blob: a99c91a4ef418489e5d92cdf0d6aeec27200d60e [file] [log] [blame]
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements commonly used type predicates.
package types
func isNamed(typ Type) bool {
if _, ok := typ.(*Basic); ok {
return ok
}
_, ok := typ.(*NamedType)
return ok
}
func isBoolean(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsBoolean != 0
}
func isInteger(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsInteger != 0
}
func isUnsigned(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsUnsigned != 0
}
func isFloat(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsFloat != 0
}
func isComplex(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsComplex != 0
}
func isNumeric(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsNumeric != 0
}
func isString(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsString != 0
}
func isUntyped(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsUntyped != 0
}
func isOrdered(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsOrdered != 0
}
func isConstType(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsConstType != 0
}
func isComparable(typ Type) bool {
switch t := underlying(typ).(type) {
case *Basic:
return t.Kind != Invalid && t.Kind != UntypedNil
case *Pointer, *Interface, *Chan:
// assumes types are equal for pointers and channels
return true
case *Struct:
for _, f := range t.Fields {
if !isComparable(f.Type) {
return false
}
}
return true
case *Array:
return isComparable(t.Elt)
}
return false
}
func hasNil(typ Type) bool {
switch underlying(typ).(type) {
case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan:
return true
}
return false
}
// IsIdentical returns true if x and y are identical.
func IsIdentical(x, y Type) bool {
if x == y {
return true
}
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above.
if y, ok := y.(*Basic); ok {
return x.Kind == y.Kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
return x.Len == y.Len && IsIdentical(x.Elt, y.Elt)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return IsIdentical(x.Elt, y.Elt)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two anonymous fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if len(x.Fields) == len(y.Fields) {
for i, f := range x.Fields {
g := y.Fields[i]
if !f.QualifiedName.IsSame(g.QualifiedName) ||
!IsIdentical(f.Type, g.Type) ||
f.Tag != g.Tag ||
f.IsAnonymous != g.IsAnonymous {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return IsIdentical(x.Base, y.Base)
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
if y, ok := y.(*Signature); ok {
return identicalTypes(x.Params, y.Params) &&
identicalTypes(x.Results, y.Results) &&
x.IsVariadic == y.IsVariadic
}
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
return identicalMethods(x.Methods, y.Methods) // methods are sorted
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return IsIdentical(x.Key, y.Key) && IsIdentical(x.Elt, y.Elt)
}
case *Chan:
// Two channel types are identical if they have identical value types
// and the same direction.
if y, ok := y.(*Chan); ok {
return x.Dir == y.Dir && IsIdentical(x.Elt, y.Elt)
}
case *NamedType:
// Two named types are identical if their type names originate
// in the same type declaration.
if y, ok := y.(*NamedType); ok {
return x.Obj == y.Obj
}
}
return false
}
// identicalTypes returns true if both lists a and b have the
// same length and corresponding objects have identical types.
func identicalTypes(a, b []*Var) bool {
if len(a) != len(b) {
return false
}
for i, x := range a {
y := b[i]
if !IsIdentical(x.Type, y.Type) {
return false
}
}
return true
}
// identicalMethods returns true if both lists a and b have the
// same length and corresponding methods have identical types.
// TODO(gri) make this more efficient
func identicalMethods(a, b []*Method) bool {
if len(a) != len(b) {
return false
}
m := make(map[QualifiedName]*Method)
for _, x := range a {
assert(m[x.QualifiedName] == nil) // method list must not have duplicate entries
m[x.QualifiedName] = x
}
for _, y := range b {
if x := m[y.QualifiedName]; x == nil || !IsIdentical(x.Type, y.Type) {
return false
}
}
return true
}
// underlying returns the underlying type of typ.
func underlying(typ Type) Type {
// Basic types are representing themselves directly even though they are named.
if typ, ok := typ.(*NamedType); ok {
return typ.Underlying // underlying types are never NamedTypes
}
return typ
}
// deref returns a pointer's base type; otherwise it returns typ.
func deref(typ Type) Type {
if typ, ok := underlying(typ).(*Pointer); ok {
return typ.Base
}
return typ
}
// defaultType returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. If there is no
// corresponding untyped type, the result is Typ[Invalid].
//
func defaultType(typ Type) Type {
if t, ok := typ.(*Basic); ok {
k := Invalid
switch t.Kind {
// case UntypedNil:
// There is no default type for nil. For a good error message,
// catch this case before calling this function.
case UntypedBool:
k = Bool
case UntypedInt:
k = Int
case UntypedRune:
k = Rune
case UntypedFloat:
k = Float64
case UntypedComplex:
k = Complex128
case UntypedString:
k = String
}
typ = Typ[k]
}
return typ
}
// missingMethod returns (nil, false) if typ implements T, otherwise
// it returns the first missing method required by T and whether it
// is missing or simply has the wrong type.
//
func missingMethod(typ Type, T *Interface) (method *Method, wrongType bool) {
// TODO(gri): this needs to correctly compare method names (taking package into account)
// TODO(gri): distinguish pointer and non-pointer receivers
// an interface type implements T if it has no methods with conflicting signatures
// Note: This is stronger than the current spec. Should the spec require this?
if ityp, _ := underlying(typ).(*Interface); ityp != nil {
for _, m := range T.Methods {
res := lookupField(ityp, m.QualifiedName) // TODO(gri) no need to go via lookupField
if res.mode != invalid && !IsIdentical(res.typ, m.Type) {
return m, true
}
}
return
}
// a concrete type implements T if it implements all methods of T.
for _, m := range T.Methods {
res := lookupField(typ, m.QualifiedName)
if res.mode == invalid {
return m, false
}
if !IsIdentical(res.typ, m.Type) {
return m, true
}
}
return
}