
 |  | 
 | // SignASN1 signs a hash (which should be the result of hashing a larger message) | 
 | // using the private key, priv. If the hash is longer than the bit-length of the | 
 | // private key's curve order, the hash will be truncated to that length. It | 
 | // returns the ASN.1 encoded signature. The security of the private key | 
 | // depends on the entropy of rand. | 
 | func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) { | 
 | 	return priv.Sign(rand, hash, nil) | 
 | } | 
 |  | 
 | // Verify verifies the signature in r, s of hash using the public key, pub. Its | 
 | // return value records whether the signature is valid. | 
 | func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { | 
 | 	if boring.Enabled { | 
 | 		b, err := boringPublicKey(pub) | 
 | 		if err != nil { | 
 | 			return false | 
 | 		} | 
 | 		return boring.VerifyECDSA(b, hash, r, s) | 
 | 	} | 
 | 	boring.UnreachableExceptTests() | 
 |  | 
 | 	// See [NSA] 3.4.2 | 
 | 	c := pub.Curve | 
 | 	N := c.Params().N | 
 |  | 
 | 	if r.Sign() <= 0 || s.Sign() <= 0 { | 
 | 		return false | 
 | 	} | 
 | 	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { | 
 | 		return false | 
 | 	} | 
 | 	return verify(pub, c, hash, r, s) | 
 | } | 
 |  | 
 | func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool { | 
 | 	e := hashToInt(hash, c) | 
 | 	var w *big.Int | 
 | 	N := c.Params().N | 
 | 	if in, ok := c.(invertible); ok { | 
 | 		w = in.Inverse(s) | 
 | 	} else { | 
 | 		w = new(big.Int).ModInverse(s, N) | 
 | 	} | 
 |  | 
 | 	u1 := e.Mul(e, w) | 
 | 	u1.Mod(u1, N) | 
 | 	u2 := w.Mul(r, w) | 
 | 	u2.Mod(u2, N) | 
 |  | 
 | 	// Check if implements S1*g + S2*p | 
 | 	var x, y *big.Int | 
 | 	if opt, ok := c.(combinedMult); ok { | 
 | 		x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) | 
 | 	} else { | 
 | 		x1, y1 := c.ScalarBaseMult(u1.Bytes()) | 
 | 		x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) | 
 | 		x, y = c.Add(x1, y1, x2, y2) | 
 | 	} | 
 |  | 
 | 	if x.Sign() == 0 && y.Sign() == 0 { | 
 | 		return false | 
 | 	} | 
 | 	x.Mod(x, N) | 
 | 	return x.Cmp(r) == 0 | 
 | } | 
 |  | 
 | // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the | 
 | // public key, pub. Its return value records whether the signature is valid. | 
 | func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { | 
 | 	var ( | 
 | 		r, s  = &big.Int{}, &big.Int{} | 
 | 		inner cryptobyte.String | 
 | 	) | 
 | 	input := cryptobyte.String(sig) | 
 | 	if !input.ReadASN1(&inner, asn1.SEQUENCE) || | 
 | 		!input.Empty() || | 
 | 		!inner.ReadASN1Integer(r) || | 
 | 		!inner.ReadASN1Integer(s) || | 
 | 		!inner.Empty() { | 
 | 		return false | 
 | 	} | 
 | 	return Verify(pub, hash, r, s) | 
 | } | 
 |  | 
 | type zr struct { | 
 | 	io.Reader | 
 | } | 
 |  | 
 | // Read replaces the contents of dst with zeros. | 
 | func (z *zr) Read(dst []byte) (n int, err error) { | 
 | 	for i := range dst { | 
 | 		dst[i] = 0 | 
 | 	} | 
 | 	return len(dst), nil | 
 | } | 
 |  | 
 | var zeroReader = &zr{} |