blob: 53d3543d78a3a05ec8bc9866ebe9d52ec71b1e83 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lifecycler tracks a window's lifecycle state.
//
// It eliminates sending redundant lifecycle events, ones where the From and To
// stages are equal. For example, moving a window from one part of the screen
// to another should not send multiple events from StageVisible to
// StageVisible, even though the underlying window system's message might only
// hold the new position, and not whether the window was previously visible.
package lifecycler // import "golang.org/x/exp/shiny/driver/internal/lifecycler"
import (
"sync"
"golang.org/x/mobile/event/lifecycle"
)
// State is a window's lifecycle state.
type State struct {
mu sync.Mutex
stage lifecycle.Stage
dead bool
focused bool
visible bool
}
func (s *State) SetDead(b bool) {
s.mu.Lock()
s.dead = b
s.mu.Unlock()
}
func (s *State) SetFocused(b bool) {
s.mu.Lock()
s.focused = b
s.mu.Unlock()
}
func (s *State) SetVisible(b bool) {
s.mu.Lock()
s.visible = b
s.mu.Unlock()
}
func (s *State) SendEvent(r Sender, drawContext interface{}) {
s.mu.Lock()
from, to := s.stage, lifecycle.StageAlive
// The order of these if's is important. For example, once a window becomes
// StageDead, it should never change stage again.
//
// Similarly, focused trumps visible. It's hard to imagine a situation
// where a window is focused and not visible on screen, but in that
// unlikely case, StageFocused seems the most appropriate stage.
if s.dead {
to = lifecycle.StageDead
} else if s.focused {
to = lifecycle.StageFocused
} else if s.visible {
to = lifecycle.StageVisible
}
s.stage = to
s.mu.Unlock()
if from != to {
r.Send(lifecycle.Event{
From: from,
To: to,
// TODO: does shiny use this at all?
DrawContext: drawContext,
})
}
}
// Sender is who to send the lifecycle event to.
type Sender interface {
Send(event interface{})
}