|  | // Copyright 2012 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // +build aix darwin dragonfly freebsd linux netbsd openbsd solaris | 
|  |  | 
|  | package runtime | 
|  |  | 
|  | import ( | 
|  | "runtime/internal/atomic" | 
|  | "unsafe" | 
|  | ) | 
|  |  | 
|  | // sigTabT is the type of an entry in the global sigtable array. | 
|  | // sigtable is inherently system dependent, and appears in OS-specific files, | 
|  | // but sigTabT is the same for all Unixy systems. | 
|  | // The sigtable array is indexed by a system signal number to get the flags | 
|  | // and printable name of each signal. | 
|  | type sigTabT struct { | 
|  | flags int32 | 
|  | name  string | 
|  | } | 
|  |  | 
|  | //go:linkname os_sigpipe os.sigpipe | 
|  | func os_sigpipe() { | 
|  | systemstack(sigpipe) | 
|  | } | 
|  |  | 
|  | func signame(sig uint32) string { | 
|  | if sig >= uint32(len(sigtable)) { | 
|  | return "" | 
|  | } | 
|  | return sigtable[sig].name | 
|  | } | 
|  |  | 
|  | const ( | 
|  | _SIG_DFL uintptr = 0 | 
|  | _SIG_IGN uintptr = 1 | 
|  | ) | 
|  |  | 
|  | // sigPreempt is the signal used for non-cooperative preemption. | 
|  | // | 
|  | // There's no good way to choose this signal, but there are some | 
|  | // heuristics: | 
|  | // | 
|  | // 1. It should be a signal that's passed-through by debuggers by | 
|  | // default. On Linux, this is SIGALRM, SIGURG, SIGCHLD, SIGIO, | 
|  | // SIGVTALRM, SIGPROF, and SIGWINCH, plus some glibc-internal signals. | 
|  | // | 
|  | // 2. It shouldn't be used internally by libc in mixed Go/C binaries | 
|  | // because libc may assume it's the only thing that can handle these | 
|  | // signals. For example SIGCANCEL or SIGSETXID. | 
|  | // | 
|  | // 3. It should be a signal that can happen spuriously without | 
|  | // consequences. For example, SIGALRM is a bad choice because the | 
|  | // signal handler can't tell if it was caused by the real process | 
|  | // alarm or not (arguably this means the signal is broken, but I | 
|  | // digress). SIGUSR1 and SIGUSR2 are also bad because those are often | 
|  | // used in meaningful ways by applications. | 
|  | // | 
|  | // 4. We need to deal with platforms without real-time signals (like | 
|  | // macOS), so those are out. | 
|  | // | 
|  | // We use SIGURG because it meets all of these criteria, is extremely | 
|  | // unlikely to be used by an application for its "real" meaning (both | 
|  | // because out-of-band data is basically unused and because SIGURG | 
|  | // doesn't report which socket has the condition, making it pretty | 
|  | // useless), and even if it is, the application has to be ready for | 
|  | // spurious SIGURG. SIGIO wouldn't be a bad choice either, but is more | 
|  | // likely to be used for real. | 
|  | const sigPreempt = _SIGURG | 
|  |  | 
|  | // Stores the signal handlers registered before Go installed its own. | 
|  | // These signal handlers will be invoked in cases where Go doesn't want to | 
|  | // handle a particular signal (e.g., signal occurred on a non-Go thread). | 
|  | // See sigfwdgo for more information on when the signals are forwarded. | 
|  | // | 
|  | // This is read by the signal handler; accesses should use | 
|  | // atomic.Loaduintptr and atomic.Storeuintptr. | 
|  | var fwdSig [_NSIG]uintptr | 
|  |  | 
|  | // handlingSig is indexed by signal number and is non-zero if we are | 
|  | // currently handling the signal. Or, to put it another way, whether | 
|  | // the signal handler is currently set to the Go signal handler or not. | 
|  | // This is uint32 rather than bool so that we can use atomic instructions. | 
|  | var handlingSig [_NSIG]uint32 | 
|  |  | 
|  | // channels for synchronizing signal mask updates with the signal mask | 
|  | // thread | 
|  | var ( | 
|  | disableSigChan  chan uint32 | 
|  | enableSigChan   chan uint32 | 
|  | maskUpdatedChan chan struct{} | 
|  | ) | 
|  |  | 
|  | func init() { | 
|  | // _NSIG is the number of signals on this operating system. | 
|  | // sigtable should describe what to do for all the possible signals. | 
|  | if len(sigtable) != _NSIG { | 
|  | print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n") | 
|  | throw("bad sigtable len") | 
|  | } | 
|  | } | 
|  |  | 
|  | var signalsOK bool | 
|  |  | 
|  | // Initialize signals. | 
|  | // Called by libpreinit so runtime may not be initialized. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func initsig(preinit bool) { | 
|  | if !preinit { | 
|  | // It's now OK for signal handlers to run. | 
|  | signalsOK = true | 
|  | } | 
|  |  | 
|  | // For c-archive/c-shared this is called by libpreinit with | 
|  | // preinit == true. | 
|  | if (isarchive || islibrary) && !preinit { | 
|  | return | 
|  | } | 
|  |  | 
|  | for i := uint32(0); i < _NSIG; i++ { | 
|  | t := &sigtable[i] | 
|  | if t.flags == 0 || t.flags&_SigDefault != 0 { | 
|  | continue | 
|  | } | 
|  |  | 
|  | // We don't need to use atomic operations here because | 
|  | // there shouldn't be any other goroutines running yet. | 
|  | fwdSig[i] = getsig(i) | 
|  |  | 
|  | if !sigInstallGoHandler(i) { | 
|  | // Even if we are not installing a signal handler, | 
|  | // set SA_ONSTACK if necessary. | 
|  | if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN { | 
|  | setsigstack(i) | 
|  | } else if fwdSig[i] == _SIG_IGN { | 
|  | sigInitIgnored(i) | 
|  | } | 
|  | continue | 
|  | } | 
|  |  | 
|  | handlingSig[i] = 1 | 
|  | setsig(i, funcPC(sighandler)) | 
|  | } | 
|  | } | 
|  |  | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func sigInstallGoHandler(sig uint32) bool { | 
|  | // For some signals, we respect an inherited SIG_IGN handler | 
|  | // rather than insist on installing our own default handler. | 
|  | // Even these signals can be fetched using the os/signal package. | 
|  | switch sig { | 
|  | case _SIGHUP, _SIGINT: | 
|  | if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN { | 
|  | return false | 
|  | } | 
|  | } | 
|  |  | 
|  | t := &sigtable[sig] | 
|  | if t.flags&_SigSetStack != 0 { | 
|  | return false | 
|  | } | 
|  |  | 
|  | // When built using c-archive or c-shared, only install signal | 
|  | // handlers for synchronous signals and SIGPIPE. | 
|  | if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE { | 
|  | return false | 
|  | } | 
|  |  | 
|  | return true | 
|  | } | 
|  |  | 
|  | // sigenable enables the Go signal handler to catch the signal sig. | 
|  | // It is only called while holding the os/signal.handlers lock, | 
|  | // via os/signal.enableSignal and signal_enable. | 
|  | func sigenable(sig uint32) { | 
|  | if sig >= uint32(len(sigtable)) { | 
|  | return | 
|  | } | 
|  |  | 
|  | // SIGPROF is handled specially for profiling. | 
|  | if sig == _SIGPROF { | 
|  | return | 
|  | } | 
|  |  | 
|  | t := &sigtable[sig] | 
|  | if t.flags&_SigNotify != 0 { | 
|  | ensureSigM() | 
|  | enableSigChan <- sig | 
|  | <-maskUpdatedChan | 
|  | if atomic.Cas(&handlingSig[sig], 0, 1) { | 
|  | atomic.Storeuintptr(&fwdSig[sig], getsig(sig)) | 
|  | setsig(sig, funcPC(sighandler)) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // sigdisable disables the Go signal handler for the signal sig. | 
|  | // It is only called while holding the os/signal.handlers lock, | 
|  | // via os/signal.disableSignal and signal_disable. | 
|  | func sigdisable(sig uint32) { | 
|  | if sig >= uint32(len(sigtable)) { | 
|  | return | 
|  | } | 
|  |  | 
|  | // SIGPROF is handled specially for profiling. | 
|  | if sig == _SIGPROF { | 
|  | return | 
|  | } | 
|  |  | 
|  | t := &sigtable[sig] | 
|  | if t.flags&_SigNotify != 0 { | 
|  | ensureSigM() | 
|  | disableSigChan <- sig | 
|  | <-maskUpdatedChan | 
|  |  | 
|  | // If initsig does not install a signal handler for a | 
|  | // signal, then to go back to the state before Notify | 
|  | // we should remove the one we installed. | 
|  | if !sigInstallGoHandler(sig) { | 
|  | atomic.Store(&handlingSig[sig], 0) | 
|  | setsig(sig, atomic.Loaduintptr(&fwdSig[sig])) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // sigignore ignores the signal sig. | 
|  | // It is only called while holding the os/signal.handlers lock, | 
|  | // via os/signal.ignoreSignal and signal_ignore. | 
|  | func sigignore(sig uint32) { | 
|  | if sig >= uint32(len(sigtable)) { | 
|  | return | 
|  | } | 
|  |  | 
|  | // SIGPROF is handled specially for profiling. | 
|  | if sig == _SIGPROF { | 
|  | return | 
|  | } | 
|  |  | 
|  | t := &sigtable[sig] | 
|  | if t.flags&_SigNotify != 0 { | 
|  | atomic.Store(&handlingSig[sig], 0) | 
|  | setsig(sig, _SIG_IGN) | 
|  | } | 
|  | } | 
|  |  | 
|  | // clearSignalHandlers clears all signal handlers that are not ignored | 
|  | // back to the default. This is called by the child after a fork, so that | 
|  | // we can enable the signal mask for the exec without worrying about | 
|  | // running a signal handler in the child. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func clearSignalHandlers() { | 
|  | for i := uint32(0); i < _NSIG; i++ { | 
|  | if atomic.Load(&handlingSig[i]) != 0 { | 
|  | setsig(i, _SIG_DFL) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // setProcessCPUProfiler is called when the profiling timer changes. | 
|  | // It is called with prof.lock held. hz is the new timer, and is 0 if | 
|  | // profiling is being disabled. Enable or disable the signal as | 
|  | // required for -buildmode=c-archive. | 
|  | func setProcessCPUProfiler(hz int32) { | 
|  | if hz != 0 { | 
|  | // Enable the Go signal handler if not enabled. | 
|  | if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) { | 
|  | atomic.Storeuintptr(&fwdSig[_SIGPROF], getsig(_SIGPROF)) | 
|  | setsig(_SIGPROF, funcPC(sighandler)) | 
|  | } | 
|  | } else { | 
|  | // If the Go signal handler should be disabled by default, | 
|  | // switch back to the signal handler that was installed | 
|  | // when we enabled profiling. We don't try to handle the case | 
|  | // of a program that changes the SIGPROF handler while Go | 
|  | // profiling is enabled. | 
|  | // | 
|  | // If no signal handler was installed before, then start | 
|  | // ignoring SIGPROF signals. We do this, rather than change | 
|  | // to SIG_DFL, because there may be a pending SIGPROF | 
|  | // signal that has not yet been delivered to some other thread. | 
|  | // If we change to SIG_DFL here, the program will crash | 
|  | // when that SIGPROF is delivered. We assume that programs | 
|  | // that use profiling don't want to crash on a stray SIGPROF. | 
|  | // See issue 19320. | 
|  | if !sigInstallGoHandler(_SIGPROF) { | 
|  | if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) { | 
|  | h := atomic.Loaduintptr(&fwdSig[_SIGPROF]) | 
|  | if h == _SIG_DFL { | 
|  | h = _SIG_IGN | 
|  | } | 
|  | setsig(_SIGPROF, h) | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // setThreadCPUProfiler makes any thread-specific changes required to | 
|  | // implement profiling at a rate of hz. | 
|  | func setThreadCPUProfiler(hz int32) { | 
|  | var it itimerval | 
|  | if hz == 0 { | 
|  | setitimer(_ITIMER_PROF, &it, nil) | 
|  | } else { | 
|  | it.it_interval.tv_sec = 0 | 
|  | it.it_interval.set_usec(1000000 / hz) | 
|  | it.it_value = it.it_interval | 
|  | setitimer(_ITIMER_PROF, &it, nil) | 
|  | } | 
|  | _g_ := getg() | 
|  | _g_.m.profilehz = hz | 
|  | } | 
|  |  | 
|  | func sigpipe() { | 
|  | if signal_ignored(_SIGPIPE) || sigsend(_SIGPIPE) { | 
|  | return | 
|  | } | 
|  | dieFromSignal(_SIGPIPE) | 
|  | } | 
|  |  | 
|  | // doSigPreempt handles a preemption signal on gp. | 
|  | func doSigPreempt(gp *g, ctxt *sigctxt) { | 
|  | // Check if this G wants to be preempted and is safe to | 
|  | // preempt. | 
|  | if wantAsyncPreempt(gp) { | 
|  | if ok, newpc := isAsyncSafePoint(gp, ctxt.sigpc(), ctxt.sigsp(), ctxt.siglr()); ok { | 
|  | // Adjust the PC and inject a call to asyncPreempt. | 
|  | ctxt.pushCall(funcPC(asyncPreempt), newpc) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Acknowledge the preemption. | 
|  | atomic.Xadd(&gp.m.preemptGen, 1) | 
|  | atomic.Store(&gp.m.signalPending, 0) | 
|  |  | 
|  | if GOOS == "darwin" { | 
|  | atomic.Xadd(&pendingPreemptSignals, -1) | 
|  | } | 
|  | } | 
|  |  | 
|  | const preemptMSupported = true | 
|  |  | 
|  | // preemptM sends a preemption request to mp. This request may be | 
|  | // handled asynchronously and may be coalesced with other requests to | 
|  | // the M. When the request is received, if the running G or P are | 
|  | // marked for preemption and the goroutine is at an asynchronous | 
|  | // safe-point, it will preempt the goroutine. It always atomically | 
|  | // increments mp.preemptGen after handling a preemption request. | 
|  | func preemptM(mp *m) { | 
|  | if GOOS == "darwin" && GOARCH == "arm64" && !iscgo { | 
|  | // On darwin, we use libc calls, and cgo is required on ARM64 | 
|  | // so we have TLS set up to save/restore G during C calls. If cgo is | 
|  | // absent, we cannot save/restore G in TLS, and if a signal is | 
|  | // received during C execution we cannot get the G. Therefore don't | 
|  | // send signals. | 
|  | // This can only happen in the go_bootstrap program (otherwise cgo is | 
|  | // required). | 
|  | return | 
|  | } | 
|  |  | 
|  | // On Darwin, don't try to preempt threads during exec. | 
|  | // Issue #41702. | 
|  | if GOOS == "darwin" { | 
|  | execLock.rlock() | 
|  | } | 
|  |  | 
|  | if atomic.Cas(&mp.signalPending, 0, 1) { | 
|  | if GOOS == "darwin" { | 
|  | atomic.Xadd(&pendingPreemptSignals, 1) | 
|  | } | 
|  |  | 
|  | // If multiple threads are preempting the same M, it may send many | 
|  | // signals to the same M such that it hardly make progress, causing | 
|  | // live-lock problem. Apparently this could happen on darwin. See | 
|  | // issue #37741. | 
|  | // Only send a signal if there isn't already one pending. | 
|  | signalM(mp, sigPreempt) | 
|  | } | 
|  |  | 
|  | if GOOS == "darwin" { | 
|  | execLock.runlock() | 
|  | } | 
|  | } | 
|  |  | 
|  | // sigFetchG fetches the value of G safely when running in a signal handler. | 
|  | // On some architectures, the g value may be clobbered when running in a VDSO. | 
|  | // See issue #32912. | 
|  | // | 
|  | //go:nosplit | 
|  | func sigFetchG(c *sigctxt) *g { | 
|  | switch GOARCH { | 
|  | case "arm", "arm64": | 
|  | if !iscgo && inVDSOPage(c.sigpc()) { | 
|  | // When using cgo, we save the g on TLS and load it from there | 
|  | // in sigtramp. Just use that. | 
|  | // Otherwise, before making a VDSO call we save the g to the | 
|  | // bottom of the signal stack. Fetch from there. | 
|  | // TODO: in efence mode, stack is sysAlloc'd, so this wouldn't | 
|  | // work. | 
|  | sp := getcallersp() | 
|  | s := spanOf(sp) | 
|  | if s != nil && s.state.get() == mSpanManual && s.base() < sp && sp < s.limit { | 
|  | gp := *(**g)(unsafe.Pointer(s.base())) | 
|  | return gp | 
|  | } | 
|  | return nil | 
|  | } | 
|  | } | 
|  | return getg() | 
|  | } | 
|  |  | 
|  | // sigtrampgo is called from the signal handler function, sigtramp, | 
|  | // written in assembly code. | 
|  | // This is called by the signal handler, and the world may be stopped. | 
|  | // | 
|  | // It must be nosplit because getg() is still the G that was running | 
|  | // (if any) when the signal was delivered, but it's (usually) called | 
|  | // on the gsignal stack. Until this switches the G to gsignal, the | 
|  | // stack bounds check won't work. | 
|  | // | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) { | 
|  | if sigfwdgo(sig, info, ctx) { | 
|  | return | 
|  | } | 
|  | c := &sigctxt{info, ctx} | 
|  | g := sigFetchG(c) | 
|  | setg(g) | 
|  | if g == nil { | 
|  | if sig == _SIGPROF { | 
|  | sigprofNonGoPC(c.sigpc()) | 
|  | return | 
|  | } | 
|  | if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 { | 
|  | // This is probably a signal from preemptM sent | 
|  | // while executing Go code but received while | 
|  | // executing non-Go code. | 
|  | // We got past sigfwdgo, so we know that there is | 
|  | // no non-Go signal handler for sigPreempt. | 
|  | // The default behavior for sigPreempt is to ignore | 
|  | // the signal, so badsignal will be a no-op anyway. | 
|  | if GOOS == "darwin" { | 
|  | atomic.Xadd(&pendingPreemptSignals, -1) | 
|  | } | 
|  | return | 
|  | } | 
|  | c.fixsigcode(sig) | 
|  | badsignal(uintptr(sig), c) | 
|  | return | 
|  | } | 
|  |  | 
|  | setg(g.m.gsignal) | 
|  |  | 
|  | // If some non-Go code called sigaltstack, adjust. | 
|  | var gsignalStack gsignalStack | 
|  | setStack := adjustSignalStack(sig, g.m, &gsignalStack) | 
|  | if setStack { | 
|  | g.m.gsignal.stktopsp = getcallersp() | 
|  | } | 
|  |  | 
|  | if g.stackguard0 == stackFork { | 
|  | signalDuringFork(sig) | 
|  | } | 
|  |  | 
|  | c.fixsigcode(sig) | 
|  | sighandler(sig, info, ctx, g) | 
|  | setg(g) | 
|  | if setStack { | 
|  | restoreGsignalStack(&gsignalStack) | 
|  | } | 
|  | } | 
|  |  | 
|  | // adjustSignalStack adjusts the current stack guard based on the | 
|  | // stack pointer that is actually in use while handling a signal. | 
|  | // We do this in case some non-Go code called sigaltstack. | 
|  | // This reports whether the stack was adjusted, and if so stores the old | 
|  | // signal stack in *gsigstack. | 
|  | //go:nosplit | 
|  | func adjustSignalStack(sig uint32, mp *m, gsigStack *gsignalStack) bool { | 
|  | sp := uintptr(unsafe.Pointer(&sig)) | 
|  | if sp >= mp.gsignal.stack.lo && sp < mp.gsignal.stack.hi { | 
|  | return false | 
|  | } | 
|  |  | 
|  | if sp >= mp.g0.stack.lo && sp < mp.g0.stack.hi { | 
|  | // The signal was delivered on the g0 stack. | 
|  | // This can happen when linked with C code | 
|  | // using the thread sanitizer, which collects | 
|  | // signals then delivers them itself by calling | 
|  | // the signal handler directly when C code, | 
|  | // including C code called via cgo, calls a | 
|  | // TSAN-intercepted function such as malloc. | 
|  | st := stackt{ss_size: mp.g0.stack.hi - mp.g0.stack.lo} | 
|  | setSignalstackSP(&st, mp.g0.stack.lo) | 
|  | setGsignalStack(&st, gsigStack) | 
|  | return true | 
|  | } | 
|  |  | 
|  | var st stackt | 
|  | sigaltstack(nil, &st) | 
|  | if st.ss_flags&_SS_DISABLE != 0 { | 
|  | setg(nil) | 
|  | needm(0) | 
|  | noSignalStack(sig) | 
|  | dropm() | 
|  | } | 
|  | stsp := uintptr(unsafe.Pointer(st.ss_sp)) | 
|  | if sp < stsp || sp >= stsp+st.ss_size { | 
|  | setg(nil) | 
|  | needm(0) | 
|  | sigNotOnStack(sig) | 
|  | dropm() | 
|  | } | 
|  | setGsignalStack(&st, gsigStack) | 
|  | return true | 
|  | } | 
|  |  | 
|  | // crashing is the number of m's we have waited for when implementing | 
|  | // GOTRACEBACK=crash when a signal is received. | 
|  | var crashing int32 | 
|  |  | 
|  | // testSigtrap and testSigusr1 are used by the runtime tests. If | 
|  | // non-nil, it is called on SIGTRAP/SIGUSR1. If it returns true, the | 
|  | // normal behavior on this signal is suppressed. | 
|  | var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool | 
|  | var testSigusr1 func(gp *g) bool | 
|  |  | 
|  | // sighandler is invoked when a signal occurs. The global g will be | 
|  | // set to a gsignal goroutine and we will be running on the alternate | 
|  | // signal stack. The parameter g will be the value of the global g | 
|  | // when the signal occurred. The sig, info, and ctxt parameters are | 
|  | // from the system signal handler: they are the parameters passed when | 
|  | // the SA is passed to the sigaction system call. | 
|  | // | 
|  | // The garbage collector may have stopped the world, so write barriers | 
|  | // are not allowed. | 
|  | // | 
|  | //go:nowritebarrierrec | 
|  | func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) { | 
|  | _g_ := getg() | 
|  | c := &sigctxt{info, ctxt} | 
|  |  | 
|  | if sig == _SIGPROF { | 
|  | sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, _g_.m) | 
|  | return | 
|  | } | 
|  |  | 
|  | if sig == _SIGTRAP && testSigtrap != nil && testSigtrap(info, (*sigctxt)(noescape(unsafe.Pointer(c))), gp) { | 
|  | return | 
|  | } | 
|  |  | 
|  | if sig == _SIGUSR1 && testSigusr1 != nil && testSigusr1(gp) { | 
|  | return | 
|  | } | 
|  |  | 
|  | if sig == sigPreempt && debug.asyncpreemptoff == 0 { | 
|  | // Might be a preemption signal. | 
|  | doSigPreempt(gp, c) | 
|  | // Even if this was definitely a preemption signal, it | 
|  | // may have been coalesced with another signal, so we | 
|  | // still let it through to the application. | 
|  | } | 
|  |  | 
|  | flags := int32(_SigThrow) | 
|  | if sig < uint32(len(sigtable)) { | 
|  | flags = sigtable[sig].flags | 
|  | } | 
|  | if c.sigcode() != _SI_USER && flags&_SigPanic != 0 && gp.throwsplit { | 
|  | // We can't safely sigpanic because it may grow the | 
|  | // stack. Abort in the signal handler instead. | 
|  | flags = _SigThrow | 
|  | } | 
|  | if isAbortPC(c.sigpc()) { | 
|  | // On many architectures, the abort function just | 
|  | // causes a memory fault. Don't turn that into a panic. | 
|  | flags = _SigThrow | 
|  | } | 
|  | if c.sigcode() != _SI_USER && flags&_SigPanic != 0 { | 
|  | // The signal is going to cause a panic. | 
|  | // Arrange the stack so that it looks like the point | 
|  | // where the signal occurred made a call to the | 
|  | // function sigpanic. Then set the PC to sigpanic. | 
|  |  | 
|  | // Have to pass arguments out of band since | 
|  | // augmenting the stack frame would break | 
|  | // the unwinding code. | 
|  | gp.sig = sig | 
|  | gp.sigcode0 = uintptr(c.sigcode()) | 
|  | gp.sigcode1 = uintptr(c.fault()) | 
|  | gp.sigpc = c.sigpc() | 
|  |  | 
|  | c.preparePanic(sig, gp) | 
|  | return | 
|  | } | 
|  |  | 
|  | if c.sigcode() == _SI_USER || flags&_SigNotify != 0 { | 
|  | if sigsend(sig) { | 
|  | return | 
|  | } | 
|  | } | 
|  |  | 
|  | if c.sigcode() == _SI_USER && signal_ignored(sig) { | 
|  | return | 
|  | } | 
|  |  | 
|  | if flags&_SigKill != 0 { | 
|  | dieFromSignal(sig) | 
|  | } | 
|  |  | 
|  | // _SigThrow means that we should exit now. | 
|  | // If we get here with _SigPanic, it means that the signal | 
|  | // was sent to us by a program (c.sigcode() == _SI_USER); | 
|  | // in that case, if we didn't handle it in sigsend, we exit now. | 
|  | if flags&(_SigThrow|_SigPanic) == 0 { | 
|  | return | 
|  | } | 
|  |  | 
|  | _g_.m.throwing = 1 | 
|  | _g_.m.caughtsig.set(gp) | 
|  |  | 
|  | if crashing == 0 { | 
|  | startpanic_m() | 
|  | } | 
|  |  | 
|  | if sig < uint32(len(sigtable)) { | 
|  | print(sigtable[sig].name, "\n") | 
|  | } else { | 
|  | print("Signal ", sig, "\n") | 
|  | } | 
|  |  | 
|  | print("PC=", hex(c.sigpc()), " m=", _g_.m.id, " sigcode=", c.sigcode(), "\n") | 
|  | if _g_.m.lockedg != 0 && _g_.m.ncgo > 0 && gp == _g_.m.g0 { | 
|  | print("signal arrived during cgo execution\n") | 
|  | gp = _g_.m.lockedg.ptr() | 
|  | } | 
|  | if sig == _SIGILL { | 
|  | // It would be nice to know how long the instruction is. | 
|  | // Unfortunately, that's complicated to do in general (mostly for x86 | 
|  | // and s930x, but other archs have non-standard instruction lengths also). | 
|  | // Opt to print 16 bytes, which covers most instructions. | 
|  | const maxN = 16 | 
|  | n := uintptr(maxN) | 
|  | // We have to be careful, though. If we're near the end of | 
|  | // a page and the following page isn't mapped, we could | 
|  | // segfault. So make sure we don't straddle a page (even though | 
|  | // that could lead to printing an incomplete instruction). | 
|  | // We're assuming here we can read at least the page containing the PC. | 
|  | // I suppose it is possible that the page is mapped executable but not readable? | 
|  | pc := c.sigpc() | 
|  | if n > physPageSize-pc%physPageSize { | 
|  | n = physPageSize - pc%physPageSize | 
|  | } | 
|  | print("instruction bytes:") | 
|  | b := (*[maxN]byte)(unsafe.Pointer(pc)) | 
|  | for i := uintptr(0); i < n; i++ { | 
|  | print(" ", hex(b[i])) | 
|  | } | 
|  | println() | 
|  | } | 
|  | print("\n") | 
|  |  | 
|  | level, _, docrash := gotraceback() | 
|  | if level > 0 { | 
|  | goroutineheader(gp) | 
|  | tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp) | 
|  | if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning { | 
|  | // tracebackothers on original m skipped this one; trace it now. | 
|  | goroutineheader(_g_.m.curg) | 
|  | traceback(^uintptr(0), ^uintptr(0), 0, _g_.m.curg) | 
|  | } else if crashing == 0 { | 
|  | tracebackothers(gp) | 
|  | print("\n") | 
|  | } | 
|  | dumpregs(c) | 
|  | } | 
|  |  | 
|  | if docrash { | 
|  | crashing++ | 
|  | if crashing < mcount()-int32(extraMCount) { | 
|  | // There are other m's that need to dump their stacks. | 
|  | // Relay SIGQUIT to the next m by sending it to the current process. | 
|  | // All m's that have already received SIGQUIT have signal masks blocking | 
|  | // receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet. | 
|  | // When the last m receives the SIGQUIT, it will fall through to the call to | 
|  | // crash below. Just in case the relaying gets botched, each m involved in | 
|  | // the relay sleeps for 5 seconds and then does the crash/exit itself. | 
|  | // In expected operation, the last m has received the SIGQUIT and run | 
|  | // crash/exit and the process is gone, all long before any of the | 
|  | // 5-second sleeps have finished. | 
|  | print("\n-----\n\n") | 
|  | raiseproc(_SIGQUIT) | 
|  | usleep(5 * 1000 * 1000) | 
|  | } | 
|  | crash() | 
|  | } | 
|  |  | 
|  | printDebugLog() | 
|  |  | 
|  | exit(2) | 
|  | } | 
|  |  | 
|  | // sigpanic turns a synchronous signal into a run-time panic. | 
|  | // If the signal handler sees a synchronous panic, it arranges the | 
|  | // stack to look like the function where the signal occurred called | 
|  | // sigpanic, sets the signal's PC value to sigpanic, and returns from | 
|  | // the signal handler. The effect is that the program will act as | 
|  | // though the function that got the signal simply called sigpanic | 
|  | // instead. | 
|  | // | 
|  | // This must NOT be nosplit because the linker doesn't know where | 
|  | // sigpanic calls can be injected. | 
|  | // | 
|  | // The signal handler must not inject a call to sigpanic if | 
|  | // getg().throwsplit, since sigpanic may need to grow the stack. | 
|  | // | 
|  | // This is exported via linkname to assembly in runtime/cgo. | 
|  | //go:linkname sigpanic | 
|  | func sigpanic() { | 
|  | g := getg() | 
|  | if !canpanic(g) { | 
|  | throw("unexpected signal during runtime execution") | 
|  | } | 
|  |  | 
|  | switch g.sig { | 
|  | case _SIGBUS: | 
|  | if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 { | 
|  | panicmem() | 
|  | } | 
|  | // Support runtime/debug.SetPanicOnFault. | 
|  | if g.paniconfault { | 
|  | panicmem() | 
|  | } | 
|  | print("unexpected fault address ", hex(g.sigcode1), "\n") | 
|  | throw("fault") | 
|  | case _SIGSEGV: | 
|  | if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 { | 
|  | panicmem() | 
|  | } | 
|  | // Support runtime/debug.SetPanicOnFault. | 
|  | if g.paniconfault { | 
|  | panicmem() | 
|  | } | 
|  | print("unexpected fault address ", hex(g.sigcode1), "\n") | 
|  | throw("fault") | 
|  | case _SIGFPE: | 
|  | switch g.sigcode0 { | 
|  | case _FPE_INTDIV: | 
|  | panicdivide() | 
|  | case _FPE_INTOVF: | 
|  | panicoverflow() | 
|  | } | 
|  | panicfloat() | 
|  | } | 
|  |  | 
|  | if g.sig >= uint32(len(sigtable)) { | 
|  | // can't happen: we looked up g.sig in sigtable to decide to call sigpanic | 
|  | throw("unexpected signal value") | 
|  | } | 
|  | panic(errorString(sigtable[g.sig].name)) | 
|  | } | 
|  |  | 
|  | // dieFromSignal kills the program with a signal. | 
|  | // This provides the expected exit status for the shell. | 
|  | // This is only called with fatal signals expected to kill the process. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func dieFromSignal(sig uint32) { | 
|  | unblocksig(sig) | 
|  | // Mark the signal as unhandled to ensure it is forwarded. | 
|  | atomic.Store(&handlingSig[sig], 0) | 
|  | raise(sig) | 
|  |  | 
|  | // That should have killed us. On some systems, though, raise | 
|  | // sends the signal to the whole process rather than to just | 
|  | // the current thread, which means that the signal may not yet | 
|  | // have been delivered. Give other threads a chance to run and | 
|  | // pick up the signal. | 
|  | osyield() | 
|  | osyield() | 
|  | osyield() | 
|  |  | 
|  | // If that didn't work, try _SIG_DFL. | 
|  | setsig(sig, _SIG_DFL) | 
|  | raise(sig) | 
|  |  | 
|  | osyield() | 
|  | osyield() | 
|  | osyield() | 
|  |  | 
|  | // If we are still somehow running, just exit with the wrong status. | 
|  | exit(2) | 
|  | } | 
|  |  | 
|  | // raisebadsignal is called when a signal is received on a non-Go | 
|  | // thread, and the Go program does not want to handle it (that is, the | 
|  | // program has not called os/signal.Notify for the signal). | 
|  | func raisebadsignal(sig uint32, c *sigctxt) { | 
|  | if sig == _SIGPROF { | 
|  | // Ignore profiling signals that arrive on non-Go threads. | 
|  | return | 
|  | } | 
|  |  | 
|  | var handler uintptr | 
|  | if sig >= _NSIG { | 
|  | handler = _SIG_DFL | 
|  | } else { | 
|  | handler = atomic.Loaduintptr(&fwdSig[sig]) | 
|  | } | 
|  |  | 
|  | // Reset the signal handler and raise the signal. | 
|  | // We are currently running inside a signal handler, so the | 
|  | // signal is blocked. We need to unblock it before raising the | 
|  | // signal, or the signal we raise will be ignored until we return | 
|  | // from the signal handler. We know that the signal was unblocked | 
|  | // before entering the handler, or else we would not have received | 
|  | // it. That means that we don't have to worry about blocking it | 
|  | // again. | 
|  | unblocksig(sig) | 
|  | setsig(sig, handler) | 
|  |  | 
|  | // If we're linked into a non-Go program we want to try to | 
|  | // avoid modifying the original context in which the signal | 
|  | // was raised. If the handler is the default, we know it | 
|  | // is non-recoverable, so we don't have to worry about | 
|  | // re-installing sighandler. At this point we can just | 
|  | // return and the signal will be re-raised and caught by | 
|  | // the default handler with the correct context. | 
|  | // | 
|  | // On FreeBSD, the libthr sigaction code prevents | 
|  | // this from working so we fall through to raise. | 
|  | if GOOS != "freebsd" && (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER { | 
|  | return | 
|  | } | 
|  |  | 
|  | raise(sig) | 
|  |  | 
|  | // Give the signal a chance to be delivered. | 
|  | // In almost all real cases the program is about to crash, | 
|  | // so sleeping here is not a waste of time. | 
|  | usleep(1000) | 
|  |  | 
|  | // If the signal didn't cause the program to exit, restore the | 
|  | // Go signal handler and carry on. | 
|  | // | 
|  | // We may receive another instance of the signal before we | 
|  | // restore the Go handler, but that is not so bad: we know | 
|  | // that the Go program has been ignoring the signal. | 
|  | setsig(sig, funcPC(sighandler)) | 
|  | } | 
|  |  | 
|  | //go:nosplit | 
|  | func crash() { | 
|  | // OS X core dumps are linear dumps of the mapped memory, | 
|  | // from the first virtual byte to the last, with zeros in the gaps. | 
|  | // Because of the way we arrange the address space on 64-bit systems, | 
|  | // this means the OS X core file will be >128 GB and even on a zippy | 
|  | // workstation can take OS X well over an hour to write (uninterruptible). | 
|  | // Save users from making that mistake. | 
|  | if GOOS == "darwin" && GOARCH == "amd64" { | 
|  | return | 
|  | } | 
|  |  | 
|  | dieFromSignal(_SIGABRT) | 
|  | } | 
|  |  | 
|  | // ensureSigM starts one global, sleeping thread to make sure at least one thread | 
|  | // is available to catch signals enabled for os/signal. | 
|  | func ensureSigM() { | 
|  | if maskUpdatedChan != nil { | 
|  | return | 
|  | } | 
|  | maskUpdatedChan = make(chan struct{}) | 
|  | disableSigChan = make(chan uint32) | 
|  | enableSigChan = make(chan uint32) | 
|  | go func() { | 
|  | // Signal masks are per-thread, so make sure this goroutine stays on one | 
|  | // thread. | 
|  | LockOSThread() | 
|  | defer UnlockOSThread() | 
|  | // The sigBlocked mask contains the signals not active for os/signal, | 
|  | // initially all signals except the essential. When signal.Notify()/Stop is called, | 
|  | // sigenable/sigdisable in turn notify this thread to update its signal | 
|  | // mask accordingly. | 
|  | sigBlocked := sigset_all | 
|  | for i := range sigtable { | 
|  | if !blockableSig(uint32(i)) { | 
|  | sigdelset(&sigBlocked, i) | 
|  | } | 
|  | } | 
|  | sigprocmask(_SIG_SETMASK, &sigBlocked, nil) | 
|  | for { | 
|  | select { | 
|  | case sig := <-enableSigChan: | 
|  | if sig > 0 { | 
|  | sigdelset(&sigBlocked, int(sig)) | 
|  | } | 
|  | case sig := <-disableSigChan: | 
|  | if sig > 0 && blockableSig(sig) { | 
|  | sigaddset(&sigBlocked, int(sig)) | 
|  | } | 
|  | } | 
|  | sigprocmask(_SIG_SETMASK, &sigBlocked, nil) | 
|  | maskUpdatedChan <- struct{}{} | 
|  | } | 
|  | }() | 
|  | } | 
|  |  | 
|  | // This is called when we receive a signal when there is no signal stack. | 
|  | // This can only happen if non-Go code calls sigaltstack to disable the | 
|  | // signal stack. | 
|  | func noSignalStack(sig uint32) { | 
|  | println("signal", sig, "received on thread with no signal stack") | 
|  | throw("non-Go code disabled sigaltstack") | 
|  | } | 
|  |  | 
|  | // This is called if we receive a signal when there is a signal stack | 
|  | // but we are not on it. This can only happen if non-Go code called | 
|  | // sigaction without setting the SS_ONSTACK flag. | 
|  | func sigNotOnStack(sig uint32) { | 
|  | println("signal", sig, "received but handler not on signal stack") | 
|  | throw("non-Go code set up signal handler without SA_ONSTACK flag") | 
|  | } | 
|  |  | 
|  | // signalDuringFork is called if we receive a signal while doing a fork. | 
|  | // We do not want signals at that time, as a signal sent to the process | 
|  | // group may be delivered to the child process, causing confusion. | 
|  | // This should never be called, because we block signals across the fork; | 
|  | // this function is just a safety check. See issue 18600 for background. | 
|  | func signalDuringFork(sig uint32) { | 
|  | println("signal", sig, "received during fork") | 
|  | throw("signal received during fork") | 
|  | } | 
|  |  | 
|  | var badginsignalMsg = "fatal: bad g in signal handler\n" | 
|  |  | 
|  | // This runs on a foreign stack, without an m or a g. No stack split. | 
|  | //go:nosplit | 
|  | //go:norace | 
|  | //go:nowritebarrierrec | 
|  | func badsignal(sig uintptr, c *sigctxt) { | 
|  | if !iscgo && !cgoHasExtraM { | 
|  | // There is no extra M. needm will not be able to grab | 
|  | // an M. Instead of hanging, just crash. | 
|  | // Cannot call split-stack function as there is no G. | 
|  | s := stringStructOf(&badginsignalMsg) | 
|  | write(2, s.str, int32(s.len)) | 
|  | exit(2) | 
|  | *(*uintptr)(unsafe.Pointer(uintptr(123))) = 2 | 
|  | } | 
|  | needm(0) | 
|  | if !sigsend(uint32(sig)) { | 
|  | // A foreign thread received the signal sig, and the | 
|  | // Go code does not want to handle it. | 
|  | raisebadsignal(uint32(sig), c) | 
|  | } | 
|  | dropm() | 
|  | } | 
|  |  | 
|  | //go:noescape | 
|  | func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer) | 
|  |  | 
|  | // Determines if the signal should be handled by Go and if not, forwards the | 
|  | // signal to the handler that was installed before Go's. Returns whether the | 
|  | // signal was forwarded. | 
|  | // This is called by the signal handler, and the world may be stopped. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool { | 
|  | if sig >= uint32(len(sigtable)) { | 
|  | return false | 
|  | } | 
|  | fwdFn := atomic.Loaduintptr(&fwdSig[sig]) | 
|  | flags := sigtable[sig].flags | 
|  |  | 
|  | // If we aren't handling the signal, forward it. | 
|  | if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK { | 
|  | // If the signal is ignored, doing nothing is the same as forwarding. | 
|  | if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) { | 
|  | return true | 
|  | } | 
|  | // We are not handling the signal and there is no other handler to forward to. | 
|  | // Crash with the default behavior. | 
|  | if fwdFn == _SIG_DFL { | 
|  | setsig(sig, _SIG_DFL) | 
|  | dieFromSignal(sig) | 
|  | return false | 
|  | } | 
|  |  | 
|  | sigfwd(fwdFn, sig, info, ctx) | 
|  | return true | 
|  | } | 
|  |  | 
|  | // This function and its caller sigtrampgo assumes SIGPIPE is delivered on the | 
|  | // originating thread. This property does not hold on macOS (golang.org/issue/33384), | 
|  | // so we have no choice but to ignore SIGPIPE. | 
|  | if GOOS == "darwin" && sig == _SIGPIPE { | 
|  | return true | 
|  | } | 
|  |  | 
|  | // If there is no handler to forward to, no need to forward. | 
|  | if fwdFn == _SIG_DFL { | 
|  | return false | 
|  | } | 
|  |  | 
|  | c := &sigctxt{info, ctx} | 
|  | // Only forward synchronous signals and SIGPIPE. | 
|  | // Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code | 
|  | // is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket | 
|  | // or pipe. | 
|  | if (c.sigcode() == _SI_USER || flags&_SigPanic == 0) && sig != _SIGPIPE { | 
|  | return false | 
|  | } | 
|  | // Determine if the signal occurred inside Go code. We test that: | 
|  | //   (1) we weren't in VDSO page, | 
|  | //   (2) we were in a goroutine (i.e., m.curg != nil), and | 
|  | //   (3) we weren't in CGO. | 
|  | g := sigFetchG(c) | 
|  | if g != nil && g.m != nil && g.m.curg != nil && !g.m.incgo { | 
|  | return false | 
|  | } | 
|  |  | 
|  | // Signal not handled by Go, forward it. | 
|  | if fwdFn != _SIG_IGN { | 
|  | sigfwd(fwdFn, sig, info, ctx) | 
|  | } | 
|  |  | 
|  | return true | 
|  | } | 
|  |  | 
|  | // sigsave saves the current thread's signal mask into *p. | 
|  | // This is used to preserve the non-Go signal mask when a non-Go | 
|  | // thread calls a Go function. | 
|  | // This is nosplit and nowritebarrierrec because it is called by needm | 
|  | // which may be called on a non-Go thread with no g available. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func sigsave(p *sigset) { | 
|  | sigprocmask(_SIG_SETMASK, nil, p) | 
|  | } | 
|  |  | 
|  | // msigrestore sets the current thread's signal mask to sigmask. | 
|  | // This is used to restore the non-Go signal mask when a non-Go thread | 
|  | // calls a Go function. | 
|  | // This is nosplit and nowritebarrierrec because it is called by dropm | 
|  | // after g has been cleared. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func msigrestore(sigmask sigset) { | 
|  | sigprocmask(_SIG_SETMASK, &sigmask, nil) | 
|  | } | 
|  |  | 
|  | // sigblock blocks all signals in the current thread's signal mask. | 
|  | // This is used to block signals while setting up and tearing down g | 
|  | // when a non-Go thread calls a Go function. | 
|  | // The OS-specific code is expected to define sigset_all. | 
|  | // This is nosplit and nowritebarrierrec because it is called by needm | 
|  | // which may be called on a non-Go thread with no g available. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func sigblock() { | 
|  | sigprocmask(_SIG_SETMASK, &sigset_all, nil) | 
|  | } | 
|  |  | 
|  | // unblocksig removes sig from the current thread's signal mask. | 
|  | // This is nosplit and nowritebarrierrec because it is called from | 
|  | // dieFromSignal, which can be called by sigfwdgo while running in the | 
|  | // signal handler, on the signal stack, with no g available. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func unblocksig(sig uint32) { | 
|  | var set sigset | 
|  | sigaddset(&set, int(sig)) | 
|  | sigprocmask(_SIG_UNBLOCK, &set, nil) | 
|  | } | 
|  |  | 
|  | // minitSignals is called when initializing a new m to set the | 
|  | // thread's alternate signal stack and signal mask. | 
|  | func minitSignals() { | 
|  | minitSignalStack() | 
|  | minitSignalMask() | 
|  | } | 
|  |  | 
|  | // minitSignalStack is called when initializing a new m to set the | 
|  | // alternate signal stack. If the alternate signal stack is not set | 
|  | // for the thread (the normal case) then set the alternate signal | 
|  | // stack to the gsignal stack. If the alternate signal stack is set | 
|  | // for the thread (the case when a non-Go thread sets the alternate | 
|  | // signal stack and then calls a Go function) then set the gsignal | 
|  | // stack to the alternate signal stack. We also set the alternate | 
|  | // signal stack to the gsignal stack if cgo is not used (regardless | 
|  | // of whether it is already set). Record which choice was made in | 
|  | // newSigstack, so that it can be undone in unminit. | 
|  | func minitSignalStack() { | 
|  | _g_ := getg() | 
|  | var st stackt | 
|  | sigaltstack(nil, &st) | 
|  | if st.ss_flags&_SS_DISABLE != 0 || !iscgo { | 
|  | signalstack(&_g_.m.gsignal.stack) | 
|  | _g_.m.newSigstack = true | 
|  | } else { | 
|  | setGsignalStack(&st, &_g_.m.goSigStack) | 
|  | _g_.m.newSigstack = false | 
|  | } | 
|  | } | 
|  |  | 
|  | // minitSignalMask is called when initializing a new m to set the | 
|  | // thread's signal mask. When this is called all signals have been | 
|  | // blocked for the thread.  This starts with m.sigmask, which was set | 
|  | // either from initSigmask for a newly created thread or by calling | 
|  | // sigsave if this is a non-Go thread calling a Go function. It | 
|  | // removes all essential signals from the mask, thus causing those | 
|  | // signals to not be blocked. Then it sets the thread's signal mask. | 
|  | // After this is called the thread can receive signals. | 
|  | func minitSignalMask() { | 
|  | nmask := getg().m.sigmask | 
|  | for i := range sigtable { | 
|  | if !blockableSig(uint32(i)) { | 
|  | sigdelset(&nmask, i) | 
|  | } | 
|  | } | 
|  | sigprocmask(_SIG_SETMASK, &nmask, nil) | 
|  | } | 
|  |  | 
|  | // unminitSignals is called from dropm, via unminit, to undo the | 
|  | // effect of calling minit on a non-Go thread. | 
|  | //go:nosplit | 
|  | func unminitSignals() { | 
|  | if getg().m.newSigstack { | 
|  | st := stackt{ss_flags: _SS_DISABLE} | 
|  | sigaltstack(&st, nil) | 
|  | } else { | 
|  | // We got the signal stack from someone else. Restore | 
|  | // the Go-allocated stack in case this M gets reused | 
|  | // for another thread (e.g., it's an extram). Also, on | 
|  | // Android, libc allocates a signal stack for all | 
|  | // threads, so it's important to restore the Go stack | 
|  | // even on Go-created threads so we can free it. | 
|  | restoreGsignalStack(&getg().m.goSigStack) | 
|  | } | 
|  | } | 
|  |  | 
|  | // blockableSig reports whether sig may be blocked by the signal mask. | 
|  | // We never want to block the signals marked _SigUnblock; | 
|  | // these are the synchronous signals that turn into a Go panic. | 
|  | // In a Go program--not a c-archive/c-shared--we never want to block | 
|  | // the signals marked _SigKill or _SigThrow, as otherwise it's possible | 
|  | // for all running threads to block them and delay their delivery until | 
|  | // we start a new thread. When linked into a C program we let the C code | 
|  | // decide on the disposition of those signals. | 
|  | func blockableSig(sig uint32) bool { | 
|  | flags := sigtable[sig].flags | 
|  | if flags&_SigUnblock != 0 { | 
|  | return false | 
|  | } | 
|  | if isarchive || islibrary { | 
|  | return true | 
|  | } | 
|  | return flags&(_SigKill|_SigThrow) == 0 | 
|  | } | 
|  |  | 
|  | // gsignalStack saves the fields of the gsignal stack changed by | 
|  | // setGsignalStack. | 
|  | type gsignalStack struct { | 
|  | stack       stack | 
|  | stackguard0 uintptr | 
|  | stackguard1 uintptr | 
|  | stktopsp    uintptr | 
|  | } | 
|  |  | 
|  | // setGsignalStack sets the gsignal stack of the current m to an | 
|  | // alternate signal stack returned from the sigaltstack system call. | 
|  | // It saves the old values in *old for use by restoreGsignalStack. | 
|  | // This is used when handling a signal if non-Go code has set the | 
|  | // alternate signal stack. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func setGsignalStack(st *stackt, old *gsignalStack) { | 
|  | g := getg() | 
|  | if old != nil { | 
|  | old.stack = g.m.gsignal.stack | 
|  | old.stackguard0 = g.m.gsignal.stackguard0 | 
|  | old.stackguard1 = g.m.gsignal.stackguard1 | 
|  | old.stktopsp = g.m.gsignal.stktopsp | 
|  | } | 
|  | stsp := uintptr(unsafe.Pointer(st.ss_sp)) | 
|  | g.m.gsignal.stack.lo = stsp | 
|  | g.m.gsignal.stack.hi = stsp + st.ss_size | 
|  | g.m.gsignal.stackguard0 = stsp + _StackGuard | 
|  | g.m.gsignal.stackguard1 = stsp + _StackGuard | 
|  | } | 
|  |  | 
|  | // restoreGsignalStack restores the gsignal stack to the value it had | 
|  | // before entering the signal handler. | 
|  | //go:nosplit | 
|  | //go:nowritebarrierrec | 
|  | func restoreGsignalStack(st *gsignalStack) { | 
|  | gp := getg().m.gsignal | 
|  | gp.stack = st.stack | 
|  | gp.stackguard0 = st.stackguard0 | 
|  | gp.stackguard1 = st.stackguard1 | 
|  | gp.stktopsp = st.stktopsp | 
|  | } | 
|  |  | 
|  | // signalstack sets the current thread's alternate signal stack to s. | 
|  | //go:nosplit | 
|  | func signalstack(s *stack) { | 
|  | st := stackt{ss_size: s.hi - s.lo} | 
|  | setSignalstackSP(&st, s.lo) | 
|  | sigaltstack(&st, nil) | 
|  | } | 
|  |  | 
|  | // setsigsegv is used on darwin/arm64 to fake a segmentation fault. | 
|  | // | 
|  | // This is exported via linkname to assembly in runtime/cgo. | 
|  | // | 
|  | //go:nosplit | 
|  | //go:linkname setsigsegv | 
|  | func setsigsegv(pc uintptr) { | 
|  | g := getg() | 
|  | g.sig = _SIGSEGV | 
|  | g.sigpc = pc | 
|  | g.sigcode0 = _SEGV_MAPERR | 
|  | g.sigcode1 = 0 // TODO: emulate si_addr | 
|  | } |