|  | // Copyright 2018 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // This file implements type parameter inference given | 
|  | // a list of concrete arguments and a parameter list. | 
|  |  | 
|  | package types | 
|  |  | 
|  | import ( | 
|  | "fmt" | 
|  | "go/token" | 
|  | "strings" | 
|  | ) | 
|  |  | 
|  | // infer attempts to infer the complete set of type arguments for generic function instantiation/call | 
|  | // based on the given type parameters tparams, type arguments targs, function parameters params, and | 
|  | // function arguments args, if any. There must be at least one type parameter, no more type arguments | 
|  | // than type parameters, and params and args must match in number (incl. zero). | 
|  | // If successful, infer returns the complete list of type arguments, one for each type parameter. | 
|  | // Otherwise the result is nil and appropriate errors will be reported. | 
|  | // | 
|  | // Inference proceeds as follows: | 
|  | // | 
|  | //	Starting with given type arguments | 
|  | //	1) apply FTI (function type inference) with typed arguments, | 
|  | //	2) apply CTI (constraint type inference), | 
|  | //	3) apply FTI with untyped function arguments, | 
|  | //	4) apply CTI. | 
|  | // | 
|  | // The process stops as soon as all type arguments are known or an error occurs. | 
|  | func (check *Checker) infer(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (result []Type) { | 
|  | if debug { | 
|  | defer func() { | 
|  | assert(result == nil || len(result) == len(tparams)) | 
|  | for _, targ := range result { | 
|  | assert(targ != nil) | 
|  | } | 
|  | //check.dump("### inferred targs = %s", result) | 
|  | }() | 
|  | } | 
|  |  | 
|  | if traceInference { | 
|  | check.dump("-- inferA %s%s ➞ %s", tparams, params, targs) | 
|  | defer func() { | 
|  | check.dump("=> inferA %s ➞ %s", tparams, result) | 
|  | }() | 
|  | } | 
|  |  | 
|  | // There must be at least one type parameter, and no more type arguments than type parameters. | 
|  | n := len(tparams) | 
|  | assert(n > 0 && len(targs) <= n) | 
|  |  | 
|  | // Function parameters and arguments must match in number. | 
|  | assert(params.Len() == len(args)) | 
|  |  | 
|  | // If we already have all type arguments, we're done. | 
|  | if len(targs) == n { | 
|  | return targs | 
|  | } | 
|  | // len(targs) < n | 
|  |  | 
|  | const enableTparamRenaming = true | 
|  | if enableTparamRenaming { | 
|  | // For the purpose of type inference we must differentiate type parameters | 
|  | // occurring in explicit type or value function arguments from the type | 
|  | // parameters we are solving for via unification, because they may be the | 
|  | // same in self-recursive calls. For example: | 
|  | // | 
|  | //  func f[P *Q, Q any](p P, q Q) { | 
|  | //    f(p) | 
|  | //  } | 
|  | // | 
|  | // In this example, the fact that the P used in the instantation f[P] has | 
|  | // the same pointer identity as the P we are trying to solve for via | 
|  | // unification is coincidental: there is nothing special about recursive | 
|  | // calls that should cause them to conflate the identity of type arguments | 
|  | // with type parameters. To put it another way: any such self-recursive | 
|  | // call is equivalent to a mutually recursive call, which does not run into | 
|  | // any problems of type parameter identity. For example, the following code | 
|  | // is equivalent to the code above. | 
|  | // | 
|  | //  func f[P interface{*Q}, Q any](p P, q Q) { | 
|  | //    f2(p) | 
|  | //  } | 
|  | // | 
|  | //  func f2[P interface{*Q}, Q any](p P, q Q) { | 
|  | //    f(p) | 
|  | //  } | 
|  | // | 
|  | // We can turn the first example into the second example by renaming type | 
|  | // parameters in the original signature to give them a new identity. As an | 
|  | // optimization, we do this only for self-recursive calls. | 
|  |  | 
|  | // We can detect if we are in a self-recursive call by comparing the | 
|  | // identity of the first type parameter in the current function with the | 
|  | // first type parameter in tparams. This works because type parameters are | 
|  | // unique to their type parameter list. | 
|  | selfRecursive := check.sig != nil && check.sig.tparams.Len() > 0 && tparams[0] == check.sig.tparams.At(0) | 
|  |  | 
|  | if selfRecursive { | 
|  | // In self-recursive inference, rename the type parameters with new type | 
|  | // parameters that are the same but for their pointer identity. | 
|  | tparams2 := make([]*TypeParam, len(tparams)) | 
|  | for i, tparam := range tparams { | 
|  | tname := NewTypeName(tparam.Obj().Pos(), tparam.Obj().Pkg(), tparam.Obj().Name(), nil) | 
|  | tparams2[i] = NewTypeParam(tname, nil) | 
|  | tparams2[i].index = tparam.index // == i | 
|  | } | 
|  |  | 
|  | renameMap := makeRenameMap(tparams, tparams2) | 
|  | for i, tparam := range tparams { | 
|  | tparams2[i].bound = check.subst(posn.Pos(), tparam.bound, renameMap, nil, check.context()) | 
|  | } | 
|  |  | 
|  | tparams = tparams2 | 
|  | params = check.subst(posn.Pos(), params, renameMap, nil, check.context()).(*Tuple) | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have more than 2 arguments, we may have arguments with named and unnamed types. | 
|  | // If that is the case, permutate params and args such that the arguments with named | 
|  | // types are first in the list. This doesn't affect type inference if all types are taken | 
|  | // as is. But when we have inexact unification enabled (as is the case for function type | 
|  | // inference), when a named type is unified with an unnamed type, unification proceeds | 
|  | // with the underlying type of the named type because otherwise unification would fail | 
|  | // right away. This leads to an asymmetry in type inference: in cases where arguments of | 
|  | // named and unnamed types are passed to parameters with identical type, different types | 
|  | // (named vs underlying) may be inferred depending on the order of the arguments. | 
|  | // By ensuring that named types are seen first, order dependence is avoided and unification | 
|  | // succeeds where it can (issue #43056). | 
|  | const enableArgSorting = true | 
|  | if m := len(args); m >= 2 && enableArgSorting { | 
|  | // Determine indices of arguments with named and unnamed types. | 
|  | var named, unnamed []int | 
|  | for i, arg := range args { | 
|  | if hasName(arg.typ) { | 
|  | named = append(named, i) | 
|  | } else { | 
|  | unnamed = append(unnamed, i) | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have named and unnamed types, move the arguments with | 
|  | // named types first. Update the parameter list accordingly. | 
|  | // Make copies so as not to clobber the incoming slices. | 
|  | if len(named) != 0 && len(unnamed) != 0 { | 
|  | params2 := make([]*Var, m) | 
|  | args2 := make([]*operand, m) | 
|  | i := 0 | 
|  | for _, j := range named { | 
|  | params2[i] = params.At(j) | 
|  | args2[i] = args[j] | 
|  | i++ | 
|  | } | 
|  | for _, j := range unnamed { | 
|  | params2[i] = params.At(j) | 
|  | args2[i] = args[j] | 
|  | i++ | 
|  | } | 
|  | params = NewTuple(params2...) | 
|  | args = args2 | 
|  | } | 
|  | } | 
|  |  | 
|  | // --- 1 --- | 
|  | // Continue with the type arguments we have. Avoid matching generic | 
|  | // parameters that already have type arguments against function arguments: | 
|  | // It may fail because matching uses type identity while parameter passing | 
|  | // uses assignment rules. Instantiate the parameter list with the type | 
|  | // arguments we have, and continue with that parameter list. | 
|  |  | 
|  | // First, make sure we have a "full" list of type arguments, some of which | 
|  | // may be nil (unknown). Make a copy so as to not clobber the incoming slice. | 
|  | if len(targs) < n { | 
|  | targs2 := make([]Type, n) | 
|  | copy(targs2, targs) | 
|  | targs = targs2 | 
|  | } | 
|  | // len(targs) == n | 
|  |  | 
|  | // Substitute type arguments for their respective type parameters in params, | 
|  | // if any. Note that nil targs entries are ignored by check.subst. | 
|  | // TODO(gri) Can we avoid this (we're setting known type arguments below, | 
|  | //           but that doesn't impact the isParameterized check for now). | 
|  | if params.Len() > 0 { | 
|  | smap := makeSubstMap(tparams, targs) | 
|  | params = check.subst(token.NoPos, params, smap, nil, check.context()).(*Tuple) | 
|  | } | 
|  |  | 
|  | // Unify parameter and argument types for generic parameters with typed arguments | 
|  | // and collect the indices of generic parameters with untyped arguments. | 
|  | // Terminology: generic parameter = function parameter with a type-parameterized type | 
|  | u := newUnifier(false) | 
|  | u.x.init(tparams) | 
|  |  | 
|  | // Set the type arguments which we know already. | 
|  | for i, targ := range targs { | 
|  | if targ != nil { | 
|  | u.x.set(i, targ) | 
|  | } | 
|  | } | 
|  |  | 
|  | errorf := func(kind string, tpar, targ Type, arg *operand) { | 
|  | // provide a better error message if we can | 
|  | targs, index := u.x.types() | 
|  | if index == 0 { | 
|  | // The first type parameter couldn't be inferred. | 
|  | // If none of them could be inferred, don't try | 
|  | // to provide the inferred type in the error msg. | 
|  | allFailed := true | 
|  | for _, targ := range targs { | 
|  | if targ != nil { | 
|  | allFailed = false | 
|  | break | 
|  | } | 
|  | } | 
|  | if allFailed { | 
|  | check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match %s (cannot infer %s)", kind, targ, arg.expr, tpar, typeParamsString(tparams)) | 
|  | return | 
|  | } | 
|  | } | 
|  | smap := makeSubstMap(tparams, targs) | 
|  | // TODO(rFindley): pass a positioner here, rather than arg.Pos(). | 
|  | inferred := check.subst(arg.Pos(), tpar, smap, nil, check.context()) | 
|  | // _CannotInferTypeArgs indicates a failure of inference, though the actual | 
|  | // error may be better attributed to a user-provided type argument (hence | 
|  | // _InvalidTypeArg). We can't differentiate these cases, so fall back on | 
|  | // the more general _CannotInferTypeArgs. | 
|  | if inferred != tpar { | 
|  | check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match inferred type %s for %s", kind, targ, arg.expr, inferred, tpar) | 
|  | } else { | 
|  | check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match %s", kind, targ, arg.expr, tpar) | 
|  | } | 
|  | } | 
|  |  | 
|  | // indices of the generic parameters with untyped arguments - save for later | 
|  | var indices []int | 
|  | for i, arg := range args { | 
|  | par := params.At(i) | 
|  | // If we permit bidirectional unification, this conditional code needs to be | 
|  | // executed even if par.typ is not parameterized since the argument may be a | 
|  | // generic function (for which we want to infer its type arguments). | 
|  | if isParameterized(tparams, par.typ) { | 
|  | if arg.mode == invalid { | 
|  | // An error was reported earlier. Ignore this targ | 
|  | // and continue, we may still be able to infer all | 
|  | // targs resulting in fewer follow-on errors. | 
|  | continue | 
|  | } | 
|  | if targ := arg.typ; isTyped(targ) { | 
|  | // If we permit bidirectional unification, and targ is | 
|  | // a generic function, we need to initialize u.y with | 
|  | // the respective type parameters of targ. | 
|  | if !u.unify(par.typ, targ) { | 
|  | errorf("type", par.typ, targ, arg) | 
|  | return nil | 
|  | } | 
|  | } else if _, ok := par.typ.(*TypeParam); ok { | 
|  | // Since default types are all basic (i.e., non-composite) types, an | 
|  | // untyped argument will never match a composite parameter type; the | 
|  | // only parameter type it can possibly match against is a *TypeParam. | 
|  | // Thus, for untyped arguments we only need to look at parameter types | 
|  | // that are single type parameters. | 
|  | indices = append(indices, i) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we've got all type arguments, we're done. | 
|  | var index int | 
|  | targs, index = u.x.types() | 
|  | if index < 0 { | 
|  | return targs | 
|  | } | 
|  |  | 
|  | // --- 2 --- | 
|  | // See how far we get with constraint type inference. | 
|  | // Note that even if we don't have any type arguments, constraint type inference | 
|  | // may produce results for constraints that explicitly specify a type. | 
|  | targs, index = check.inferB(posn, tparams, targs) | 
|  | if targs == nil || index < 0 { | 
|  | return targs | 
|  | } | 
|  |  | 
|  | // --- 3 --- | 
|  | // Use any untyped arguments to infer additional type arguments. | 
|  | // Some generic parameters with untyped arguments may have been given | 
|  | // a type by now, we can ignore them. | 
|  | for _, i := range indices { | 
|  | tpar := params.At(i).typ.(*TypeParam) // is type parameter by construction of indices | 
|  | // Only consider untyped arguments for which the corresponding type | 
|  | // parameter doesn't have an inferred type yet. | 
|  | if targs[tpar.index] == nil { | 
|  | arg := args[i] | 
|  | targ := Default(arg.typ) | 
|  | // The default type for an untyped nil is untyped nil. We must not | 
|  | // infer an untyped nil type as type parameter type. Ignore untyped | 
|  | // nil by making sure all default argument types are typed. | 
|  | if isTyped(targ) && !u.unify(tpar, targ) { | 
|  | errorf("default type", tpar, targ, arg) | 
|  | return nil | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we've got all type arguments, we're done. | 
|  | targs, index = u.x.types() | 
|  | if index < 0 { | 
|  | return targs | 
|  | } | 
|  |  | 
|  | // --- 4 --- | 
|  | // Again, follow up with constraint type inference. | 
|  | targs, index = check.inferB(posn, tparams, targs) | 
|  | if targs == nil || index < 0 { | 
|  | return targs | 
|  | } | 
|  |  | 
|  | // At least one type argument couldn't be inferred. | 
|  | assert(index >= 0 && targs[index] == nil) | 
|  | tpar := tparams[index] | 
|  | check.errorf(posn, _CannotInferTypeArgs, "cannot infer %s (%v)", tpar.obj.name, tpar.obj.pos) | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // typeParamsString produces a string containing all the type parameter names | 
|  | // in list suitable for human consumption. | 
|  | func typeParamsString(list []*TypeParam) string { | 
|  | // common cases | 
|  | n := len(list) | 
|  | switch n { | 
|  | case 0: | 
|  | return "" | 
|  | case 1: | 
|  | return list[0].obj.name | 
|  | case 2: | 
|  | return list[0].obj.name + " and " + list[1].obj.name | 
|  | } | 
|  |  | 
|  | // general case (n > 2) | 
|  | var b strings.Builder | 
|  | for i, tname := range list[:n-1] { | 
|  | if i > 0 { | 
|  | b.WriteString(", ") | 
|  | } | 
|  | b.WriteString(tname.obj.name) | 
|  | } | 
|  | b.WriteString(", and ") | 
|  | b.WriteString(list[n-1].obj.name) | 
|  | return b.String() | 
|  | } | 
|  |  | 
|  | // isParameterized reports whether typ contains any of the type parameters of tparams. | 
|  | func isParameterized(tparams []*TypeParam, typ Type) bool { | 
|  | w := tpWalker{ | 
|  | seen:    make(map[Type]bool), | 
|  | tparams: tparams, | 
|  | } | 
|  | return w.isParameterized(typ) | 
|  | } | 
|  |  | 
|  | type tpWalker struct { | 
|  | seen    map[Type]bool | 
|  | tparams []*TypeParam | 
|  | } | 
|  |  | 
|  | func (w *tpWalker) isParameterized(typ Type) (res bool) { | 
|  | // detect cycles | 
|  | if x, ok := w.seen[typ]; ok { | 
|  | return x | 
|  | } | 
|  | w.seen[typ] = false | 
|  | defer func() { | 
|  | w.seen[typ] = res | 
|  | }() | 
|  |  | 
|  | switch t := typ.(type) { | 
|  | case nil, *Basic: // TODO(gri) should nil be handled here? | 
|  | break | 
|  |  | 
|  | case *Array: | 
|  | return w.isParameterized(t.elem) | 
|  |  | 
|  | case *Slice: | 
|  | return w.isParameterized(t.elem) | 
|  |  | 
|  | case *Struct: | 
|  | for _, fld := range t.fields { | 
|  | if w.isParameterized(fld.typ) { | 
|  | return true | 
|  | } | 
|  | } | 
|  |  | 
|  | case *Pointer: | 
|  | return w.isParameterized(t.base) | 
|  |  | 
|  | case *Tuple: | 
|  | n := t.Len() | 
|  | for i := 0; i < n; i++ { | 
|  | if w.isParameterized(t.At(i).typ) { | 
|  | return true | 
|  | } | 
|  | } | 
|  |  | 
|  | case *Signature: | 
|  | // t.tparams may not be nil if we are looking at a signature | 
|  | // of a generic function type (or an interface method) that is | 
|  | // part of the type we're testing. We don't care about these type | 
|  | // parameters. | 
|  | // Similarly, the receiver of a method may declare (rather then | 
|  | // use) type parameters, we don't care about those either. | 
|  | // Thus, we only need to look at the input and result parameters. | 
|  | return w.isParameterized(t.params) || w.isParameterized(t.results) | 
|  |  | 
|  | case *Interface: | 
|  | tset := t.typeSet() | 
|  | for _, m := range tset.methods { | 
|  | if w.isParameterized(m.typ) { | 
|  | return true | 
|  | } | 
|  | } | 
|  | return tset.is(func(t *term) bool { | 
|  | return t != nil && w.isParameterized(t.typ) | 
|  | }) | 
|  |  | 
|  | case *Map: | 
|  | return w.isParameterized(t.key) || w.isParameterized(t.elem) | 
|  |  | 
|  | case *Chan: | 
|  | return w.isParameterized(t.elem) | 
|  |  | 
|  | case *Named: | 
|  | return w.isParameterizedTypeList(t.TypeArgs().list()) | 
|  |  | 
|  | case *TypeParam: | 
|  | // t must be one of w.tparams | 
|  | return tparamIndex(w.tparams, t) >= 0 | 
|  |  | 
|  | default: | 
|  | unreachable() | 
|  | } | 
|  |  | 
|  | return false | 
|  | } | 
|  |  | 
|  | func (w *tpWalker) isParameterizedTypeList(list []Type) bool { | 
|  | for _, t := range list { | 
|  | if w.isParameterized(t) { | 
|  | return true | 
|  | } | 
|  | } | 
|  | return false | 
|  | } | 
|  |  | 
|  | // inferB returns the list of actual type arguments inferred from the type parameters' | 
|  | // bounds and an initial set of type arguments. If type inference is impossible because | 
|  | // unification fails, an error is reported if report is set to true, the resulting types | 
|  | // list is nil, and index is 0. | 
|  | // Otherwise, types is the list of inferred type arguments, and index is the index of the | 
|  | // first type argument in that list that couldn't be inferred (and thus is nil). If all | 
|  | // type arguments were inferred successfully, index is < 0. The number of type arguments | 
|  | // provided may be less than the number of type parameters, but there must be at least one. | 
|  | func (check *Checker) inferB(posn positioner, tparams []*TypeParam, targs []Type) (types []Type, index int) { | 
|  | assert(len(tparams) >= len(targs) && len(targs) > 0) | 
|  |  | 
|  | if traceInference { | 
|  | check.dump("-- inferB %s ➞ %s", tparams, targs) | 
|  | defer func() { | 
|  | check.dump("=> inferB %s ➞ %s", tparams, types) | 
|  | }() | 
|  | } | 
|  |  | 
|  | // Setup bidirectional unification between constraints | 
|  | // and the corresponding type arguments (which may be nil!). | 
|  | u := newUnifier(false) | 
|  | u.x.init(tparams) | 
|  | u.y = u.x // type parameters between LHS and RHS of unification are identical | 
|  |  | 
|  | // Set the type arguments which we know already. | 
|  | for i, targ := range targs { | 
|  | if targ != nil { | 
|  | u.x.set(i, targ) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Repeatedly apply constraint type inference as long as | 
|  | // there are still unknown type arguments and progress is | 
|  | // being made. | 
|  | // | 
|  | // This is an O(n^2) algorithm where n is the number of | 
|  | // type parameters: if there is progress (and iteration | 
|  | // continues), at least one type argument is inferred | 
|  | // per iteration and we have a doubly nested loop. | 
|  | // In practice this is not a problem because the number | 
|  | // of type parameters tends to be very small (< 5 or so). | 
|  | // (It should be possible for unification to efficiently | 
|  | // signal newly inferred type arguments; then the loops | 
|  | // here could handle the respective type parameters only, | 
|  | // but that will come at a cost of extra complexity which | 
|  | // may not be worth it.) | 
|  | for n := u.x.unknowns(); n > 0; { | 
|  | nn := n | 
|  |  | 
|  | for i, tpar := range tparams { | 
|  | // If there is a core term (i.e., a core type with tilde information) | 
|  | // unify the type parameter with the core type. | 
|  | if core, single := coreTerm(tpar); core != nil { | 
|  | // A type parameter can be unified with its core type in two cases. | 
|  | tx := u.x.at(i) | 
|  | switch { | 
|  | case tx != nil: | 
|  | // The corresponding type argument tx is known. | 
|  | // In this case, if the core type has a tilde, the type argument's underlying | 
|  | // type must match the core type, otherwise the type argument and the core type | 
|  | // must match. | 
|  | // If tx is an external type parameter, don't consider its underlying type | 
|  | // (which is an interface). Core type unification will attempt to unify against | 
|  | // core.typ. | 
|  | // Note also that even with inexact unification we cannot leave away the under | 
|  | // call here because it's possible that both tx and core.typ are named types, | 
|  | // with under(tx) being a (named) basic type matching core.typ. Such cases do | 
|  | // not match with inexact unification. | 
|  | if core.tilde && !isTypeParam(tx) { | 
|  | tx = under(tx) | 
|  | } | 
|  | if !u.unify(tx, core.typ) { | 
|  | // TODO(gri) improve error message by providing the type arguments | 
|  | //           which we know already | 
|  | // Don't use term.String() as it always qualifies types, even if they | 
|  | // are in the current package. | 
|  | tilde := "" | 
|  | if core.tilde { | 
|  | tilde = "~" | 
|  | } | 
|  | check.errorf(posn, _InvalidTypeArg, "%s does not match %s%s", tpar, tilde, core.typ) | 
|  | return nil, 0 | 
|  | } | 
|  |  | 
|  | case single && !core.tilde: | 
|  | // The corresponding type argument tx is unknown and there's a single | 
|  | // specific type and no tilde. | 
|  | // In this case the type argument must be that single type; set it. | 
|  | u.x.set(i, core.typ) | 
|  |  | 
|  | default: | 
|  | // Unification is not possible and no progress was made. | 
|  | continue | 
|  | } | 
|  |  | 
|  | // The number of known type arguments may have changed. | 
|  | nn = u.x.unknowns() | 
|  | if nn == 0 { | 
|  | break // all type arguments are known | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(nn <= n) | 
|  | if nn == n { | 
|  | break // no progress | 
|  | } | 
|  | n = nn | 
|  | } | 
|  |  | 
|  | // u.x.types() now contains the incoming type arguments plus any additional type | 
|  | // arguments which were inferred from core terms. The newly inferred non-nil | 
|  | // entries may still contain references to other type parameters. | 
|  | // For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int | 
|  | // was given, unification produced the type list [int, []C, *A]. We eliminate the | 
|  | // remaining type parameters by substituting the type parameters in this type list | 
|  | // until nothing changes anymore. | 
|  | types, _ = u.x.types() | 
|  | if debug { | 
|  | for i, targ := range targs { | 
|  | assert(targ == nil || types[i] == targ) | 
|  | } | 
|  | } | 
|  |  | 
|  | // The data structure of each (provided or inferred) type represents a graph, where | 
|  | // each node corresponds to a type and each (directed) vertice points to a component | 
|  | // type. The substitution process described above repeatedly replaces type parameter | 
|  | // nodes in these graphs with the graphs of the types the type parameters stand for, | 
|  | // which creates a new (possibly bigger) graph for each type. | 
|  | // The substitution process will not stop if the replacement graph for a type parameter | 
|  | // also contains that type parameter. | 
|  | // For instance, for [A interface{ *A }], without any type argument provided for A, | 
|  | // unification produces the type list [*A]. Substituting A in *A with the value for | 
|  | // A will lead to infinite expansion by producing [**A], [****A], [********A], etc., | 
|  | // because the graph A -> *A has a cycle through A. | 
|  | // Generally, cycles may occur across multiple type parameters and inferred types | 
|  | // (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]). | 
|  | // We eliminate cycles by walking the graphs for all type parameters. If a cycle | 
|  | // through a type parameter is detected, cycleFinder nils out the respectice type | 
|  | // which kills the cycle; this also means that the respective type could not be | 
|  | // inferred. | 
|  | // | 
|  | // TODO(gri) If useful, we could report the respective cycle as an error. We don't | 
|  | //           do this now because type inference will fail anyway, and furthermore, | 
|  | //           constraints with cycles of this kind cannot currently be satisfied by | 
|  | //           any user-suplied type. But should that change, reporting an error | 
|  | //           would be wrong. | 
|  | w := cycleFinder{tparams, types, make(map[Type]bool)} | 
|  | for _, t := range tparams { | 
|  | w.typ(t) // t != nil | 
|  | } | 
|  |  | 
|  | // dirty tracks the indices of all types that may still contain type parameters. | 
|  | // We know that nil type entries and entries corresponding to provided (non-nil) | 
|  | // type arguments are clean, so exclude them from the start. | 
|  | var dirty []int | 
|  | for i, typ := range types { | 
|  | if typ != nil && (i >= len(targs) || targs[i] == nil) { | 
|  | dirty = append(dirty, i) | 
|  | } | 
|  | } | 
|  |  | 
|  | for len(dirty) > 0 { | 
|  | // TODO(gri) Instead of creating a new substMap for each iteration, | 
|  | // provide an update operation for substMaps and only change when | 
|  | // needed. Optimization. | 
|  | smap := makeSubstMap(tparams, types) | 
|  | n := 0 | 
|  | for _, index := range dirty { | 
|  | t0 := types[index] | 
|  | if t1 := check.subst(token.NoPos, t0, smap, nil, check.context()); t1 != t0 { | 
|  | types[index] = t1 | 
|  | dirty[n] = index | 
|  | n++ | 
|  | } | 
|  | } | 
|  | dirty = dirty[:n] | 
|  | } | 
|  |  | 
|  | // Once nothing changes anymore, we may still have type parameters left; | 
|  | // e.g., a constraint with core type *P may match a type parameter Q but | 
|  | // we don't have any type arguments to fill in for *P or Q (issue #45548). | 
|  | // Don't let such inferences escape, instead nil them out. | 
|  | for i, typ := range types { | 
|  | if typ != nil && isParameterized(tparams, typ) { | 
|  | types[i] = nil | 
|  | } | 
|  | } | 
|  |  | 
|  | // update index | 
|  | index = -1 | 
|  | for i, typ := range types { | 
|  | if typ == nil { | 
|  | index = i | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | return | 
|  | } | 
|  |  | 
|  | // If the type parameter has a single specific type S, coreTerm returns (S, true). | 
|  | // Otherwise, if tpar has a core type T, it returns a term corresponding to that | 
|  | // core type and false. In that case, if any term of tpar has a tilde, the core | 
|  | // term has a tilde. In all other cases coreTerm returns (nil, false). | 
|  | func coreTerm(tpar *TypeParam) (*term, bool) { | 
|  | n := 0 | 
|  | var single *term // valid if n == 1 | 
|  | var tilde bool | 
|  | tpar.is(func(t *term) bool { | 
|  | if t == nil { | 
|  | assert(n == 0) | 
|  | return false // no terms | 
|  | } | 
|  | n++ | 
|  | single = t | 
|  | if t.tilde { | 
|  | tilde = true | 
|  | } | 
|  | return true | 
|  | }) | 
|  | if n == 1 { | 
|  | if debug { | 
|  | assert(debug && under(single.typ) == coreType(tpar)) | 
|  | } | 
|  | return single, true | 
|  | } | 
|  | if typ := coreType(tpar); typ != nil { | 
|  | // A core type is always an underlying type. | 
|  | // If any term of tpar has a tilde, we don't | 
|  | // have a precise core type and we must return | 
|  | // a tilde as well. | 
|  | return &term{tilde, typ}, false | 
|  | } | 
|  | return nil, false | 
|  | } | 
|  |  | 
|  | type cycleFinder struct { | 
|  | tparams []*TypeParam | 
|  | types   []Type | 
|  | seen    map[Type]bool | 
|  | } | 
|  |  | 
|  | func (w *cycleFinder) typ(typ Type) { | 
|  | if w.seen[typ] { | 
|  | // We have seen typ before. If it is one of the type parameters | 
|  | // in tparams, iterative substitution will lead to infinite expansion. | 
|  | // Nil out the corresponding type which effectively kills the cycle. | 
|  | if tpar, _ := typ.(*TypeParam); tpar != nil { | 
|  | if i := tparamIndex(w.tparams, tpar); i >= 0 { | 
|  | // cycle through tpar | 
|  | w.types[i] = nil | 
|  | } | 
|  | } | 
|  | // If we don't have one of our type parameters, the cycle is due | 
|  | // to an ordinary recursive type and we can just stop walking it. | 
|  | return | 
|  | } | 
|  | w.seen[typ] = true | 
|  | defer delete(w.seen, typ) | 
|  |  | 
|  | switch t := typ.(type) { | 
|  | case *Basic: | 
|  | // nothing to do | 
|  |  | 
|  | case *Array: | 
|  | w.typ(t.elem) | 
|  |  | 
|  | case *Slice: | 
|  | w.typ(t.elem) | 
|  |  | 
|  | case *Struct: | 
|  | w.varList(t.fields) | 
|  |  | 
|  | case *Pointer: | 
|  | w.typ(t.base) | 
|  |  | 
|  | // case *Tuple: | 
|  | //      This case should not occur because tuples only appear | 
|  | //      in signatures where they are handled explicitly. | 
|  |  | 
|  | case *Signature: | 
|  | if t.params != nil { | 
|  | w.varList(t.params.vars) | 
|  | } | 
|  | if t.results != nil { | 
|  | w.varList(t.results.vars) | 
|  | } | 
|  |  | 
|  | case *Union: | 
|  | for _, t := range t.terms { | 
|  | w.typ(t.typ) | 
|  | } | 
|  |  | 
|  | case *Interface: | 
|  | for _, m := range t.methods { | 
|  | w.typ(m.typ) | 
|  | } | 
|  | for _, t := range t.embeddeds { | 
|  | w.typ(t) | 
|  | } | 
|  |  | 
|  | case *Map: | 
|  | w.typ(t.key) | 
|  | w.typ(t.elem) | 
|  |  | 
|  | case *Chan: | 
|  | w.typ(t.elem) | 
|  |  | 
|  | case *Named: | 
|  | for _, tpar := range t.TypeArgs().list() { | 
|  | w.typ(tpar) | 
|  | } | 
|  |  | 
|  | case *TypeParam: | 
|  | if i := tparamIndex(w.tparams, t); i >= 0 && w.types[i] != nil { | 
|  | w.typ(w.types[i]) | 
|  | } | 
|  |  | 
|  | default: | 
|  | panic(fmt.Sprintf("unexpected %T", typ)) | 
|  | } | 
|  | } | 
|  |  | 
|  | func (w *cycleFinder) varList(list []*Var) { | 
|  | for _, v := range list { | 
|  | w.typ(v.typ) | 
|  | } | 
|  | } |