|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Garbage collector: finalizers and block profiling. | 
|  |  | 
|  | package runtime | 
|  |  | 
|  | import ( | 
|  | "internal/abi" | 
|  | "internal/goarch" | 
|  | "runtime/internal/atomic" | 
|  | "unsafe" | 
|  | ) | 
|  |  | 
|  | // finblock is an array of finalizers to be executed. finblocks are | 
|  | // arranged in a linked list for the finalizer queue. | 
|  | // | 
|  | // finblock is allocated from non-GC'd memory, so any heap pointers | 
|  | // must be specially handled. GC currently assumes that the finalizer | 
|  | // queue does not grow during marking (but it can shrink). | 
|  | // | 
|  | //go:notinheap | 
|  | type finblock struct { | 
|  | alllink *finblock | 
|  | next    *finblock | 
|  | cnt     uint32 | 
|  | _       int32 | 
|  | fin     [(_FinBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer | 
|  | } | 
|  |  | 
|  | var finlock mutex  // protects the following variables | 
|  | var fing *g        // goroutine that runs finalizers | 
|  | var finq *finblock // list of finalizers that are to be executed | 
|  | var finc *finblock // cache of free blocks | 
|  | var finptrmask [_FinBlockSize / goarch.PtrSize / 8]byte | 
|  | var fingwait bool | 
|  | var fingwake bool | 
|  | var allfin *finblock // list of all blocks | 
|  |  | 
|  | // NOTE: Layout known to queuefinalizer. | 
|  | type finalizer struct { | 
|  | fn   *funcval       // function to call (may be a heap pointer) | 
|  | arg  unsafe.Pointer // ptr to object (may be a heap pointer) | 
|  | nret uintptr        // bytes of return values from fn | 
|  | fint *_type         // type of first argument of fn | 
|  | ot   *ptrtype       // type of ptr to object (may be a heap pointer) | 
|  | } | 
|  |  | 
|  | var finalizer1 = [...]byte{ | 
|  | // Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here) | 
|  | // Each byte describes 8 words. | 
|  | // Need 8 Finalizers described by 5 bytes before pattern repeats: | 
|  | //	ptr ptr INT ptr ptr | 
|  | //	ptr ptr INT ptr ptr | 
|  | //	ptr ptr INT ptr ptr | 
|  | //	ptr ptr INT ptr ptr | 
|  | //	ptr ptr INT ptr ptr | 
|  | //	ptr ptr INT ptr ptr | 
|  | //	ptr ptr INT ptr ptr | 
|  | //	ptr ptr INT ptr ptr | 
|  | // aka | 
|  | // | 
|  | //	ptr ptr INT ptr ptr ptr ptr INT | 
|  | //	ptr ptr ptr ptr INT ptr ptr ptr | 
|  | //	ptr INT ptr ptr ptr ptr INT ptr | 
|  | //	ptr ptr ptr INT ptr ptr ptr ptr | 
|  | //	INT ptr ptr ptr ptr INT ptr ptr | 
|  | // | 
|  | // Assumptions about Finalizer layout checked below. | 
|  | 1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7, | 
|  | 1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7, | 
|  | 1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7, | 
|  | 1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7, | 
|  | 0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7, | 
|  | } | 
|  |  | 
|  | func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) { | 
|  | if gcphase != _GCoff { | 
|  | // Currently we assume that the finalizer queue won't | 
|  | // grow during marking so we don't have to rescan it | 
|  | // during mark termination. If we ever need to lift | 
|  | // this assumption, we can do it by adding the | 
|  | // necessary barriers to queuefinalizer (which it may | 
|  | // have automatically). | 
|  | throw("queuefinalizer during GC") | 
|  | } | 
|  |  | 
|  | lock(&finlock) | 
|  | if finq == nil || finq.cnt == uint32(len(finq.fin)) { | 
|  | if finc == nil { | 
|  | finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gcMiscSys)) | 
|  | finc.alllink = allfin | 
|  | allfin = finc | 
|  | if finptrmask[0] == 0 { | 
|  | // Build pointer mask for Finalizer array in block. | 
|  | // Check assumptions made in finalizer1 array above. | 
|  | if (unsafe.Sizeof(finalizer{}) != 5*goarch.PtrSize || | 
|  | unsafe.Offsetof(finalizer{}.fn) != 0 || | 
|  | unsafe.Offsetof(finalizer{}.arg) != goarch.PtrSize || | 
|  | unsafe.Offsetof(finalizer{}.nret) != 2*goarch.PtrSize || | 
|  | unsafe.Offsetof(finalizer{}.fint) != 3*goarch.PtrSize || | 
|  | unsafe.Offsetof(finalizer{}.ot) != 4*goarch.PtrSize) { | 
|  | throw("finalizer out of sync") | 
|  | } | 
|  | for i := range finptrmask { | 
|  | finptrmask[i] = finalizer1[i%len(finalizer1)] | 
|  | } | 
|  | } | 
|  | } | 
|  | block := finc | 
|  | finc = block.next | 
|  | block.next = finq | 
|  | finq = block | 
|  | } | 
|  | f := &finq.fin[finq.cnt] | 
|  | atomic.Xadd(&finq.cnt, +1) // Sync with markroots | 
|  | f.fn = fn | 
|  | f.nret = nret | 
|  | f.fint = fint | 
|  | f.ot = ot | 
|  | f.arg = p | 
|  | fingwake = true | 
|  | unlock(&finlock) | 
|  | } | 
|  |  | 
|  | //go:nowritebarrier | 
|  | func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) { | 
|  | for fb := allfin; fb != nil; fb = fb.alllink { | 
|  | for i := uint32(0); i < fb.cnt; i++ { | 
|  | f := &fb.fin[i] | 
|  | callback(f.fn, f.arg, f.nret, f.fint, f.ot) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func wakefing() *g { | 
|  | var res *g | 
|  | lock(&finlock) | 
|  | if fingwait && fingwake { | 
|  | fingwait = false | 
|  | fingwake = false | 
|  | res = fing | 
|  | } | 
|  | unlock(&finlock) | 
|  | return res | 
|  | } | 
|  |  | 
|  | var ( | 
|  | fingCreate  uint32 | 
|  | fingRunning bool | 
|  | ) | 
|  |  | 
|  | func createfing() { | 
|  | // start the finalizer goroutine exactly once | 
|  | if fingCreate == 0 && atomic.Cas(&fingCreate, 0, 1) { | 
|  | go runfinq() | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is the goroutine that runs all of the finalizers | 
|  | func runfinq() { | 
|  | var ( | 
|  | frame    unsafe.Pointer | 
|  | framecap uintptr | 
|  | argRegs  int | 
|  | ) | 
|  |  | 
|  | gp := getg() | 
|  | lock(&finlock) | 
|  | fing = gp | 
|  | unlock(&finlock) | 
|  |  | 
|  | for { | 
|  | lock(&finlock) | 
|  | fb := finq | 
|  | finq = nil | 
|  | if fb == nil { | 
|  | fingwait = true | 
|  | goparkunlock(&finlock, waitReasonFinalizerWait, traceEvGoBlock, 1) | 
|  | continue | 
|  | } | 
|  | argRegs = intArgRegs | 
|  | unlock(&finlock) | 
|  | if raceenabled { | 
|  | racefingo() | 
|  | } | 
|  | for fb != nil { | 
|  | for i := fb.cnt; i > 0; i-- { | 
|  | f := &fb.fin[i-1] | 
|  |  | 
|  | var regs abi.RegArgs | 
|  | // The args may be passed in registers or on stack. Even for | 
|  | // the register case, we still need the spill slots. | 
|  | // TODO: revisit if we remove spill slots. | 
|  | // | 
|  | // Unfortunately because we can have an arbitrary | 
|  | // amount of returns and it would be complex to try and | 
|  | // figure out how many of those can get passed in registers, | 
|  | // just conservatively assume none of them do. | 
|  | framesz := unsafe.Sizeof((any)(nil)) + f.nret | 
|  | if framecap < framesz { | 
|  | // The frame does not contain pointers interesting for GC, | 
|  | // all not yet finalized objects are stored in finq. | 
|  | // If we do not mark it as FlagNoScan, | 
|  | // the last finalized object is not collected. | 
|  | frame = mallocgc(framesz, nil, true) | 
|  | framecap = framesz | 
|  | } | 
|  |  | 
|  | if f.fint == nil { | 
|  | throw("missing type in runfinq") | 
|  | } | 
|  | r := frame | 
|  | if argRegs > 0 { | 
|  | r = unsafe.Pointer(®s.Ints) | 
|  | } else { | 
|  | // frame is effectively uninitialized | 
|  | // memory. That means we have to clear | 
|  | // it before writing to it to avoid | 
|  | // confusing the write barrier. | 
|  | *(*[2]uintptr)(frame) = [2]uintptr{} | 
|  | } | 
|  | switch f.fint.kind & kindMask { | 
|  | case kindPtr: | 
|  | // direct use of pointer | 
|  | *(*unsafe.Pointer)(r) = f.arg | 
|  | case kindInterface: | 
|  | ityp := (*interfacetype)(unsafe.Pointer(f.fint)) | 
|  | // set up with empty interface | 
|  | (*eface)(r)._type = &f.ot.typ | 
|  | (*eface)(r).data = f.arg | 
|  | if len(ityp.mhdr) != 0 { | 
|  | // convert to interface with methods | 
|  | // this conversion is guaranteed to succeed - we checked in SetFinalizer | 
|  | (*iface)(r).tab = assertE2I(ityp, (*eface)(r)._type) | 
|  | } | 
|  | default: | 
|  | throw("bad kind in runfinq") | 
|  | } | 
|  | fingRunning = true | 
|  | reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz), uint32(framesz), ®s) | 
|  | fingRunning = false | 
|  |  | 
|  | // Drop finalizer queue heap references | 
|  | // before hiding them from markroot. | 
|  | // This also ensures these will be | 
|  | // clear if we reuse the finalizer. | 
|  | f.fn = nil | 
|  | f.arg = nil | 
|  | f.ot = nil | 
|  | atomic.Store(&fb.cnt, i-1) | 
|  | } | 
|  | next := fb.next | 
|  | lock(&finlock) | 
|  | fb.next = finc | 
|  | finc = fb | 
|  | unlock(&finlock) | 
|  | fb = next | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // SetFinalizer sets the finalizer associated with obj to the provided | 
|  | // finalizer function. When the garbage collector finds an unreachable block | 
|  | // with an associated finalizer, it clears the association and runs | 
|  | // finalizer(obj) in a separate goroutine. This makes obj reachable again, | 
|  | // but now without an associated finalizer. Assuming that SetFinalizer | 
|  | // is not called again, the next time the garbage collector sees | 
|  | // that obj is unreachable, it will free obj. | 
|  | // | 
|  | // SetFinalizer(obj, nil) clears any finalizer associated with obj. | 
|  | // | 
|  | // The argument obj must be a pointer to an object allocated by calling | 
|  | // new, by taking the address of a composite literal, or by taking the | 
|  | // address of a local variable. | 
|  | // The argument finalizer must be a function that takes a single argument | 
|  | // to which obj's type can be assigned, and can have arbitrary ignored return | 
|  | // values. If either of these is not true, SetFinalizer may abort the | 
|  | // program. | 
|  | // | 
|  | // Finalizers are run in dependency order: if A points at B, both have | 
|  | // finalizers, and they are otherwise unreachable, only the finalizer | 
|  | // for A runs; once A is freed, the finalizer for B can run. | 
|  | // If a cyclic structure includes a block with a finalizer, that | 
|  | // cycle is not guaranteed to be garbage collected and the finalizer | 
|  | // is not guaranteed to run, because there is no ordering that | 
|  | // respects the dependencies. | 
|  | // | 
|  | // The finalizer is scheduled to run at some arbitrary time after the | 
|  | // program can no longer reach the object to which obj points. | 
|  | // There is no guarantee that finalizers will run before a program exits, | 
|  | // so typically they are useful only for releasing non-memory resources | 
|  | // associated with an object during a long-running program. | 
|  | // For example, an os.File object could use a finalizer to close the | 
|  | // associated operating system file descriptor when a program discards | 
|  | // an os.File without calling Close, but it would be a mistake | 
|  | // to depend on a finalizer to flush an in-memory I/O buffer such as a | 
|  | // bufio.Writer, because the buffer would not be flushed at program exit. | 
|  | // | 
|  | // It is not guaranteed that a finalizer will run if the size of *obj is | 
|  | // zero bytes. | 
|  | // | 
|  | // It is not guaranteed that a finalizer will run for objects allocated | 
|  | // in initializers for package-level variables. Such objects may be | 
|  | // linker-allocated, not heap-allocated. | 
|  | // | 
|  | // A finalizer may run as soon as an object becomes unreachable. | 
|  | // In order to use finalizers correctly, the program must ensure that | 
|  | // the object is reachable until it is no longer required. | 
|  | // Objects stored in global variables, or that can be found by tracing | 
|  | // pointers from a global variable, are reachable. For other objects, | 
|  | // pass the object to a call of the KeepAlive function to mark the | 
|  | // last point in the function where the object must be reachable. | 
|  | // | 
|  | // For example, if p points to a struct, such as os.File, that contains | 
|  | // a file descriptor d, and p has a finalizer that closes that file | 
|  | // descriptor, and if the last use of p in a function is a call to | 
|  | // syscall.Write(p.d, buf, size), then p may be unreachable as soon as | 
|  | // the program enters syscall.Write. The finalizer may run at that moment, | 
|  | // closing p.d, causing syscall.Write to fail because it is writing to | 
|  | // a closed file descriptor (or, worse, to an entirely different | 
|  | // file descriptor opened by a different goroutine). To avoid this problem, | 
|  | // call KeepAlive(p) after the call to syscall.Write. | 
|  | // | 
|  | // A single goroutine runs all finalizers for a program, sequentially. | 
|  | // If a finalizer must run for a long time, it should do so by starting | 
|  | // a new goroutine. | 
|  | // | 
|  | // In the terminology of the Go memory model, a call | 
|  | // SetFinalizer(x, f) “synchronizes before” the finalization call f(x). | 
|  | // However, there is no guarantee that KeepAlive(x) or any other use of x | 
|  | // “synchronizes before” f(x), so in general a finalizer should use a mutex | 
|  | // or other synchronization mechanism if it needs to access mutable state in x. | 
|  | // For example, consider a finalizer that inspects a mutable field in x | 
|  | // that is modified from time to time in the main program before x | 
|  | // becomes unreachable and the finalizer is invoked. | 
|  | // The modifications in the main program and the inspection in the finalizer | 
|  | // need to use appropriate synchronization, such as mutexes or atomic updates, | 
|  | // to avoid read-write races. | 
|  | func SetFinalizer(obj any, finalizer any) { | 
|  | if debug.sbrk != 0 { | 
|  | // debug.sbrk never frees memory, so no finalizers run | 
|  | // (and we don't have the data structures to record them). | 
|  | return | 
|  | } | 
|  | e := efaceOf(&obj) | 
|  | etyp := e._type | 
|  | if etyp == nil { | 
|  | throw("runtime.SetFinalizer: first argument is nil") | 
|  | } | 
|  | if etyp.kind&kindMask != kindPtr { | 
|  | throw("runtime.SetFinalizer: first argument is " + etyp.string() + ", not pointer") | 
|  | } | 
|  | ot := (*ptrtype)(unsafe.Pointer(etyp)) | 
|  | if ot.elem == nil { | 
|  | throw("nil elem type!") | 
|  | } | 
|  |  | 
|  | // find the containing object | 
|  | base, _, _ := findObject(uintptr(e.data), 0, 0) | 
|  |  | 
|  | if base == 0 { | 
|  | // 0-length objects are okay. | 
|  | if e.data == unsafe.Pointer(&zerobase) { | 
|  | return | 
|  | } | 
|  |  | 
|  | // Global initializers might be linker-allocated. | 
|  | //	var Foo = &Object{} | 
|  | //	func main() { | 
|  | //		runtime.SetFinalizer(Foo, nil) | 
|  | //	} | 
|  | // The relevant segments are: noptrdata, data, bss, noptrbss. | 
|  | // We cannot assume they are in any order or even contiguous, | 
|  | // due to external linking. | 
|  | for datap := &firstmoduledata; datap != nil; datap = datap.next { | 
|  | if datap.noptrdata <= uintptr(e.data) && uintptr(e.data) < datap.enoptrdata || | 
|  | datap.data <= uintptr(e.data) && uintptr(e.data) < datap.edata || | 
|  | datap.bss <= uintptr(e.data) && uintptr(e.data) < datap.ebss || | 
|  | datap.noptrbss <= uintptr(e.data) && uintptr(e.data) < datap.enoptrbss { | 
|  | return | 
|  | } | 
|  | } | 
|  | throw("runtime.SetFinalizer: pointer not in allocated block") | 
|  | } | 
|  |  | 
|  | if uintptr(e.data) != base { | 
|  | // As an implementation detail we allow to set finalizers for an inner byte | 
|  | // of an object if it could come from tiny alloc (see mallocgc for details). | 
|  | if ot.elem == nil || ot.elem.ptrdata != 0 || ot.elem.size >= maxTinySize { | 
|  | throw("runtime.SetFinalizer: pointer not at beginning of allocated block") | 
|  | } | 
|  | } | 
|  |  | 
|  | f := efaceOf(&finalizer) | 
|  | ftyp := f._type | 
|  | if ftyp == nil { | 
|  | // switch to system stack and remove finalizer | 
|  | systemstack(func() { | 
|  | removefinalizer(e.data) | 
|  | }) | 
|  | return | 
|  | } | 
|  |  | 
|  | if ftyp.kind&kindMask != kindFunc { | 
|  | throw("runtime.SetFinalizer: second argument is " + ftyp.string() + ", not a function") | 
|  | } | 
|  | ft := (*functype)(unsafe.Pointer(ftyp)) | 
|  | if ft.dotdotdot() { | 
|  | throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string() + " because dotdotdot") | 
|  | } | 
|  | if ft.inCount != 1 { | 
|  | throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string()) | 
|  | } | 
|  | fint := ft.in()[0] | 
|  | switch { | 
|  | case fint == etyp: | 
|  | // ok - same type | 
|  | goto okarg | 
|  | case fint.kind&kindMask == kindPtr: | 
|  | if (fint.uncommon() == nil || etyp.uncommon() == nil) && (*ptrtype)(unsafe.Pointer(fint)).elem == ot.elem { | 
|  | // ok - not same type, but both pointers, | 
|  | // one or the other is unnamed, and same element type, so assignable. | 
|  | goto okarg | 
|  | } | 
|  | case fint.kind&kindMask == kindInterface: | 
|  | ityp := (*interfacetype)(unsafe.Pointer(fint)) | 
|  | if len(ityp.mhdr) == 0 { | 
|  | // ok - satisfies empty interface | 
|  | goto okarg | 
|  | } | 
|  | if iface := assertE2I2(ityp, *efaceOf(&obj)); iface.tab != nil { | 
|  | goto okarg | 
|  | } | 
|  | } | 
|  | throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string()) | 
|  | okarg: | 
|  | // compute size needed for return parameters | 
|  | nret := uintptr(0) | 
|  | for _, t := range ft.out() { | 
|  | nret = alignUp(nret, uintptr(t.align)) + uintptr(t.size) | 
|  | } | 
|  | nret = alignUp(nret, goarch.PtrSize) | 
|  |  | 
|  | // make sure we have a finalizer goroutine | 
|  | createfing() | 
|  |  | 
|  | systemstack(func() { | 
|  | if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) { | 
|  | throw("runtime.SetFinalizer: finalizer already set") | 
|  | } | 
|  | }) | 
|  | } | 
|  |  | 
|  | // Mark KeepAlive as noinline so that it is easily detectable as an intrinsic. | 
|  | // | 
|  | //go:noinline | 
|  |  | 
|  | // KeepAlive marks its argument as currently reachable. | 
|  | // This ensures that the object is not freed, and its finalizer is not run, | 
|  | // before the point in the program where KeepAlive is called. | 
|  | // | 
|  | // A very simplified example showing where KeepAlive is required: | 
|  | // | 
|  | //	type File struct { d int } | 
|  | //	d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0) | 
|  | //	// ... do something if err != nil ... | 
|  | //	p := &File{d} | 
|  | //	runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) }) | 
|  | //	var buf [10]byte | 
|  | //	n, err := syscall.Read(p.d, buf[:]) | 
|  | //	// Ensure p is not finalized until Read returns. | 
|  | //	runtime.KeepAlive(p) | 
|  | //	// No more uses of p after this point. | 
|  | // | 
|  | // Without the KeepAlive call, the finalizer could run at the start of | 
|  | // syscall.Read, closing the file descriptor before syscall.Read makes | 
|  | // the actual system call. | 
|  | // | 
|  | // Note: KeepAlive should only be used to prevent finalizers from | 
|  | // running prematurely. In particular, when used with unsafe.Pointer, | 
|  | // the rules for valid uses of unsafe.Pointer still apply. | 
|  | func KeepAlive(x any) { | 
|  | // Introduce a use of x that the compiler can't eliminate. | 
|  | // This makes sure x is alive on entry. We need x to be alive | 
|  | // on entry for "defer runtime.KeepAlive(x)"; see issue 21402. | 
|  | if cgoAlwaysFalse { | 
|  | println(x) | 
|  | } | 
|  | } |