| // Copyright 2017, The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE.md file. |
| |
| // Package cmp determines equality of values. |
| // |
| // This package is intended to be a more powerful and safer alternative to |
| // reflect.DeepEqual for comparing whether two values are semantically equal. |
| // |
| // The primary features of cmp are: |
| // |
| // • When the default behavior of equality does not suit the needs of the test, |
| // custom equality functions can override the equality operation. |
| // For example, an equality function may report floats as equal so long as they |
| // are within some tolerance of each other. |
| // |
| // • Types that have an Equal method may use that method to determine equality. |
| // This allows package authors to determine the equality operation for the types |
| // that they define. |
| // |
| // • If no custom equality functions are used and no Equal method is defined, |
| // equality is determined by recursively comparing the primitive kinds on both |
| // values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported |
| // fields are not compared by default; they result in panics unless suppressed |
| // by using an Ignore option (see cmpopts.IgnoreUnexported) or explictly compared |
| // using the AllowUnexported option. |
| package cmp |
| |
| import ( |
| "fmt" |
| "reflect" |
| |
| "github.com/google/go-cmp/cmp/internal/diff" |
| "github.com/google/go-cmp/cmp/internal/function" |
| "github.com/google/go-cmp/cmp/internal/value" |
| ) |
| |
| // BUG(dsnet): Maps with keys containing NaN values cannot be properly compared due to |
| // the reflection package's inability to retrieve such entries. Equal will panic |
| // anytime it comes across a NaN key, but this behavior may change. |
| // |
| // See https://golang.org/issue/11104 for more details. |
| |
| var nothing = reflect.Value{} |
| |
| // Equal reports whether x and y are equal by recursively applying the |
| // following rules in the given order to x and y and all of their sub-values: |
| // |
| // • If two values are not of the same type, then they are never equal |
| // and the overall result is false. |
| // |
| // • Let S be the set of all Ignore, Transformer, and Comparer options that |
| // remain after applying all path filters, value filters, and type filters. |
| // If at least one Ignore exists in S, then the comparison is ignored. |
| // If the number of Transformer and Comparer options in S is greater than one, |
| // then Equal panics because it is ambiguous which option to use. |
| // If S contains a single Transformer, then use that to transform the current |
| // values and recursively call Equal on the output values. |
| // If S contains a single Comparer, then use that to compare the current values. |
| // Otherwise, evaluation proceeds to the next rule. |
| // |
| // • If the values have an Equal method of the form "(T) Equal(T) bool" or |
| // "(T) Equal(I) bool" where T is assignable to I, then use the result of |
| // x.Equal(y). Otherwise, no such method exists and evaluation proceeds to |
| // the next rule. |
| // |
| // • Lastly, try to compare x and y based on their basic kinds. |
| // Simple kinds like booleans, integers, floats, complex numbers, strings, and |
| // channels are compared using the equivalent of the == operator in Go. |
| // Functions are only equal if they are both nil, otherwise they are unequal. |
| // Pointers are equal if the underlying values they point to are also equal. |
| // Interfaces are equal if their underlying concrete values are also equal. |
| // |
| // Structs are equal if all of their fields are equal. If a struct contains |
| // unexported fields, Equal panics unless the AllowUnexported option is used or |
| // an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field. |
| // |
| // Arrays, slices, and maps are equal if they are both nil or both non-nil |
| // with the same length and the elements at each index or key are equal. |
| // Note that a non-nil empty slice and a nil slice are not equal. |
| // To equate empty slices and maps, consider using cmpopts.EquateEmpty. |
| // Map keys are equal according to the == operator. |
| // To use custom comparisons for map keys, consider using cmpopts.SortMaps. |
| func Equal(x, y interface{}, opts ...Option) bool { |
| s := newState(opts) |
| s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y)) |
| return s.result.Equal() |
| } |
| |
| // Diff returns a human-readable report of the differences between two values. |
| // It returns an empty string if and only if Equal returns true for the same |
| // input values and options. The output string will use the "-" symbol to |
| // indicate elements removed from x, and the "+" symbol to indicate elements |
| // added to y. |
| // |
| // Do not depend on this output being stable. |
| func Diff(x, y interface{}, opts ...Option) string { |
| r := new(defaultReporter) |
| opts = Options{Options(opts), r} |
| eq := Equal(x, y, opts...) |
| d := r.String() |
| if (d == "") != eq { |
| panic("inconsistent difference and equality results") |
| } |
| return d |
| } |
| |
| type state struct { |
| // These fields represent the "comparison state". |
| // Calling statelessCompare must not result in observable changes to these. |
| result diff.Result // The current result of comparison |
| curPath Path // The current path in the value tree |
| reporter reporter // Optional reporter used for difference formatting |
| |
| // dynChecker triggers pseudo-random checks for option correctness. |
| // It is safe for statelessCompare to mutate this value. |
| dynChecker dynChecker |
| |
| // These fields, once set by processOption, will not change. |
| exporters map[reflect.Type]bool // Set of structs with unexported field visibility |
| opts Options // List of all fundamental and filter options |
| } |
| |
| func newState(opts []Option) *state { |
| s := new(state) |
| for _, opt := range opts { |
| s.processOption(opt) |
| } |
| return s |
| } |
| |
| func (s *state) processOption(opt Option) { |
| switch opt := opt.(type) { |
| case nil: |
| case Options: |
| for _, o := range opt { |
| s.processOption(o) |
| } |
| case coreOption: |
| type filtered interface { |
| isFiltered() bool |
| } |
| if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() { |
| panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt)) |
| } |
| s.opts = append(s.opts, opt) |
| case visibleStructs: |
| if s.exporters == nil { |
| s.exporters = make(map[reflect.Type]bool) |
| } |
| for t := range opt { |
| s.exporters[t] = true |
| } |
| case reporter: |
| if s.reporter != nil { |
| panic("difference reporter already registered") |
| } |
| s.reporter = opt |
| default: |
| panic(fmt.Sprintf("unknown option %T", opt)) |
| } |
| } |
| |
| // statelessCompare compares two values and returns the result. |
| // This function is stateless in that it does not alter the current result, |
| // or output to any registered reporters. |
| func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result { |
| // We do not save and restore the curPath because all of the compareX |
| // methods should properly push and pop from the path. |
| // It is an implementation bug if the contents of curPath differs from |
| // when calling this function to when returning from it. |
| |
| oldResult, oldReporter := s.result, s.reporter |
| s.result = diff.Result{} // Reset result |
| s.reporter = nil // Remove reporter to avoid spurious printouts |
| s.compareAny(vx, vy) |
| res := s.result |
| s.result, s.reporter = oldResult, oldReporter |
| return res |
| } |
| |
| func (s *state) compareAny(vx, vy reflect.Value) { |
| // TODO: Support cyclic data structures. |
| |
| // Rule 0: Differing types are never equal. |
| if !vx.IsValid() || !vy.IsValid() { |
| s.report(vx.IsValid() == vy.IsValid(), vx, vy) |
| return |
| } |
| if vx.Type() != vy.Type() { |
| s.report(false, vx, vy) // Possible for path to be empty |
| return |
| } |
| t := vx.Type() |
| if len(s.curPath) == 0 { |
| s.curPath.push(&pathStep{typ: t}) |
| defer s.curPath.pop() |
| } |
| vx, vy = s.tryExporting(vx, vy) |
| |
| // Rule 1: Check whether an option applies on this node in the value tree. |
| if s.tryOptions(vx, vy, t) { |
| return |
| } |
| |
| // Rule 2: Check whether the type has a valid Equal method. |
| if s.tryMethod(vx, vy, t) { |
| return |
| } |
| |
| // Rule 3: Recursively descend into each value's underlying kind. |
| switch t.Kind() { |
| case reflect.Bool: |
| s.report(vx.Bool() == vy.Bool(), vx, vy) |
| return |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| s.report(vx.Int() == vy.Int(), vx, vy) |
| return |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| s.report(vx.Uint() == vy.Uint(), vx, vy) |
| return |
| case reflect.Float32, reflect.Float64: |
| s.report(vx.Float() == vy.Float(), vx, vy) |
| return |
| case reflect.Complex64, reflect.Complex128: |
| s.report(vx.Complex() == vy.Complex(), vx, vy) |
| return |
| case reflect.String: |
| s.report(vx.String() == vy.String(), vx, vy) |
| return |
| case reflect.Chan, reflect.UnsafePointer: |
| s.report(vx.Pointer() == vy.Pointer(), vx, vy) |
| return |
| case reflect.Func: |
| s.report(vx.IsNil() && vy.IsNil(), vx, vy) |
| return |
| case reflect.Ptr: |
| if vx.IsNil() || vy.IsNil() { |
| s.report(vx.IsNil() && vy.IsNil(), vx, vy) |
| return |
| } |
| s.curPath.push(&indirect{pathStep{t.Elem()}}) |
| defer s.curPath.pop() |
| s.compareAny(vx.Elem(), vy.Elem()) |
| return |
| case reflect.Interface: |
| if vx.IsNil() || vy.IsNil() { |
| s.report(vx.IsNil() && vy.IsNil(), vx, vy) |
| return |
| } |
| if vx.Elem().Type() != vy.Elem().Type() { |
| s.report(false, vx.Elem(), vy.Elem()) |
| return |
| } |
| s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}}) |
| defer s.curPath.pop() |
| s.compareAny(vx.Elem(), vy.Elem()) |
| return |
| case reflect.Slice: |
| if vx.IsNil() || vy.IsNil() { |
| s.report(vx.IsNil() && vy.IsNil(), vx, vy) |
| return |
| } |
| fallthrough |
| case reflect.Array: |
| s.compareArray(vx, vy, t) |
| return |
| case reflect.Map: |
| s.compareMap(vx, vy, t) |
| return |
| case reflect.Struct: |
| s.compareStruct(vx, vy, t) |
| return |
| default: |
| panic(fmt.Sprintf("%v kind not handled", t.Kind())) |
| } |
| } |
| |
| func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) { |
| if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported { |
| if sf.force { |
| // Use unsafe pointer arithmetic to get read-write access to an |
| // unexported field in the struct. |
| vx = unsafeRetrieveField(sf.pvx, sf.field) |
| vy = unsafeRetrieveField(sf.pvy, sf.field) |
| } else { |
| // We are not allowed to export the value, so invalidate them |
| // so that tryOptions can panic later if not explicitly ignored. |
| vx = nothing |
| vy = nothing |
| } |
| } |
| return vx, vy |
| } |
| |
| func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool { |
| // If there were no FilterValues, we will not detect invalid inputs, |
| // so manually check for them and append invalid if necessary. |
| // We still evaluate the options since an ignore can override invalid. |
| opts := s.opts |
| if !vx.IsValid() || !vy.IsValid() { |
| opts = Options{opts, invalid{}} |
| } |
| |
| // Evaluate all filters and apply the remaining options. |
| if opt := opts.filter(s, vx, vy, t); opt != nil { |
| return opt.apply(s, vx, vy) |
| } |
| return false |
| } |
| |
| func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool { |
| // Check if this type even has an Equal method. |
| m, ok := t.MethodByName("Equal") |
| if !ok || !function.IsType(m.Type, function.EqualAssignable) { |
| return false |
| } |
| |
| eq := s.callTTBFunc(m.Func, vx, vy) |
| s.report(eq, vx, vy) |
| return true |
| } |
| |
| func (s *state) callTRFunc(f, v reflect.Value) reflect.Value { |
| v = sanitizeValue(v, f.Type().In(0)) |
| if !s.dynChecker.Next() { |
| return f.Call([]reflect.Value{v})[0] |
| } |
| |
| // Run the function twice and ensure that we get the same results back. |
| // We run in goroutines so that the race detector (if enabled) can detect |
| // unsafe mutations to the input. |
| c := make(chan reflect.Value) |
| go detectRaces(c, f, v) |
| want := f.Call([]reflect.Value{v})[0] |
| if got := <-c; !s.statelessCompare(got, want).Equal() { |
| // To avoid false-positives with non-reflexive equality operations, |
| // we sanity check whether a value is equal to itself. |
| if !s.statelessCompare(want, want).Equal() { |
| return want |
| } |
| fn := getFuncName(f.Pointer()) |
| panic(fmt.Sprintf("non-deterministic function detected: %s", fn)) |
| } |
| return want |
| } |
| |
| func (s *state) callTTBFunc(f, x, y reflect.Value) bool { |
| x = sanitizeValue(x, f.Type().In(0)) |
| y = sanitizeValue(y, f.Type().In(1)) |
| if !s.dynChecker.Next() { |
| return f.Call([]reflect.Value{x, y})[0].Bool() |
| } |
| |
| // Swapping the input arguments is sufficient to check that |
| // f is symmetric and deterministic. |
| // We run in goroutines so that the race detector (if enabled) can detect |
| // unsafe mutations to the input. |
| c := make(chan reflect.Value) |
| go detectRaces(c, f, y, x) |
| want := f.Call([]reflect.Value{x, y})[0].Bool() |
| if got := <-c; !got.IsValid() || got.Bool() != want { |
| fn := getFuncName(f.Pointer()) |
| panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn)) |
| } |
| return want |
| } |
| |
| func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) { |
| var ret reflect.Value |
| defer func() { |
| recover() // Ignore panics, let the other call to f panic instead |
| c <- ret |
| }() |
| ret = f.Call(vs)[0] |
| } |
| |
| // sanitizeValue converts nil interfaces of type T to those of type R, |
| // assuming that T is assignable to R. |
| // Otherwise, it returns the input value as is. |
| func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value { |
| // TODO(dsnet): Remove this hacky workaround. |
| // See https://golang.org/issue/22143 |
| if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t { |
| return reflect.New(t).Elem() |
| } |
| return v |
| } |
| |
| func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) { |
| step := &sliceIndex{pathStep{t.Elem()}, 0, 0} |
| s.curPath.push(step) |
| |
| // Compute an edit-script for slices vx and vy. |
| es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result { |
| step.xkey, step.ykey = ix, iy |
| return s.statelessCompare(vx.Index(ix), vy.Index(iy)) |
| }) |
| |
| // Report the entire slice as is if the arrays are of primitive kind, |
| // and the arrays are different enough. |
| isPrimitive := false |
| switch t.Elem().Kind() { |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, |
| reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, |
| reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128: |
| isPrimitive = true |
| } |
| if isPrimitive && es.Dist() > (vx.Len()+vy.Len())/4 { |
| s.curPath.pop() // Pop first since we are reporting the whole slice |
| s.report(false, vx, vy) |
| return |
| } |
| |
| // Replay the edit-script. |
| var ix, iy int |
| for _, e := range es { |
| switch e { |
| case diff.UniqueX: |
| step.xkey, step.ykey = ix, -1 |
| s.report(false, vx.Index(ix), nothing) |
| ix++ |
| case diff.UniqueY: |
| step.xkey, step.ykey = -1, iy |
| s.report(false, nothing, vy.Index(iy)) |
| iy++ |
| default: |
| step.xkey, step.ykey = ix, iy |
| if e == diff.Identity { |
| s.report(true, vx.Index(ix), vy.Index(iy)) |
| } else { |
| s.compareAny(vx.Index(ix), vy.Index(iy)) |
| } |
| ix++ |
| iy++ |
| } |
| } |
| s.curPath.pop() |
| return |
| } |
| |
| func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) { |
| if vx.IsNil() || vy.IsNil() { |
| s.report(vx.IsNil() && vy.IsNil(), vx, vy) |
| return |
| } |
| |
| // We combine and sort the two map keys so that we can perform the |
| // comparisons in a deterministic order. |
| step := &mapIndex{pathStep: pathStep{t.Elem()}} |
| s.curPath.push(step) |
| defer s.curPath.pop() |
| for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) { |
| step.key = k |
| vvx := vx.MapIndex(k) |
| vvy := vy.MapIndex(k) |
| switch { |
| case vvx.IsValid() && vvy.IsValid(): |
| s.compareAny(vvx, vvy) |
| case vvx.IsValid() && !vvy.IsValid(): |
| s.report(false, vvx, nothing) |
| case !vvx.IsValid() && vvy.IsValid(): |
| s.report(false, nothing, vvy) |
| default: |
| // It is possible for both vvx and vvy to be invalid if the |
| // key contained a NaN value in it. There is no way in |
| // reflection to be able to retrieve these values. |
| // See https://golang.org/issue/11104 |
| panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath)) |
| } |
| } |
| } |
| |
| func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) { |
| var vax, vay reflect.Value // Addressable versions of vx and vy |
| |
| step := &structField{} |
| s.curPath.push(step) |
| defer s.curPath.pop() |
| for i := 0; i < t.NumField(); i++ { |
| vvx := vx.Field(i) |
| vvy := vy.Field(i) |
| step.typ = t.Field(i).Type |
| step.name = t.Field(i).Name |
| step.idx = i |
| step.unexported = !isExported(step.name) |
| if step.unexported { |
| // Defer checking of unexported fields until later to give an |
| // Ignore a chance to ignore the field. |
| if !vax.IsValid() || !vay.IsValid() { |
| // For unsafeRetrieveField to work, the parent struct must |
| // be addressable. Create a new copy of the values if |
| // necessary to make them addressable. |
| vax = makeAddressable(vx) |
| vay = makeAddressable(vy) |
| } |
| step.force = s.exporters[t] |
| step.pvx = vax |
| step.pvy = vay |
| step.field = t.Field(i) |
| } |
| s.compareAny(vvx, vvy) |
| } |
| } |
| |
| // report records the result of a single comparison. |
| // It also calls Report if any reporter is registered. |
| func (s *state) report(eq bool, vx, vy reflect.Value) { |
| if eq { |
| s.result.NSame++ |
| } else { |
| s.result.NDiff++ |
| } |
| if s.reporter != nil { |
| s.reporter.Report(vx, vy, eq, s.curPath) |
| } |
| } |
| |
| // dynChecker tracks the state needed to periodically perform checks that |
| // user provided functions are symmetric and deterministic. |
| // The zero value is safe for immediate use. |
| type dynChecker struct{ curr, next int } |
| |
| // Next increments the state and reports whether a check should be performed. |
| // |
| // Checks occur every Nth function call, where N is a triangular number: |
| // 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ... |
| // See https://en.wikipedia.org/wiki/Triangular_number |
| // |
| // This sequence ensures that the cost of checks drops significantly as |
| // the number of functions calls grows larger. |
| func (dc *dynChecker) Next() bool { |
| ok := dc.curr == dc.next |
| if ok { |
| dc.curr = 0 |
| dc.next++ |
| } |
| dc.curr++ |
| return ok |
| } |
| |
| // makeAddressable returns a value that is always addressable. |
| // It returns the input verbatim if it is already addressable, |
| // otherwise it creates a new value and returns an addressable copy. |
| func makeAddressable(v reflect.Value) reflect.Value { |
| if v.CanAddr() { |
| return v |
| } |
| vc := reflect.New(v.Type()).Elem() |
| vc.Set(v) |
| return vc |
| } |