|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Package flate implements the DEFLATE compressed data format, described in | 
|  | // RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file | 
|  | // formats. | 
|  | package flate | 
|  |  | 
|  | import ( | 
|  | "bufio" | 
|  | "io" | 
|  | "strconv" | 
|  | "sync" | 
|  | ) | 
|  |  | 
|  | const ( | 
|  | maxCodeLen = 16 // max length of Huffman code | 
|  | // The next three numbers come from the RFC section 3.2.7, with the | 
|  | // additional proviso in section 3.2.5 which implies that distance codes | 
|  | // 30 and 31 should never occur in compressed data. | 
|  | maxNumLit  = 286 | 
|  | maxNumDist = 30 | 
|  | numCodes   = 19 // number of codes in Huffman meta-code | 
|  | ) | 
|  |  | 
|  | // Initialize the fixedHuffmanDecoder only once upon first use. | 
|  | var fixedOnce sync.Once | 
|  | var fixedHuffmanDecoder huffmanDecoder | 
|  |  | 
|  | // A CorruptInputError reports the presence of corrupt input at a given offset. | 
|  | type CorruptInputError int64 | 
|  |  | 
|  | func (e CorruptInputError) Error() string { | 
|  | return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10) | 
|  | } | 
|  |  | 
|  | // An InternalError reports an error in the flate code itself. | 
|  | type InternalError string | 
|  |  | 
|  | func (e InternalError) Error() string { return "flate: internal error: " + string(e) } | 
|  |  | 
|  | // A ReadError reports an error encountered while reading input. | 
|  | // | 
|  | // Deprecated: No longer returned. | 
|  | type ReadError struct { | 
|  | Offset int64 // byte offset where error occurred | 
|  | Err    error // error returned by underlying Read | 
|  | } | 
|  |  | 
|  | func (e *ReadError) Error() string { | 
|  | return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error() | 
|  | } | 
|  |  | 
|  | // A WriteError reports an error encountered while writing output. | 
|  | // | 
|  | // Deprecated: No longer returned. | 
|  | type WriteError struct { | 
|  | Offset int64 // byte offset where error occurred | 
|  | Err    error // error returned by underlying Write | 
|  | } | 
|  |  | 
|  | func (e *WriteError) Error() string { | 
|  | return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error() | 
|  | } | 
|  |  | 
|  | // Resetter resets a ReadCloser returned by NewReader or NewReaderDict to | 
|  | // to switch to a new underlying Reader. This permits reusing a ReadCloser | 
|  | // instead of allocating a new one. | 
|  | type Resetter interface { | 
|  | // Reset discards any buffered data and resets the Resetter as if it was | 
|  | // newly initialized with the given reader. | 
|  | Reset(r io.Reader, dict []byte) error | 
|  | } | 
|  |  | 
|  | // The data structure for decoding Huffman tables is based on that of | 
|  | // zlib. There is a lookup table of a fixed bit width (huffmanChunkBits), | 
|  | // For codes smaller than the table width, there are multiple entries | 
|  | // (each combination of trailing bits has the same value). For codes | 
|  | // larger than the table width, the table contains a link to an overflow | 
|  | // table. The width of each entry in the link table is the maximum code | 
|  | // size minus the chunk width. | 
|  | // | 
|  | // Note that you can do a lookup in the table even without all bits | 
|  | // filled. Since the extra bits are zero, and the DEFLATE Huffman codes | 
|  | // have the property that shorter codes come before longer ones, the | 
|  | // bit length estimate in the result is a lower bound on the actual | 
|  | // number of bits. | 
|  | // | 
|  | // See the following: | 
|  | //	http://www.gzip.org/algorithm.txt | 
|  |  | 
|  | // chunk & 15 is number of bits | 
|  | // chunk >> 4 is value, including table link | 
|  |  | 
|  | const ( | 
|  | huffmanChunkBits  = 9 | 
|  | huffmanNumChunks  = 1 << huffmanChunkBits | 
|  | huffmanCountMask  = 15 | 
|  | huffmanValueShift = 4 | 
|  | ) | 
|  |  | 
|  | type huffmanDecoder struct { | 
|  | min      int                      // the minimum code length | 
|  | chunks   [huffmanNumChunks]uint32 // chunks as described above | 
|  | links    [][]uint32               // overflow links | 
|  | linkMask uint32                   // mask the width of the link table | 
|  | } | 
|  |  | 
|  | // Initialize Huffman decoding tables from array of code lengths. | 
|  | // Following this function, h is guaranteed to be initialized into a complete | 
|  | // tree (i.e., neither over-subscribed nor under-subscribed). The exception is a | 
|  | // degenerate case where the tree has only a single symbol with length 1. Empty | 
|  | // trees are permitted. | 
|  | func (h *huffmanDecoder) init(bits []int) bool { | 
|  | // Sanity enables additional runtime tests during Huffman | 
|  | // table construction. It's intended to be used during | 
|  | // development to supplement the currently ad-hoc unit tests. | 
|  | const sanity = false | 
|  |  | 
|  | if h.min != 0 { | 
|  | *h = huffmanDecoder{} | 
|  | } | 
|  |  | 
|  | // Count number of codes of each length, | 
|  | // compute min and max length. | 
|  | var count [maxCodeLen]int | 
|  | var min, max int | 
|  | for _, n := range bits { | 
|  | if n == 0 { | 
|  | continue | 
|  | } | 
|  | if min == 0 || n < min { | 
|  | min = n | 
|  | } | 
|  | if n > max { | 
|  | max = n | 
|  | } | 
|  | count[n]++ | 
|  | } | 
|  |  | 
|  | // Empty tree. The decompressor.huffSym function will fail later if the tree | 
|  | // is used. Technically, an empty tree is only valid for the HDIST tree and | 
|  | // not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree | 
|  | // is guaranteed to fail since it will attempt to use the tree to decode the | 
|  | // codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is | 
|  | // guaranteed to fail later since the compressed data section must be | 
|  | // composed of at least one symbol (the end-of-block marker). | 
|  | if max == 0 { | 
|  | return true | 
|  | } | 
|  |  | 
|  | code := 0 | 
|  | var nextcode [maxCodeLen]int | 
|  | for i := min; i <= max; i++ { | 
|  | code <<= 1 | 
|  | nextcode[i] = code | 
|  | code += count[i] | 
|  | } | 
|  |  | 
|  | // Check that the coding is complete (i.e., that we've | 
|  | // assigned all 2-to-the-max possible bit sequences). | 
|  | // Exception: To be compatible with zlib, we also need to | 
|  | // accept degenerate single-code codings. See also | 
|  | // TestDegenerateHuffmanCoding. | 
|  | if code != 1<<uint(max) && !(code == 1 && max == 1) { | 
|  | return false | 
|  | } | 
|  |  | 
|  | h.min = min | 
|  | if max > huffmanChunkBits { | 
|  | numLinks := 1 << (uint(max) - huffmanChunkBits) | 
|  | h.linkMask = uint32(numLinks - 1) | 
|  |  | 
|  | // create link tables | 
|  | link := nextcode[huffmanChunkBits+1] >> 1 | 
|  | h.links = make([][]uint32, huffmanNumChunks-link) | 
|  | for j := uint(link); j < huffmanNumChunks; j++ { | 
|  | reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8 | 
|  | reverse >>= uint(16 - huffmanChunkBits) | 
|  | off := j - uint(link) | 
|  | if sanity && h.chunks[reverse] != 0 { | 
|  | panic("impossible: overwriting existing chunk") | 
|  | } | 
|  | h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1)) | 
|  | h.links[off] = make([]uint32, numLinks) | 
|  | } | 
|  | } | 
|  |  | 
|  | for i, n := range bits { | 
|  | if n == 0 { | 
|  | continue | 
|  | } | 
|  | code := nextcode[n] | 
|  | nextcode[n]++ | 
|  | chunk := uint32(i<<huffmanValueShift | n) | 
|  | reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8 | 
|  | reverse >>= uint(16 - n) | 
|  | if n <= huffmanChunkBits { | 
|  | for off := reverse; off < len(h.chunks); off += 1 << uint(n) { | 
|  | // We should never need to overwrite | 
|  | // an existing chunk. Also, 0 is | 
|  | // never a valid chunk, because the | 
|  | // lower 4 "count" bits should be | 
|  | // between 1 and 15. | 
|  | if sanity && h.chunks[off] != 0 { | 
|  | panic("impossible: overwriting existing chunk") | 
|  | } | 
|  | h.chunks[off] = chunk | 
|  | } | 
|  | } else { | 
|  | j := reverse & (huffmanNumChunks - 1) | 
|  | if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 { | 
|  | // Longer codes should have been | 
|  | // associated with a link table above. | 
|  | panic("impossible: not an indirect chunk") | 
|  | } | 
|  | value := h.chunks[j] >> huffmanValueShift | 
|  | linktab := h.links[value] | 
|  | reverse >>= huffmanChunkBits | 
|  | for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) { | 
|  | if sanity && linktab[off] != 0 { | 
|  | panic("impossible: overwriting existing chunk") | 
|  | } | 
|  | linktab[off] = chunk | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if sanity { | 
|  | // Above we've sanity checked that we never overwrote | 
|  | // an existing entry. Here we additionally check that | 
|  | // we filled the tables completely. | 
|  | for i, chunk := range h.chunks { | 
|  | if chunk == 0 { | 
|  | // As an exception, in the degenerate | 
|  | // single-code case, we allow odd | 
|  | // chunks to be missing. | 
|  | if code == 1 && i%2 == 1 { | 
|  | continue | 
|  | } | 
|  | panic("impossible: missing chunk") | 
|  | } | 
|  | } | 
|  | for _, linktab := range h.links { | 
|  | for _, chunk := range linktab { | 
|  | if chunk == 0 { | 
|  | panic("impossible: missing chunk") | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true | 
|  | } | 
|  |  | 
|  | // The actual read interface needed by NewReader. | 
|  | // If the passed in io.Reader does not also have ReadByte, | 
|  | // the NewReader will introduce its own buffering. | 
|  | type Reader interface { | 
|  | io.Reader | 
|  | io.ByteReader | 
|  | } | 
|  |  | 
|  | // Decompress state. | 
|  | type decompressor struct { | 
|  | // Input source. | 
|  | r       Reader | 
|  | roffset int64 | 
|  |  | 
|  | // Input bits, in top of b. | 
|  | b  uint32 | 
|  | nb uint | 
|  |  | 
|  | // Huffman decoders for literal/length, distance. | 
|  | h1, h2 huffmanDecoder | 
|  |  | 
|  | // Length arrays used to define Huffman codes. | 
|  | bits     *[maxNumLit + maxNumDist]int | 
|  | codebits *[numCodes]int | 
|  |  | 
|  | // Output history, buffer. | 
|  | dict dictDecoder | 
|  |  | 
|  | // Temporary buffer (avoids repeated allocation). | 
|  | buf [4]byte | 
|  |  | 
|  | // Next step in the decompression, | 
|  | // and decompression state. | 
|  | step      func(*decompressor) | 
|  | stepState int | 
|  | final     bool | 
|  | err       error | 
|  | toRead    []byte | 
|  | hl, hd    *huffmanDecoder | 
|  | copyLen   int | 
|  | copyDist  int | 
|  | } | 
|  |  | 
|  | func (f *decompressor) nextBlock() { | 
|  | for f.nb < 1+2 { | 
|  | if f.err = f.moreBits(); f.err != nil { | 
|  | return | 
|  | } | 
|  | } | 
|  | f.final = f.b&1 == 1 | 
|  | f.b >>= 1 | 
|  | typ := f.b & 3 | 
|  | f.b >>= 2 | 
|  | f.nb -= 1 + 2 | 
|  | switch typ { | 
|  | case 0: | 
|  | f.dataBlock() | 
|  | case 1: | 
|  | // compressed, fixed Huffman tables | 
|  | f.hl = &fixedHuffmanDecoder | 
|  | f.hd = nil | 
|  | f.huffmanBlock() | 
|  | case 2: | 
|  | // compressed, dynamic Huffman tables | 
|  | if f.err = f.readHuffman(); f.err != nil { | 
|  | break | 
|  | } | 
|  | f.hl = &f.h1 | 
|  | f.hd = &f.h2 | 
|  | f.huffmanBlock() | 
|  | default: | 
|  | // 3 is reserved. | 
|  | f.err = CorruptInputError(f.roffset) | 
|  | } | 
|  | } | 
|  |  | 
|  | func (f *decompressor) Read(b []byte) (int, error) { | 
|  | for { | 
|  | if len(f.toRead) > 0 { | 
|  | n := copy(b, f.toRead) | 
|  | f.toRead = f.toRead[n:] | 
|  | if len(f.toRead) == 0 { | 
|  | return n, f.err | 
|  | } | 
|  | return n, nil | 
|  | } | 
|  | if f.err != nil { | 
|  | return 0, f.err | 
|  | } | 
|  | f.step(f) | 
|  | } | 
|  | } | 
|  |  | 
|  | func (f *decompressor) Close() error { | 
|  | if f.err == io.EOF { | 
|  | return nil | 
|  | } | 
|  | return f.err | 
|  | } | 
|  |  | 
|  | // RFC 1951 section 3.2.7. | 
|  | // Compression with dynamic Huffman codes | 
|  |  | 
|  | var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15} | 
|  |  | 
|  | func (f *decompressor) readHuffman() error { | 
|  | // HLIT[5], HDIST[5], HCLEN[4]. | 
|  | for f.nb < 5+5+4 { | 
|  | if err := f.moreBits(); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | nlit := int(f.b&0x1F) + 257 | 
|  | if nlit > maxNumLit { | 
|  | return CorruptInputError(f.roffset) | 
|  | } | 
|  | f.b >>= 5 | 
|  | ndist := int(f.b&0x1F) + 1 | 
|  | if ndist > maxNumDist { | 
|  | return CorruptInputError(f.roffset) | 
|  | } | 
|  | f.b >>= 5 | 
|  | nclen := int(f.b&0xF) + 4 | 
|  | // numCodes is 19, so nclen is always valid. | 
|  | f.b >>= 4 | 
|  | f.nb -= 5 + 5 + 4 | 
|  |  | 
|  | // (HCLEN+4)*3 bits: code lengths in the magic codeOrder order. | 
|  | for i := 0; i < nclen; i++ { | 
|  | for f.nb < 3 { | 
|  | if err := f.moreBits(); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | f.codebits[codeOrder[i]] = int(f.b & 0x7) | 
|  | f.b >>= 3 | 
|  | f.nb -= 3 | 
|  | } | 
|  | for i := nclen; i < len(codeOrder); i++ { | 
|  | f.codebits[codeOrder[i]] = 0 | 
|  | } | 
|  | if !f.h1.init(f.codebits[0:]) { | 
|  | return CorruptInputError(f.roffset) | 
|  | } | 
|  |  | 
|  | // HLIT + 257 code lengths, HDIST + 1 code lengths, | 
|  | // using the code length Huffman code. | 
|  | for i, n := 0, nlit+ndist; i < n; { | 
|  | x, err := f.huffSym(&f.h1) | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  | if x < 16 { | 
|  | // Actual length. | 
|  | f.bits[i] = x | 
|  | i++ | 
|  | continue | 
|  | } | 
|  | // Repeat previous length or zero. | 
|  | var rep int | 
|  | var nb uint | 
|  | var b int | 
|  | switch x { | 
|  | default: | 
|  | return InternalError("unexpected length code") | 
|  | case 16: | 
|  | rep = 3 | 
|  | nb = 2 | 
|  | if i == 0 { | 
|  | return CorruptInputError(f.roffset) | 
|  | } | 
|  | b = f.bits[i-1] | 
|  | case 17: | 
|  | rep = 3 | 
|  | nb = 3 | 
|  | b = 0 | 
|  | case 18: | 
|  | rep = 11 | 
|  | nb = 7 | 
|  | b = 0 | 
|  | } | 
|  | for f.nb < nb { | 
|  | if err := f.moreBits(); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | rep += int(f.b & uint32(1<<nb-1)) | 
|  | f.b >>= nb | 
|  | f.nb -= nb | 
|  | if i+rep > n { | 
|  | return CorruptInputError(f.roffset) | 
|  | } | 
|  | for j := 0; j < rep; j++ { | 
|  | f.bits[i] = b | 
|  | i++ | 
|  | } | 
|  | } | 
|  |  | 
|  | if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) { | 
|  | return CorruptInputError(f.roffset) | 
|  | } | 
|  |  | 
|  | // As an optimization, we can initialize the min bits to read at a time | 
|  | // for the HLIT tree to the length of the EOB marker since we know that | 
|  | // every block must terminate with one. This preserves the property that | 
|  | // we never read any extra bytes after the end of the DEFLATE stream. | 
|  | if f.h1.min < f.bits[endBlockMarker] { | 
|  | f.h1.min = f.bits[endBlockMarker] | 
|  | } | 
|  |  | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // Decode a single Huffman block from f. | 
|  | // hl and hd are the Huffman states for the lit/length values | 
|  | // and the distance values, respectively. If hd == nil, using the | 
|  | // fixed distance encoding associated with fixed Huffman blocks. | 
|  | func (f *decompressor) huffmanBlock() { | 
|  | const ( | 
|  | stateInit = iota // Zero value must be stateInit | 
|  | stateDict | 
|  | ) | 
|  |  | 
|  | switch f.stepState { | 
|  | case stateInit: | 
|  | goto readLiteral | 
|  | case stateDict: | 
|  | goto copyHistory | 
|  | } | 
|  |  | 
|  | readLiteral: | 
|  | // Read literal and/or (length, distance) according to RFC section 3.2.3. | 
|  | { | 
|  | v, err := f.huffSym(f.hl) | 
|  | if err != nil { | 
|  | f.err = err | 
|  | return | 
|  | } | 
|  | var n uint // number of bits extra | 
|  | var length int | 
|  | switch { | 
|  | case v < 256: | 
|  | f.dict.writeByte(byte(v)) | 
|  | if f.dict.availWrite() == 0 { | 
|  | f.toRead = f.dict.readFlush() | 
|  | f.step = (*decompressor).huffmanBlock | 
|  | f.stepState = stateInit | 
|  | return | 
|  | } | 
|  | goto readLiteral | 
|  | case v == 256: | 
|  | f.finishBlock() | 
|  | return | 
|  | // otherwise, reference to older data | 
|  | case v < 265: | 
|  | length = v - (257 - 3) | 
|  | n = 0 | 
|  | case v < 269: | 
|  | length = v*2 - (265*2 - 11) | 
|  | n = 1 | 
|  | case v < 273: | 
|  | length = v*4 - (269*4 - 19) | 
|  | n = 2 | 
|  | case v < 277: | 
|  | length = v*8 - (273*8 - 35) | 
|  | n = 3 | 
|  | case v < 281: | 
|  | length = v*16 - (277*16 - 67) | 
|  | n = 4 | 
|  | case v < 285: | 
|  | length = v*32 - (281*32 - 131) | 
|  | n = 5 | 
|  | case v < maxNumLit: | 
|  | length = 258 | 
|  | n = 0 | 
|  | default: | 
|  | f.err = CorruptInputError(f.roffset) | 
|  | return | 
|  | } | 
|  | if n > 0 { | 
|  | for f.nb < n { | 
|  | if err = f.moreBits(); err != nil { | 
|  | f.err = err | 
|  | return | 
|  | } | 
|  | } | 
|  | length += int(f.b & uint32(1<<n-1)) | 
|  | f.b >>= n | 
|  | f.nb -= n | 
|  | } | 
|  |  | 
|  | var dist int | 
|  | if f.hd == nil { | 
|  | for f.nb < 5 { | 
|  | if err = f.moreBits(); err != nil { | 
|  | f.err = err | 
|  | return | 
|  | } | 
|  | } | 
|  | dist = int(reverseByte[(f.b&0x1F)<<3]) | 
|  | f.b >>= 5 | 
|  | f.nb -= 5 | 
|  | } else { | 
|  | if dist, err = f.huffSym(f.hd); err != nil { | 
|  | f.err = err | 
|  | return | 
|  | } | 
|  | } | 
|  |  | 
|  | switch { | 
|  | case dist < 4: | 
|  | dist++ | 
|  | case dist < maxNumDist: | 
|  | nb := uint(dist-2) >> 1 | 
|  | // have 1 bit in bottom of dist, need nb more. | 
|  | extra := (dist & 1) << nb | 
|  | for f.nb < nb { | 
|  | if err = f.moreBits(); err != nil { | 
|  | f.err = err | 
|  | return | 
|  | } | 
|  | } | 
|  | extra |= int(f.b & uint32(1<<nb-1)) | 
|  | f.b >>= nb | 
|  | f.nb -= nb | 
|  | dist = 1<<(nb+1) + 1 + extra | 
|  | default: | 
|  | f.err = CorruptInputError(f.roffset) | 
|  | return | 
|  | } | 
|  |  | 
|  | // No check on length; encoding can be prescient. | 
|  | if dist > f.dict.histSize() { | 
|  | f.err = CorruptInputError(f.roffset) | 
|  | return | 
|  | } | 
|  |  | 
|  | f.copyLen, f.copyDist = length, dist | 
|  | goto copyHistory | 
|  | } | 
|  |  | 
|  | copyHistory: | 
|  | // Perform a backwards copy according to RFC section 3.2.3. | 
|  | { | 
|  | cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen) | 
|  | if cnt == 0 { | 
|  | cnt = f.dict.writeCopy(f.copyDist, f.copyLen) | 
|  | } | 
|  | f.copyLen -= cnt | 
|  |  | 
|  | if f.dict.availWrite() == 0 || f.copyLen > 0 { | 
|  | f.toRead = f.dict.readFlush() | 
|  | f.step = (*decompressor).huffmanBlock // We need to continue this work | 
|  | f.stepState = stateDict | 
|  | return | 
|  | } | 
|  | goto readLiteral | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy a single uncompressed data block from input to output. | 
|  | func (f *decompressor) dataBlock() { | 
|  | // Uncompressed. | 
|  | // Discard current half-byte. | 
|  | f.nb = 0 | 
|  | f.b = 0 | 
|  |  | 
|  | // Length then ones-complement of length. | 
|  | nr, err := io.ReadFull(f.r, f.buf[0:4]) | 
|  | f.roffset += int64(nr) | 
|  | if err != nil { | 
|  | if err == io.EOF { | 
|  | err = io.ErrUnexpectedEOF | 
|  | } | 
|  | f.err = err | 
|  | return | 
|  | } | 
|  | n := int(f.buf[0]) | int(f.buf[1])<<8 | 
|  | nn := int(f.buf[2]) | int(f.buf[3])<<8 | 
|  | if uint16(nn) != uint16(^n) { | 
|  | f.err = CorruptInputError(f.roffset) | 
|  | return | 
|  | } | 
|  |  | 
|  | if n == 0 { | 
|  | f.toRead = f.dict.readFlush() | 
|  | f.finishBlock() | 
|  | return | 
|  | } | 
|  |  | 
|  | f.copyLen = n | 
|  | f.copyData() | 
|  | } | 
|  |  | 
|  | // copyData copies f.copyLen bytes from the underlying reader into f.hist. | 
|  | // It pauses for reads when f.hist is full. | 
|  | func (f *decompressor) copyData() { | 
|  | buf := f.dict.writeSlice() | 
|  | if len(buf) > f.copyLen { | 
|  | buf = buf[:f.copyLen] | 
|  | } | 
|  |  | 
|  | cnt, err := io.ReadFull(f.r, buf) | 
|  | f.roffset += int64(cnt) | 
|  | f.copyLen -= cnt | 
|  | f.dict.writeMark(cnt) | 
|  | if err != nil { | 
|  | if err == io.EOF { | 
|  | err = io.ErrUnexpectedEOF | 
|  | } | 
|  | f.err = err | 
|  | return | 
|  | } | 
|  |  | 
|  | if f.dict.availWrite() == 0 || f.copyLen > 0 { | 
|  | f.toRead = f.dict.readFlush() | 
|  | f.step = (*decompressor).copyData | 
|  | return | 
|  | } | 
|  | f.finishBlock() | 
|  | } | 
|  |  | 
|  | func (f *decompressor) finishBlock() { | 
|  | if f.final { | 
|  | if f.dict.availRead() > 0 { | 
|  | f.toRead = f.dict.readFlush() | 
|  | } | 
|  | f.err = io.EOF | 
|  | } | 
|  | f.step = (*decompressor).nextBlock | 
|  | } | 
|  |  | 
|  | func (f *decompressor) moreBits() error { | 
|  | c, err := f.r.ReadByte() | 
|  | if err != nil { | 
|  | if err == io.EOF { | 
|  | err = io.ErrUnexpectedEOF | 
|  | } | 
|  | return err | 
|  | } | 
|  | f.roffset++ | 
|  | f.b |= uint32(c) << f.nb | 
|  | f.nb += 8 | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // Read the next Huffman-encoded symbol from f according to h. | 
|  | func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) { | 
|  | // Since a huffmanDecoder can be empty or be composed of a degenerate tree | 
|  | // with single element, huffSym must error on these two edge cases. In both | 
|  | // cases, the chunks slice will be 0 for the invalid sequence, leading it | 
|  | // satisfy the n == 0 check below. | 
|  | n := uint(h.min) | 
|  | for { | 
|  | for f.nb < n { | 
|  | if err := f.moreBits(); err != nil { | 
|  | return 0, err | 
|  | } | 
|  | } | 
|  | chunk := h.chunks[f.b&(huffmanNumChunks-1)] | 
|  | n = uint(chunk & huffmanCountMask) | 
|  | if n > huffmanChunkBits { | 
|  | chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask] | 
|  | n = uint(chunk & huffmanCountMask) | 
|  | } | 
|  | if n <= f.nb { | 
|  | if n == 0 { | 
|  | f.err = CorruptInputError(f.roffset) | 
|  | return 0, f.err | 
|  | } | 
|  | f.b >>= n | 
|  | f.nb -= n | 
|  | return int(chunk >> huffmanValueShift), nil | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func makeReader(r io.Reader) Reader { | 
|  | if rr, ok := r.(Reader); ok { | 
|  | return rr | 
|  | } | 
|  | return bufio.NewReader(r) | 
|  | } | 
|  |  | 
|  | func fixedHuffmanDecoderInit() { | 
|  | fixedOnce.Do(func() { | 
|  | // These come from the RFC section 3.2.6. | 
|  | var bits [288]int | 
|  | for i := 0; i < 144; i++ { | 
|  | bits[i] = 8 | 
|  | } | 
|  | for i := 144; i < 256; i++ { | 
|  | bits[i] = 9 | 
|  | } | 
|  | for i := 256; i < 280; i++ { | 
|  | bits[i] = 7 | 
|  | } | 
|  | for i := 280; i < 288; i++ { | 
|  | bits[i] = 8 | 
|  | } | 
|  | fixedHuffmanDecoder.init(bits[:]) | 
|  | }) | 
|  | } | 
|  |  | 
|  | func (f *decompressor) Reset(r io.Reader, dict []byte) error { | 
|  | *f = decompressor{ | 
|  | r:        makeReader(r), | 
|  | bits:     f.bits, | 
|  | codebits: f.codebits, | 
|  | dict:     f.dict, | 
|  | step:     (*decompressor).nextBlock, | 
|  | } | 
|  | f.dict.init(maxMatchOffset, dict) | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // NewReader returns a new ReadCloser that can be used | 
|  | // to read the uncompressed version of r. | 
|  | // If r does not also implement io.ByteReader, | 
|  | // the decompressor may read more data than necessary from r. | 
|  | // It is the caller's responsibility to call Close on the ReadCloser | 
|  | // when finished reading. | 
|  | // | 
|  | // The ReadCloser returned by NewReader also implements Resetter. | 
|  | func NewReader(r io.Reader) io.ReadCloser { | 
|  | fixedHuffmanDecoderInit() | 
|  |  | 
|  | var f decompressor | 
|  | f.r = makeReader(r) | 
|  | f.bits = new([maxNumLit + maxNumDist]int) | 
|  | f.codebits = new([numCodes]int) | 
|  | f.step = (*decompressor).nextBlock | 
|  | f.dict.init(maxMatchOffset, nil) | 
|  | return &f | 
|  | } | 
|  |  | 
|  | // NewReaderDict is like NewReader but initializes the reader | 
|  | // with a preset dictionary. The returned Reader behaves as if | 
|  | // the uncompressed data stream started with the given dictionary, | 
|  | // which has already been read. NewReaderDict is typically used | 
|  | // to read data compressed by NewWriterDict. | 
|  | // | 
|  | // The ReadCloser returned by NewReader also implements Resetter. | 
|  | func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser { | 
|  | fixedHuffmanDecoderInit() | 
|  |  | 
|  | var f decompressor | 
|  | f.r = makeReader(r) | 
|  | f.bits = new([maxNumLit + maxNumDist]int) | 
|  | f.codebits = new([numCodes]int) | 
|  | f.step = (*decompressor).nextBlock | 
|  | f.dict.init(maxMatchOffset, dict) | 
|  | return &f | 
|  | } |