| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package tlog |
| |
| import ( |
| "fmt" |
| "strconv" |
| "strings" |
| ) |
| |
| // A Tile is a description of a transparency log tile. |
| // A tile of height H at level L offset N lists W consecutive hashes |
| // at level H*L of the tree starting at offset N*(2**H). |
| // A complete tile lists 2**H hashes; a partial tile lists fewer. |
| // Note that a tile represents the entire subtree of height H |
| // with those hashes as the leaves. The levels above H*L |
| // can be reconstructed by hashing the leaves. |
| // |
| // Each Tile can be encoded as a “tile coordinate path” |
| // of the form tile/H/L/NNN[.p/W]. |
| // The .p/W suffix is present only for partial tiles, meaning W < 2**H. |
| // The NNN element is an encoding of N into 3-digit path elements. |
| // All but the last path element begins with an "x". |
| // For example, |
| // Tile{H: 3, L: 4, N: 1234067, W: 1}'s path |
| // is tile/3/4/x001/x234/067.p/1, and |
| // Tile{H: 3, L: 4, N: 1234067, W: 8}'s path |
| // is tile/3/4/x001/x234/067. |
| // See Tile's Path method and the ParseTilePath function. |
| // |
| // The special level L=-1 holds raw record data instead of hashes. |
| // In this case, the level encodes into a tile path as the path element |
| // "data" instead of "-1". |
| type Tile struct { |
| H int // height of tile (1 ≤ H ≤ 30) |
| L int // level in tiling (-1 ≤ L ≤ 63) |
| N int64 // number within level (0 ≤ N, unbounded) |
| W int // width of tile (1 ≤ W ≤ 2**H; 2**H is complete tile) |
| } |
| |
| // TileForIndex returns the tile of height h ≥ 1 |
| // and least width storing the given hash storage index. |
| func TileForIndex(h int, index int64) Tile { |
| if h < 1 { |
| panic("TileForIndex: invalid height") |
| } |
| t, _, _ := tileForIndex(h, index) |
| return t |
| } |
| |
| // tileForIndex returns the tile of height h ≥ 1 |
| // storing the given hash index, which can be |
| // reconstructed using tileHash(data[start:end]). |
| func tileForIndex(h int, index int64) (t Tile, start, end int) { |
| level, n := SplitStoredHashIndex(index) |
| t.H = h |
| t.L = level / h |
| level -= t.L * h // now level within tile |
| t.N = n << uint(level) >> uint(t.H) |
| n -= t.N << uint(t.H) >> uint(level) // now n within tile at level |
| t.W = int((n + 1) << uint(level)) |
| return t, int(n<<uint(level)) * HashSize, int((n+1)<<uint(level)) * HashSize |
| } |
| |
| // HashFromTile returns the hash at the given storage index, |
| // provided that t == TileForIndex(t.H, index) or a wider version, |
| // and data is t's tile data (of length at least t.W*HashSize). |
| func HashFromTile(t Tile, data []byte, index int64) (Hash, error) { |
| if t.H < 1 || t.H > 30 || t.L < 0 || t.L >= 64 || t.W < 1 || t.W > 1<<uint(t.H) { |
| return Hash{}, fmt.Errorf("invalid tile %v", t.Path()) |
| } |
| if len(data) < t.W*HashSize { |
| return Hash{}, fmt.Errorf("data len %d too short for tile %v", len(data), t.Path()) |
| } |
| t1, start, end := tileForIndex(t.H, index) |
| if t.L != t1.L || t.N != t1.N || t.W < t1.W { |
| return Hash{}, fmt.Errorf("index %v is in %v not %v", index, t1.Path(), t.Path()) |
| } |
| return tileHash(data[start:end]), nil |
| } |
| |
| // tileHash computes the subtree hash corresponding to the (2^K)-1 hashes in data. |
| func tileHash(data []byte) Hash { |
| if len(data) == 0 { |
| panic("bad math in tileHash") |
| } |
| if len(data) == HashSize { |
| var h Hash |
| copy(h[:], data) |
| return h |
| } |
| n := len(data) / 2 |
| return NodeHash(tileHash(data[:n]), tileHash(data[n:])) |
| } |
| |
| // NewTiles returns the coordinates of the tiles of height h ≥ 1 |
| // that must be published when publishing from a tree of |
| // size newTreeSize to replace a tree of size oldTreeSize. |
| // (No tiles need to be published for a tree of size zero.) |
| func NewTiles(h int, oldTreeSize, newTreeSize int64) []Tile { |
| if h < 1 { |
| panic(fmt.Sprintf("NewTiles: invalid height %d", h)) |
| } |
| H := uint(h) |
| var tiles []Tile |
| for level := uint(0); newTreeSize>>(H*level) > 0; level++ { |
| oldN := oldTreeSize >> (H * level) |
| newN := newTreeSize >> (H * level) |
| for n := oldN >> H; n < newN>>H; n++ { |
| tiles = append(tiles, Tile{H: h, L: int(level), N: n, W: 1 << H}) |
| } |
| n := newN >> H |
| maxW := int(newN - n<<H) |
| minW := 1 |
| if oldN > n<<H { |
| minW = int(oldN - n<<H) |
| } |
| for w := minW; w <= maxW; w++ { |
| tiles = append(tiles, Tile{H: h, L: int(level), N: n, W: w}) |
| } |
| } |
| return tiles |
| } |
| |
| // ReadTileData reads the hashes for tile t from r |
| // and returns the corresponding tile data. |
| func ReadTileData(t Tile, r HashReader) ([]byte, error) { |
| size := t.W |
| if size == 0 { |
| size = 1 << uint(t.H) |
| } |
| start := t.N << uint(t.H) |
| indexes := make([]int64, size) |
| for i := 0; i < size; i++ { |
| indexes[i] = StoredHashIndex(t.H*t.L, start+int64(i)) |
| } |
| |
| hashes, err := r.ReadHashes(indexes) |
| if err != nil { |
| return nil, err |
| } |
| if len(hashes) != len(indexes) { |
| return nil, fmt.Errorf("tlog: ReadHashes(%d indexes) = %d hashes", len(indexes), len(hashes)) |
| } |
| |
| tile := make([]byte, size*HashSize) |
| for i := 0; i < size; i++ { |
| copy(tile[i*HashSize:], hashes[i][:]) |
| } |
| return tile, nil |
| } |
| |
| // To limit the size of any particular directory listing, |
| // we encode the (possibly very large) number N |
| // by encoding three digits at a time. |
| // For example, 123456789 encodes as x123/x456/789. |
| // Each directory has at most 1000 each xNNN, NNN, and NNN.p children, |
| // so there are at most 3000 entries in any one directory. |
| const pathBase = 1000 |
| |
| // Path returns a tile coordinate path describing t. |
| func (t Tile) Path() string { |
| n := t.N |
| nStr := fmt.Sprintf("%03d", n%pathBase) |
| for n >= pathBase { |
| n /= pathBase |
| nStr = fmt.Sprintf("x%03d/%s", n%pathBase, nStr) |
| } |
| pStr := "" |
| if t.W != 1<<uint(t.H) { |
| pStr = fmt.Sprintf(".p/%d", t.W) |
| } |
| var L string |
| if t.L == -1 { |
| L = "data" |
| } else { |
| L = fmt.Sprintf("%d", t.L) |
| } |
| return fmt.Sprintf("tile/%d/%s/%s%s", t.H, L, nStr, pStr) |
| } |
| |
| // ParseTilePath parses a tile coordinate path. |
| func ParseTilePath(path string) (Tile, error) { |
| f := strings.Split(path, "/") |
| if len(f) < 4 || f[0] != "tile" { |
| return Tile{}, &badPathError{path} |
| } |
| h, err1 := strconv.Atoi(f[1]) |
| isData := false |
| if f[2] == "data" { |
| isData = true |
| f[2] = "0" |
| } |
| l, err2 := strconv.Atoi(f[2]) |
| if err1 != nil || err2 != nil || h < 1 || l < 0 || h > 30 { |
| return Tile{}, &badPathError{path} |
| } |
| w := 1 << uint(h) |
| if dotP := f[len(f)-2]; strings.HasSuffix(dotP, ".p") { |
| ww, err := strconv.Atoi(f[len(f)-1]) |
| if err != nil || ww <= 0 || ww >= w { |
| return Tile{}, &badPathError{path} |
| } |
| w = ww |
| f[len(f)-2] = dotP[:len(dotP)-len(".p")] |
| f = f[:len(f)-1] |
| } |
| f = f[3:] |
| n := int64(0) |
| for _, s := range f { |
| nn, err := strconv.Atoi(strings.TrimPrefix(s, "x")) |
| if err != nil || nn < 0 || nn >= pathBase { |
| return Tile{}, &badPathError{path} |
| } |
| n = n*pathBase + int64(nn) |
| } |
| if isData { |
| l = -1 |
| } |
| t := Tile{H: h, L: l, N: n, W: w} |
| if path != t.Path() { |
| return Tile{}, &badPathError{path} |
| } |
| return t, nil |
| } |
| |
| type badPathError struct { |
| path string |
| } |
| |
| func (e *badPathError) Error() string { |
| return fmt.Sprintf("malformed tile path %q", e.path) |
| } |
| |
| // A TileReader reads tiles from a go.sum database log. |
| type TileReader interface { |
| // Height returns the height of the available tiles. |
| Height() int |
| |
| // ReadTiles returns the data for each requested tile. |
| // If ReadTiles returns err == nil, it must also return |
| // a data record for each tile (len(data) == len(tiles)) |
| // and each data record must be the correct length |
| // (len(data[i]) == tiles[i].W*HashSize). |
| ReadTiles(tiles []Tile) (data [][]byte, err error) |
| |
| // SaveTiles informs the TileReader that the tile data |
| // returned by ReadTiles has been confirmed as valid |
| // and can be saved in persistent storage (on disk). |
| SaveTiles(tiles []Tile, data [][]byte) |
| } |
| |
| // TileHashReader returns a HashReader that satisfies requests |
| // by loading tiles of the given tree. |
| // |
| // The returned HashReader checks that loaded tiles are |
| // valid for the given tree. Therefore, any hashes returned |
| // by the HashReader are already proven to be in the tree. |
| func TileHashReader(tree Tree, tr TileReader) HashReader { |
| return &tileHashReader{tree: tree, tr: tr} |
| } |
| |
| type tileHashReader struct { |
| tree Tree |
| tr TileReader |
| } |
| |
| // tileParent returns t's k'th tile parent in the tiles for a tree of size n. |
| // If there is no such parent, tileParent returns Tile{}. |
| func tileParent(t Tile, k int, n int64) Tile { |
| t.L += k |
| t.N >>= uint(k * t.H) |
| t.W = 1 << uint(t.H) |
| if max := n >> uint(t.L*t.H); t.N<<uint(t.H)+int64(t.W) >= max { |
| if t.N<<uint(t.H) >= max { |
| return Tile{} |
| } |
| t.W = int(max - t.N<<uint(t.H)) |
| } |
| return t |
| } |
| |
| func (r *tileHashReader) ReadHashes(indexes []int64) ([]Hash, error) { |
| h := r.tr.Height() |
| |
| tileOrder := make(map[Tile]int) // tileOrder[tileKey(tiles[i])] = i |
| var tiles []Tile |
| |
| // Plan to fetch tiles necessary to recompute tree hash. |
| // If it matches, those tiles are authenticated. |
| stx := subTreeIndex(0, r.tree.N, nil) |
| stxTileOrder := make([]int, len(stx)) |
| for i, x := range stx { |
| tile, _, _ := tileForIndex(h, x) |
| tile = tileParent(tile, 0, r.tree.N) |
| if j, ok := tileOrder[tile]; ok { |
| stxTileOrder[i] = j |
| continue |
| } |
| stxTileOrder[i] = len(tiles) |
| tileOrder[tile] = len(tiles) |
| tiles = append(tiles, tile) |
| } |
| |
| // Plan to fetch tiles containing the indexes, |
| // along with any parent tiles needed |
| // for authentication. For most calls, |
| // the parents are being fetched anyway. |
| indexTileOrder := make([]int, len(indexes)) |
| for i, x := range indexes { |
| if x >= StoredHashIndex(0, r.tree.N) { |
| return nil, fmt.Errorf("indexes not in tree") |
| } |
| |
| tile, _, _ := tileForIndex(h, x) |
| |
| // Walk up parent tiles until we find one we've requested. |
| // That one will be authenticated. |
| k := 0 |
| for ; ; k++ { |
| p := tileParent(tile, k, r.tree.N) |
| if j, ok := tileOrder[p]; ok { |
| if k == 0 { |
| indexTileOrder[i] = j |
| } |
| break |
| } |
| } |
| |
| // Walk back down recording child tiles after parents. |
| // This loop ends by revisiting the tile for this index |
| // (tileParent(tile, 0, r.tree.N)) unless k == 0, in which |
| // case the previous loop did it. |
| for k--; k >= 0; k-- { |
| p := tileParent(tile, k, r.tree.N) |
| if p.W != 1<<uint(p.H) { |
| // Only full tiles have parents. |
| // This tile has a parent, so it must be full. |
| return nil, fmt.Errorf("bad math in tileHashReader: %d %d %v", r.tree.N, x, p) |
| } |
| tileOrder[p] = len(tiles) |
| if k == 0 { |
| indexTileOrder[i] = len(tiles) |
| } |
| tiles = append(tiles, p) |
| } |
| } |
| |
| // Fetch all the tile data. |
| data, err := r.tr.ReadTiles(tiles) |
| if err != nil { |
| return nil, err |
| } |
| if len(data) != len(tiles) { |
| return nil, fmt.Errorf("TileReader returned bad result slice (len=%d, want %d)", len(data), len(tiles)) |
| } |
| for i, tile := range tiles { |
| if len(data[i]) != tile.W*HashSize { |
| return nil, fmt.Errorf("TileReader returned bad result slice (%v len=%d, want %d)", tile.Path(), len(data[i]), tile.W*HashSize) |
| } |
| } |
| |
| // Authenticate the initial tiles against the tree hash. |
| // They are arranged so that parents are authenticated before children. |
| // First the tiles needed for the tree hash. |
| th, err := HashFromTile(tiles[stxTileOrder[len(stx)-1]], data[stxTileOrder[len(stx)-1]], stx[len(stx)-1]) |
| if err != nil { |
| return nil, err |
| } |
| for i := len(stx) - 2; i >= 0; i-- { |
| h, err := HashFromTile(tiles[stxTileOrder[i]], data[stxTileOrder[i]], stx[i]) |
| if err != nil { |
| return nil, err |
| } |
| th = NodeHash(h, th) |
| } |
| if th != r.tree.Hash { |
| // The tiles do not support the tree hash. |
| // We know at least one is wrong, but not which one. |
| return nil, fmt.Errorf("downloaded inconsistent tile") |
| } |
| |
| // Authenticate full tiles against their parents. |
| for i := len(stx); i < len(tiles); i++ { |
| tile := tiles[i] |
| p := tileParent(tile, 1, r.tree.N) |
| j, ok := tileOrder[p] |
| if !ok { |
| return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost parent of %v", r.tree.N, indexes, tile) |
| } |
| h, err := HashFromTile(p, data[j], StoredHashIndex(p.L*p.H, tile.N)) |
| if err != nil { |
| return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost hash of %v: %v", r.tree.N, indexes, tile, err) |
| } |
| if h != tileHash(data[i]) { |
| return nil, fmt.Errorf("downloaded inconsistent tile") |
| } |
| } |
| |
| // Now we have all the tiles needed for the requested hashes, |
| // and we've authenticated the full tile set against the trusted tree hash. |
| r.tr.SaveTiles(tiles, data) |
| |
| // Pull out the requested hashes. |
| hashes := make([]Hash, len(indexes)) |
| for i, x := range indexes { |
| j := indexTileOrder[i] |
| h, err := HashFromTile(tiles[j], data[j], x) |
| if err != nil { |
| return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost hash %v: %v", r.tree.N, indexes, x, err) |
| } |
| hashes[i] = h |
| } |
| |
| return hashes, nil |
| } |