|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // IP address manipulations | 
|  | // | 
|  | // IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes. | 
|  | // An IPv4 address can be converted to an IPv6 address by | 
|  | // adding a canonical prefix (10 zeros, 2 0xFFs). | 
|  | // This library accepts either size of byte slice but always | 
|  | // returns 16-byte addresses. | 
|  |  | 
|  | package net | 
|  |  | 
|  | import ( | 
|  | "internal/bytealg" | 
|  | "internal/itoa" | 
|  | ) | 
|  |  | 
|  | // IP address lengths (bytes). | 
|  | const ( | 
|  | IPv4len = 4 | 
|  | IPv6len = 16 | 
|  | ) | 
|  |  | 
|  | // An IP is a single IP address, a slice of bytes. | 
|  | // Functions in this package accept either 4-byte (IPv4) | 
|  | // or 16-byte (IPv6) slices as input. | 
|  | // | 
|  | // Note that in this documentation, referring to an | 
|  | // IP address as an IPv4 address or an IPv6 address | 
|  | // is a semantic property of the address, not just the | 
|  | // length of the byte slice: a 16-byte slice can still | 
|  | // be an IPv4 address. | 
|  | type IP []byte | 
|  |  | 
|  | // An IPMask is a bitmask that can be used to manipulate | 
|  | // IP addresses for IP addressing and routing. | 
|  | // | 
|  | // See type IPNet and func ParseCIDR for details. | 
|  | type IPMask []byte | 
|  |  | 
|  | // An IPNet represents an IP network. | 
|  | type IPNet struct { | 
|  | IP   IP     // network number | 
|  | Mask IPMask // network mask | 
|  | } | 
|  |  | 
|  | // IPv4 returns the IP address (in 16-byte form) of the | 
|  | // IPv4 address a.b.c.d. | 
|  | func IPv4(a, b, c, d byte) IP { | 
|  | p := make(IP, IPv6len) | 
|  | copy(p, v4InV6Prefix) | 
|  | p[12] = a | 
|  | p[13] = b | 
|  | p[14] = c | 
|  | p[15] = d | 
|  | return p | 
|  | } | 
|  |  | 
|  | var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff} | 
|  |  | 
|  | // IPv4Mask returns the IP mask (in 4-byte form) of the | 
|  | // IPv4 mask a.b.c.d. | 
|  | func IPv4Mask(a, b, c, d byte) IPMask { | 
|  | p := make(IPMask, IPv4len) | 
|  | p[0] = a | 
|  | p[1] = b | 
|  | p[2] = c | 
|  | p[3] = d | 
|  | return p | 
|  | } | 
|  |  | 
|  | // CIDRMask returns an IPMask consisting of 'ones' 1 bits | 
|  | // followed by 0s up to a total length of 'bits' bits. | 
|  | // For a mask of this form, CIDRMask is the inverse of IPMask.Size. | 
|  | func CIDRMask(ones, bits int) IPMask { | 
|  | if bits != 8*IPv4len && bits != 8*IPv6len { | 
|  | return nil | 
|  | } | 
|  | if ones < 0 || ones > bits { | 
|  | return nil | 
|  | } | 
|  | l := bits / 8 | 
|  | m := make(IPMask, l) | 
|  | n := uint(ones) | 
|  | for i := 0; i < l; i++ { | 
|  | if n >= 8 { | 
|  | m[i] = 0xff | 
|  | n -= 8 | 
|  | continue | 
|  | } | 
|  | m[i] = ^byte(0xff >> n) | 
|  | n = 0 | 
|  | } | 
|  | return m | 
|  | } | 
|  |  | 
|  | // Well-known IPv4 addresses | 
|  | var ( | 
|  | IPv4bcast     = IPv4(255, 255, 255, 255) // limited broadcast | 
|  | IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems | 
|  | IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers | 
|  | IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros | 
|  | ) | 
|  |  | 
|  | // Well-known IPv6 addresses | 
|  | var ( | 
|  | IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} | 
|  | IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} | 
|  | IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} | 
|  | IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01} | 
|  | IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01} | 
|  | IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02} | 
|  | ) | 
|  |  | 
|  | // IsUnspecified reports whether ip is an unspecified address, either | 
|  | // the IPv4 address "0.0.0.0" or the IPv6 address "::". | 
|  | func (ip IP) IsUnspecified() bool { | 
|  | return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified) | 
|  | } | 
|  |  | 
|  | // IsLoopback reports whether ip is a loopback address. | 
|  | func (ip IP) IsLoopback() bool { | 
|  | if ip4 := ip.To4(); ip4 != nil { | 
|  | return ip4[0] == 127 | 
|  | } | 
|  | return ip.Equal(IPv6loopback) | 
|  | } | 
|  |  | 
|  | // IsPrivate reports whether ip is a private address, according to | 
|  | // RFC 1918 (IPv4 addresses) and RFC 4193 (IPv6 addresses). | 
|  | func (ip IP) IsPrivate() bool { | 
|  | if ip4 := ip.To4(); ip4 != nil { | 
|  | // Following RFC 1918, Section 3. Private Address Space which says: | 
|  | //   The Internet Assigned Numbers Authority (IANA) has reserved the | 
|  | //   following three blocks of the IP address space for private internets: | 
|  | //     10.0.0.0        -   10.255.255.255  (10/8 prefix) | 
|  | //     172.16.0.0      -   172.31.255.255  (172.16/12 prefix) | 
|  | //     192.168.0.0     -   192.168.255.255 (192.168/16 prefix) | 
|  | return ip4[0] == 10 || | 
|  | (ip4[0] == 172 && ip4[1]&0xf0 == 16) || | 
|  | (ip4[0] == 192 && ip4[1] == 168) | 
|  | } | 
|  | // Following RFC 4193, Section 8. IANA Considerations which says: | 
|  | //   The IANA has assigned the FC00::/7 prefix to "Unique Local Unicast". | 
|  | return len(ip) == IPv6len && ip[0]&0xfe == 0xfc | 
|  | } | 
|  |  | 
|  | // IsMulticast reports whether ip is a multicast address. | 
|  | func (ip IP) IsMulticast() bool { | 
|  | if ip4 := ip.To4(); ip4 != nil { | 
|  | return ip4[0]&0xf0 == 0xe0 | 
|  | } | 
|  | return len(ip) == IPv6len && ip[0] == 0xff | 
|  | } | 
|  |  | 
|  | // IsInterfaceLocalMulticast reports whether ip is | 
|  | // an interface-local multicast address. | 
|  | func (ip IP) IsInterfaceLocalMulticast() bool { | 
|  | return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01 | 
|  | } | 
|  |  | 
|  | // IsLinkLocalMulticast reports whether ip is a link-local | 
|  | // multicast address. | 
|  | func (ip IP) IsLinkLocalMulticast() bool { | 
|  | if ip4 := ip.To4(); ip4 != nil { | 
|  | return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0 | 
|  | } | 
|  | return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02 | 
|  | } | 
|  |  | 
|  | // IsLinkLocalUnicast reports whether ip is a link-local | 
|  | // unicast address. | 
|  | func (ip IP) IsLinkLocalUnicast() bool { | 
|  | if ip4 := ip.To4(); ip4 != nil { | 
|  | return ip4[0] == 169 && ip4[1] == 254 | 
|  | } | 
|  | return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80 | 
|  | } | 
|  |  | 
|  | // IsGlobalUnicast reports whether ip is a global unicast | 
|  | // address. | 
|  | // | 
|  | // The identification of global unicast addresses uses address type | 
|  | // identification as defined in RFC 1122, RFC 4632 and RFC 4291 with | 
|  | // the exception of IPv4 directed broadcast addresses. | 
|  | // It returns true even if ip is in IPv4 private address space or | 
|  | // local IPv6 unicast address space. | 
|  | func (ip IP) IsGlobalUnicast() bool { | 
|  | return (len(ip) == IPv4len || len(ip) == IPv6len) && | 
|  | !ip.Equal(IPv4bcast) && | 
|  | !ip.IsUnspecified() && | 
|  | !ip.IsLoopback() && | 
|  | !ip.IsMulticast() && | 
|  | !ip.IsLinkLocalUnicast() | 
|  | } | 
|  |  | 
|  | // Is p all zeros? | 
|  | func isZeros(p IP) bool { | 
|  | for i := 0; i < len(p); i++ { | 
|  | if p[i] != 0 { | 
|  | return false | 
|  | } | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | // To4 converts the IPv4 address ip to a 4-byte representation. | 
|  | // If ip is not an IPv4 address, To4 returns nil. | 
|  | func (ip IP) To4() IP { | 
|  | if len(ip) == IPv4len { | 
|  | return ip | 
|  | } | 
|  | if len(ip) == IPv6len && | 
|  | isZeros(ip[0:10]) && | 
|  | ip[10] == 0xff && | 
|  | ip[11] == 0xff { | 
|  | return ip[12:16] | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // To16 converts the IP address ip to a 16-byte representation. | 
|  | // If ip is not an IP address (it is the wrong length), To16 returns nil. | 
|  | func (ip IP) To16() IP { | 
|  | if len(ip) == IPv4len { | 
|  | return IPv4(ip[0], ip[1], ip[2], ip[3]) | 
|  | } | 
|  | if len(ip) == IPv6len { | 
|  | return ip | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // Default route masks for IPv4. | 
|  | var ( | 
|  | classAMask = IPv4Mask(0xff, 0, 0, 0) | 
|  | classBMask = IPv4Mask(0xff, 0xff, 0, 0) | 
|  | classCMask = IPv4Mask(0xff, 0xff, 0xff, 0) | 
|  | ) | 
|  |  | 
|  | // DefaultMask returns the default IP mask for the IP address ip. | 
|  | // Only IPv4 addresses have default masks; DefaultMask returns | 
|  | // nil if ip is not a valid IPv4 address. | 
|  | func (ip IP) DefaultMask() IPMask { | 
|  | if ip = ip.To4(); ip == nil { | 
|  | return nil | 
|  | } | 
|  | switch { | 
|  | case ip[0] < 0x80: | 
|  | return classAMask | 
|  | case ip[0] < 0xC0: | 
|  | return classBMask | 
|  | default: | 
|  | return classCMask | 
|  | } | 
|  | } | 
|  |  | 
|  | func allFF(b []byte) bool { | 
|  | for _, c := range b { | 
|  | if c != 0xff { | 
|  | return false | 
|  | } | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | // Mask returns the result of masking the IP address ip with mask. | 
|  | func (ip IP) Mask(mask IPMask) IP { | 
|  | if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) { | 
|  | mask = mask[12:] | 
|  | } | 
|  | if len(mask) == IPv4len && len(ip) == IPv6len && bytealg.Equal(ip[:12], v4InV6Prefix) { | 
|  | ip = ip[12:] | 
|  | } | 
|  | n := len(ip) | 
|  | if n != len(mask) { | 
|  | return nil | 
|  | } | 
|  | out := make(IP, n) | 
|  | for i := 0; i < n; i++ { | 
|  | out[i] = ip[i] & mask[i] | 
|  | } | 
|  | return out | 
|  | } | 
|  |  | 
|  | // ubtoa encodes the string form of the integer v to dst[start:] and | 
|  | // returns the number of bytes written to dst. The caller must ensure | 
|  | // that dst has sufficient length. | 
|  | func ubtoa(dst []byte, start int, v byte) int { | 
|  | if v < 10 { | 
|  | dst[start] = v + '0' | 
|  | return 1 | 
|  | } else if v < 100 { | 
|  | dst[start+1] = v%10 + '0' | 
|  | dst[start] = v/10 + '0' | 
|  | return 2 | 
|  | } | 
|  |  | 
|  | dst[start+2] = v%10 + '0' | 
|  | dst[start+1] = (v/10)%10 + '0' | 
|  | dst[start] = v/100 + '0' | 
|  | return 3 | 
|  | } | 
|  |  | 
|  | // String returns the string form of the IP address ip. | 
|  | // It returns one of 4 forms: | 
|  | //   - "<nil>", if ip has length 0 | 
|  | //   - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address | 
|  | //   - IPv6 conforming to RFC 5952 ("2001:db8::1"), if ip is a valid IPv6 address | 
|  | //   - the hexadecimal form of ip, without punctuation, if no other cases apply | 
|  | func (ip IP) String() string { | 
|  | p := ip | 
|  |  | 
|  | if len(ip) == 0 { | 
|  | return "<nil>" | 
|  | } | 
|  |  | 
|  | // If IPv4, use dotted notation. | 
|  | if p4 := p.To4(); len(p4) == IPv4len { | 
|  | const maxIPv4StringLen = len("255.255.255.255") | 
|  | b := make([]byte, maxIPv4StringLen) | 
|  |  | 
|  | n := ubtoa(b, 0, p4[0]) | 
|  | b[n] = '.' | 
|  | n++ | 
|  |  | 
|  | n += ubtoa(b, n, p4[1]) | 
|  | b[n] = '.' | 
|  | n++ | 
|  |  | 
|  | n += ubtoa(b, n, p4[2]) | 
|  | b[n] = '.' | 
|  | n++ | 
|  |  | 
|  | n += ubtoa(b, n, p4[3]) | 
|  | return string(b[:n]) | 
|  | } | 
|  | if len(p) != IPv6len { | 
|  | return "?" + hexString(ip) | 
|  | } | 
|  |  | 
|  | // Find longest run of zeros. | 
|  | e0 := -1 | 
|  | e1 := -1 | 
|  | for i := 0; i < IPv6len; i += 2 { | 
|  | j := i | 
|  | for j < IPv6len && p[j] == 0 && p[j+1] == 0 { | 
|  | j += 2 | 
|  | } | 
|  | if j > i && j-i > e1-e0 { | 
|  | e0 = i | 
|  | e1 = j | 
|  | i = j | 
|  | } | 
|  | } | 
|  | // The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field. | 
|  | if e1-e0 <= 2 { | 
|  | e0 = -1 | 
|  | e1 = -1 | 
|  | } | 
|  |  | 
|  | const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff") | 
|  | b := make([]byte, 0, maxLen) | 
|  |  | 
|  | // Print with possible :: in place of run of zeros | 
|  | for i := 0; i < IPv6len; i += 2 { | 
|  | if i == e0 { | 
|  | b = append(b, ':', ':') | 
|  | i = e1 | 
|  | if i >= IPv6len { | 
|  | break | 
|  | } | 
|  | } else if i > 0 { | 
|  | b = append(b, ':') | 
|  | } | 
|  | b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1])) | 
|  | } | 
|  | return string(b) | 
|  | } | 
|  |  | 
|  | func hexString(b []byte) string { | 
|  | s := make([]byte, len(b)*2) | 
|  | for i, tn := range b { | 
|  | s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf] | 
|  | } | 
|  | return string(s) | 
|  | } | 
|  |  | 
|  | // ipEmptyString is like ip.String except that it returns | 
|  | // an empty string when ip is unset. | 
|  | func ipEmptyString(ip IP) string { | 
|  | if len(ip) == 0 { | 
|  | return "" | 
|  | } | 
|  | return ip.String() | 
|  | } | 
|  |  | 
|  | // MarshalText implements the encoding.TextMarshaler interface. | 
|  | // The encoding is the same as returned by String, with one exception: | 
|  | // When len(ip) is zero, it returns an empty slice. | 
|  | func (ip IP) MarshalText() ([]byte, error) { | 
|  | if len(ip) == 0 { | 
|  | return []byte(""), nil | 
|  | } | 
|  | if len(ip) != IPv4len && len(ip) != IPv6len { | 
|  | return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)} | 
|  | } | 
|  | return []byte(ip.String()), nil | 
|  | } | 
|  |  | 
|  | // UnmarshalText implements the encoding.TextUnmarshaler interface. | 
|  | // The IP address is expected in a form accepted by ParseIP. | 
|  | func (ip *IP) UnmarshalText(text []byte) error { | 
|  | if len(text) == 0 { | 
|  | *ip = nil | 
|  | return nil | 
|  | } | 
|  | s := string(text) | 
|  | x := ParseIP(s) | 
|  | if x == nil { | 
|  | return &ParseError{Type: "IP address", Text: s} | 
|  | } | 
|  | *ip = x | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // Equal reports whether ip and x are the same IP address. | 
|  | // An IPv4 address and that same address in IPv6 form are | 
|  | // considered to be equal. | 
|  | func (ip IP) Equal(x IP) bool { | 
|  | if len(ip) == len(x) { | 
|  | return bytealg.Equal(ip, x) | 
|  | } | 
|  | if len(ip) == IPv4len && len(x) == IPv6len { | 
|  | return bytealg.Equal(x[0:12], v4InV6Prefix) && bytealg.Equal(ip, x[12:]) | 
|  | } | 
|  | if len(ip) == IPv6len && len(x) == IPv4len { | 
|  | return bytealg.Equal(ip[0:12], v4InV6Prefix) && bytealg.Equal(ip[12:], x) | 
|  | } | 
|  | return false | 
|  | } | 
|  |  | 
|  | func (ip IP) matchAddrFamily(x IP) bool { | 
|  | return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil | 
|  | } | 
|  |  | 
|  | // If mask is a sequence of 1 bits followed by 0 bits, | 
|  | // return the number of 1 bits. | 
|  | func simpleMaskLength(mask IPMask) int { | 
|  | var n int | 
|  | for i, v := range mask { | 
|  | if v == 0xff { | 
|  | n += 8 | 
|  | continue | 
|  | } | 
|  | // found non-ff byte | 
|  | // count 1 bits | 
|  | for v&0x80 != 0 { | 
|  | n++ | 
|  | v <<= 1 | 
|  | } | 
|  | // rest must be 0 bits | 
|  | if v != 0 { | 
|  | return -1 | 
|  | } | 
|  | for i++; i < len(mask); i++ { | 
|  | if mask[i] != 0 { | 
|  | return -1 | 
|  | } | 
|  | } | 
|  | break | 
|  | } | 
|  | return n | 
|  | } | 
|  |  | 
|  | // Size returns the number of leading ones and total bits in the mask. | 
|  | // If the mask is not in the canonical form--ones followed by zeros--then | 
|  | // Size returns 0, 0. | 
|  | func (m IPMask) Size() (ones, bits int) { | 
|  | ones, bits = simpleMaskLength(m), len(m)*8 | 
|  | if ones == -1 { | 
|  | return 0, 0 | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // String returns the hexadecimal form of m, with no punctuation. | 
|  | func (m IPMask) String() string { | 
|  | if len(m) == 0 { | 
|  | return "<nil>" | 
|  | } | 
|  | return hexString(m) | 
|  | } | 
|  |  | 
|  | func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) { | 
|  | if ip = n.IP.To4(); ip == nil { | 
|  | ip = n.IP | 
|  | if len(ip) != IPv6len { | 
|  | return nil, nil | 
|  | } | 
|  | } | 
|  | m = n.Mask | 
|  | switch len(m) { | 
|  | case IPv4len: | 
|  | if len(ip) != IPv4len { | 
|  | return nil, nil | 
|  | } | 
|  | case IPv6len: | 
|  | if len(ip) == IPv4len { | 
|  | m = m[12:] | 
|  | } | 
|  | default: | 
|  | return nil, nil | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // Contains reports whether the network includes ip. | 
|  | func (n *IPNet) Contains(ip IP) bool { | 
|  | nn, m := networkNumberAndMask(n) | 
|  | if x := ip.To4(); x != nil { | 
|  | ip = x | 
|  | } | 
|  | l := len(ip) | 
|  | if l != len(nn) { | 
|  | return false | 
|  | } | 
|  | for i := 0; i < l; i++ { | 
|  | if nn[i]&m[i] != ip[i]&m[i] { | 
|  | return false | 
|  | } | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | // Network returns the address's network name, "ip+net". | 
|  | func (n *IPNet) Network() string { return "ip+net" } | 
|  |  | 
|  | // String returns the CIDR notation of n like "192.0.2.0/24" | 
|  | // or "2001:db8::/48" as defined in RFC 4632 and RFC 4291. | 
|  | // If the mask is not in the canonical form, it returns the | 
|  | // string which consists of an IP address, followed by a slash | 
|  | // character and a mask expressed as hexadecimal form with no | 
|  | // punctuation like "198.51.100.0/c000ff00". | 
|  | func (n *IPNet) String() string { | 
|  | if n == nil { | 
|  | return "<nil>" | 
|  | } | 
|  | nn, m := networkNumberAndMask(n) | 
|  | if nn == nil || m == nil { | 
|  | return "<nil>" | 
|  | } | 
|  | l := simpleMaskLength(m) | 
|  | if l == -1 { | 
|  | return nn.String() + "/" + m.String() | 
|  | } | 
|  | return nn.String() + "/" + itoa.Uitoa(uint(l)) | 
|  | } | 
|  |  | 
|  | // Parse IPv4 address (d.d.d.d). | 
|  | func parseIPv4(s string) IP { | 
|  | var p [IPv4len]byte | 
|  | for i := 0; i < IPv4len; i++ { | 
|  | if len(s) == 0 { | 
|  | // Missing octets. | 
|  | return nil | 
|  | } | 
|  | if i > 0 { | 
|  | if s[0] != '.' { | 
|  | return nil | 
|  | } | 
|  | s = s[1:] | 
|  | } | 
|  | n, c, ok := dtoi(s) | 
|  | if !ok || n > 0xFF { | 
|  | return nil | 
|  | } | 
|  | if c > 1 && s[0] == '0' { | 
|  | // Reject non-zero components with leading zeroes. | 
|  | return nil | 
|  | } | 
|  | s = s[c:] | 
|  | p[i] = byte(n) | 
|  | } | 
|  | if len(s) != 0 { | 
|  | return nil | 
|  | } | 
|  | return IPv4(p[0], p[1], p[2], p[3]) | 
|  | } | 
|  |  | 
|  | // parseIPv6Zone parses s as a literal IPv6 address and its associated zone | 
|  | // identifier which is described in RFC 4007. | 
|  | func parseIPv6Zone(s string) (IP, string) { | 
|  | s, zone := splitHostZone(s) | 
|  | return parseIPv6(s), zone | 
|  | } | 
|  |  | 
|  | // parseIPv6 parses s as a literal IPv6 address described in RFC 4291 | 
|  | // and RFC 5952. | 
|  | func parseIPv6(s string) (ip IP) { | 
|  | ip = make(IP, IPv6len) | 
|  | ellipsis := -1 // position of ellipsis in ip | 
|  |  | 
|  | // Might have leading ellipsis | 
|  | if len(s) >= 2 && s[0] == ':' && s[1] == ':' { | 
|  | ellipsis = 0 | 
|  | s = s[2:] | 
|  | // Might be only ellipsis | 
|  | if len(s) == 0 { | 
|  | return ip | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop, parsing hex numbers followed by colon. | 
|  | i := 0 | 
|  | for i < IPv6len { | 
|  | // Hex number. | 
|  | n, c, ok := xtoi(s) | 
|  | if !ok || n > 0xFFFF { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // If followed by dot, might be in trailing IPv4. | 
|  | if c < len(s) && s[c] == '.' { | 
|  | if ellipsis < 0 && i != IPv6len-IPv4len { | 
|  | // Not the right place. | 
|  | return nil | 
|  | } | 
|  | if i+IPv4len > IPv6len { | 
|  | // Not enough room. | 
|  | return nil | 
|  | } | 
|  | ip4 := parseIPv4(s) | 
|  | if ip4 == nil { | 
|  | return nil | 
|  | } | 
|  | ip[i] = ip4[12] | 
|  | ip[i+1] = ip4[13] | 
|  | ip[i+2] = ip4[14] | 
|  | ip[i+3] = ip4[15] | 
|  | s = "" | 
|  | i += IPv4len | 
|  | break | 
|  | } | 
|  |  | 
|  | // Save this 16-bit chunk. | 
|  | ip[i] = byte(n >> 8) | 
|  | ip[i+1] = byte(n) | 
|  | i += 2 | 
|  |  | 
|  | // Stop at end of string. | 
|  | s = s[c:] | 
|  | if len(s) == 0 { | 
|  | break | 
|  | } | 
|  |  | 
|  | // Otherwise must be followed by colon and more. | 
|  | if s[0] != ':' || len(s) == 1 { | 
|  | return nil | 
|  | } | 
|  | s = s[1:] | 
|  |  | 
|  | // Look for ellipsis. | 
|  | if s[0] == ':' { | 
|  | if ellipsis >= 0 { // already have one | 
|  | return nil | 
|  | } | 
|  | ellipsis = i | 
|  | s = s[1:] | 
|  | if len(s) == 0 { // can be at end | 
|  | break | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Must have used entire string. | 
|  | if len(s) != 0 { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // If didn't parse enough, expand ellipsis. | 
|  | if i < IPv6len { | 
|  | if ellipsis < 0 { | 
|  | return nil | 
|  | } | 
|  | n := IPv6len - i | 
|  | for j := i - 1; j >= ellipsis; j-- { | 
|  | ip[j+n] = ip[j] | 
|  | } | 
|  | for j := ellipsis + n - 1; j >= ellipsis; j-- { | 
|  | ip[j] = 0 | 
|  | } | 
|  | } else if ellipsis >= 0 { | 
|  | // Ellipsis must represent at least one 0 group. | 
|  | return nil | 
|  | } | 
|  | return ip | 
|  | } | 
|  |  | 
|  | // ParseIP parses s as an IP address, returning the result. | 
|  | // The string s can be in IPv4 dotted decimal ("192.0.2.1"), IPv6 | 
|  | // ("2001:db8::68"), or IPv4-mapped IPv6 ("::ffff:192.0.2.1") form. | 
|  | // If s is not a valid textual representation of an IP address, | 
|  | // ParseIP returns nil. | 
|  | func ParseIP(s string) IP { | 
|  | for i := 0; i < len(s); i++ { | 
|  | switch s[i] { | 
|  | case '.': | 
|  | return parseIPv4(s) | 
|  | case ':': | 
|  | return parseIPv6(s) | 
|  | } | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // parseIPZone parses s as an IP address, return it and its associated zone | 
|  | // identifier (IPv6 only). | 
|  | func parseIPZone(s string) (IP, string) { | 
|  | for i := 0; i < len(s); i++ { | 
|  | switch s[i] { | 
|  | case '.': | 
|  | return parseIPv4(s), "" | 
|  | case ':': | 
|  | return parseIPv6Zone(s) | 
|  | } | 
|  | } | 
|  | return nil, "" | 
|  | } | 
|  |  | 
|  | // ParseCIDR parses s as a CIDR notation IP address and prefix length, | 
|  | // like "192.0.2.0/24" or "2001:db8::/32", as defined in | 
|  | // RFC 4632 and RFC 4291. | 
|  | // | 
|  | // It returns the IP address and the network implied by the IP and | 
|  | // prefix length. | 
|  | // For example, ParseCIDR("192.0.2.1/24") returns the IP address | 
|  | // 192.0.2.1 and the network 192.0.2.0/24. | 
|  | func ParseCIDR(s string) (IP, *IPNet, error) { | 
|  | i := bytealg.IndexByteString(s, '/') | 
|  | if i < 0 { | 
|  | return nil, nil, &ParseError{Type: "CIDR address", Text: s} | 
|  | } | 
|  | addr, mask := s[:i], s[i+1:] | 
|  | iplen := IPv4len | 
|  | ip := parseIPv4(addr) | 
|  | if ip == nil { | 
|  | iplen = IPv6len | 
|  | ip = parseIPv6(addr) | 
|  | } | 
|  | n, i, ok := dtoi(mask) | 
|  | if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen { | 
|  | return nil, nil, &ParseError{Type: "CIDR address", Text: s} | 
|  | } | 
|  | m := CIDRMask(n, 8*iplen) | 
|  | return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil | 
|  | } |