blob: ec99992ae1830a1e72de27d1306aa92ccc489074 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package iconvg
import (
"image"
"image/color"
"image/draw"
"math"
"golang.org/x/exp/shiny/iconvg/internal/gradient"
"golang.org/x/image/math/f64"
"golang.org/x/image/vector"
)
const (
smoothTypeNone = iota
smoothTypeQuad
smoothTypeCube
)
// Rasterizer is a Destination that draws an IconVG graphic onto a raster
// image.
//
// The zero value is usable, in that it has no raster image to draw onto, so
// that calling Decode with this Destination is a no-op (other than checking
// the encoded form for errors in the byte code). Call SetDstImage to change
// the raster image, before calling Decode or between calls to Decode.
type Rasterizer struct {
z vector.Rasterizer
dst draw.Image
r image.Rectangle
drawOp draw.Op
// scale and bias transforms the metadata.ViewBox rectangle to the (0, 0) -
// (r.Dx(), r.Dy()) rectangle.
scaleX float32
biasX float32
scaleY float32
biasY float32
metadata Metadata
lod0 float32
lod1 float32
cSel uint8
nSel uint8
disabled bool
firstStartPath bool
prevSmoothType uint8
prevSmoothPointX float32
prevSmoothPointY float32
fill image.Image
flatColor color.RGBA
flatImage image.Uniform
gradient gradient.Gradient
cReg [64]color.RGBA
nReg [64]float32
stops [64]gradient.Stop
}
// SetDstImage sets the Rasterizer to draw onto a destination image, given by
// dst and r, with the given compositing operator.
//
// The IconVG graphic (which does not have a fixed size in pixels) will be
// scaled in the X and Y dimensions to fit the rectangle r. The scaling factors
// may differ in the two dimensions.
func (z *Rasterizer) SetDstImage(dst draw.Image, r image.Rectangle, drawOp draw.Op) {
z.dst = dst
if r.Empty() {
r = image.Rectangle{}
}
z.r = r
z.drawOp = drawOp
z.recalcTransform()
}
// Reset resets the Rasterizer for the given Metadata.
func (z *Rasterizer) Reset(m Metadata) {
z.metadata = m
z.lod0 = 0
z.lod1 = positiveInfinity
z.cSel = 0
z.nSel = 0
z.firstStartPath = true
z.prevSmoothType = smoothTypeNone
z.prevSmoothPointX = 0
z.prevSmoothPointY = 0
z.cReg = m.Palette
z.nReg = [64]float32{}
z.recalcTransform()
}
func (z *Rasterizer) recalcTransform() {
z.scaleX = float32(z.r.Dx()) / (z.metadata.ViewBox.Max[0] - z.metadata.ViewBox.Min[0])
z.biasX = -z.metadata.ViewBox.Min[0]
z.scaleY = float32(z.r.Dy()) / (z.metadata.ViewBox.Max[1] - z.metadata.ViewBox.Min[1])
z.biasY = -z.metadata.ViewBox.Min[1]
}
func (z *Rasterizer) SetCSel(cSel uint8) { z.cSel = cSel & 0x3f }
func (z *Rasterizer) SetNSel(nSel uint8) { z.nSel = nSel & 0x3f }
func (z *Rasterizer) SetCReg(adj uint8, incr bool, c Color) {
z.cReg[(z.cSel-adj)&0x3f] = c.Resolve(&z.metadata.Palette, &z.cReg)
if incr {
z.cSel++
}
}
func (z *Rasterizer) SetNReg(adj uint8, incr bool, f float32) {
z.nReg[(z.nSel-adj)&0x3f] = f
if incr {
z.nSel++
}
}
func (z *Rasterizer) SetLOD(lod0, lod1 float32) {
z.lod0, z.lod1 = lod0, lod1
}
func (z *Rasterizer) unabsX(x float32) float32 { return x/z.scaleX - z.biasX }
func (z *Rasterizer) unabsY(y float32) float32 { return y/z.scaleY - z.biasY }
func (z *Rasterizer) absX(x float32) float32 { return z.scaleX * (x + z.biasX) }
func (z *Rasterizer) absY(y float32) float32 { return z.scaleY * (y + z.biasY) }
func (z *Rasterizer) relX(x float32) float32 { return z.scaleX * x }
func (z *Rasterizer) relY(y float32) float32 { return z.scaleY * y }
func (z *Rasterizer) absVec2(x, y float32) (zx, zy float32) {
return z.absX(x), z.absY(y)
}
func (z *Rasterizer) relVec2(x, y float32) (zx, zy float32) {
px, py := z.z.Pen()
return px + z.relX(x), py + z.relY(y)
}
// implicitSmoothPoint returns the implicit control point for smooth-quadratic
// and smooth-cubic Bézier curves.
//
// https://www.w3.org/TR/SVG/paths.html#PathDataCurveCommands says, "The first
// control point is assumed to be the reflection of the second control point on
// the previous command relative to the current point. (If there is no previous
// command or if the previous command was not [a quadratic or cubic command],
// assume the first control point is coincident with the current point.)"
func (z *Rasterizer) implicitSmoothPoint(thisSmoothType uint8) (zx, zy float32) {
px, py := z.z.Pen()
if z.prevSmoothType != thisSmoothType {
return px, py
}
return 2*px - z.prevSmoothPointX, 2*py - z.prevSmoothPointY
}
func (z *Rasterizer) initGradient(rgba color.RGBA) (ok bool) {
nStops := int(rgba.R & 0x3f)
cBase := int(rgba.G & 0x3f)
nBase := int(rgba.B & 0x3f)
prevN := negativeInfinity
for i := 0; i < nStops; i++ {
c := z.cReg[(cBase+i)&0x3f]
if !validAlphaPremulColor(c) {
return false
}
n := z.nReg[(nBase+i)&0x3f]
if !(0 <= n && n <= 1) || !(n > prevN) {
return false
}
prevN = n
z.stops[i] = gradient.Stop{
Offset: float64(n),
RGBA64: color.RGBA64{
R: uint16(c.R) * 0x101,
G: uint16(c.G) * 0x101,
B: uint16(c.B) * 0x101,
A: uint16(c.A) * 0x101,
},
}
}
// The affine transformation matrix in the IconVG graphic, stored in 6
// contiguous NREG registers, goes from graphic coordinate space (i.e. the
// metadata viewBox) to the gradient coordinate space. We need it to start
// in pixel space, not graphic coordinate space.
invZSX := 1 / float64(z.scaleX)
invZSY := 1 / float64(z.scaleY)
zBX := float64(z.biasX)
zBY := float64(z.biasY)
a := float64(z.nReg[(nBase-6)&0x3f])
b := float64(z.nReg[(nBase-5)&0x3f])
c := float64(z.nReg[(nBase-4)&0x3f])
d := float64(z.nReg[(nBase-3)&0x3f])
e := float64(z.nReg[(nBase-2)&0x3f])
f := float64(z.nReg[(nBase-1)&0x3f])
pix2Grad := f64.Aff3{
a * invZSX,
b * invZSY,
c - a*zBX - b*zBY,
d * invZSX,
e * invZSY,
f - d*zBX - e*zBY,
}
shape := gradient.ShapeLinear
if (rgba.B>>6)&0x01 != 0 {
shape = gradient.ShapeRadial
}
z.gradient.Init(
shape,
gradient.Spread(rgba.G>>6),
pix2Grad,
z.stops[:nStops],
)
return true
}
func (z *Rasterizer) StartPath(adj uint8, x, y float32) {
z.flatColor = z.cReg[(z.cSel-adj)&0x3f]
if validAlphaPremulColor(z.flatColor) {
z.flatImage.C = &z.flatColor
z.fill = &z.flatImage
z.disabled = z.flatColor.A == 0
} else if z.flatColor.A == 0x00 && z.flatColor.B&0x80 != 0 {
z.fill = &z.gradient
z.disabled = !z.initGradient(z.flatColor)
} else {
z.fill = nil
z.disabled = true
}
width, height := z.r.Dx(), z.r.Dy()
h := float32(height)
z.disabled = z.disabled || !(z.lod0 <= h && h < z.lod1)
if z.disabled {
return
}
z.z.Reset(width, height)
if z.firstStartPath {
z.firstStartPath = false
z.z.DrawOp = z.drawOp
}
z.prevSmoothType = smoothTypeNone
z.z.MoveTo(z.absVec2(x, y))
}
func (z *Rasterizer) ClosePathEndPath() {
if z.disabled {
return
}
z.z.ClosePath()
if z.dst == nil {
return
}
z.z.Draw(z.dst, z.r, z.fill, image.Point{})
}
func (z *Rasterizer) ClosePathAbsMoveTo(x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
z.z.ClosePath()
z.z.MoveTo(z.absVec2(x, y))
}
func (z *Rasterizer) ClosePathRelMoveTo(x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
z.z.ClosePath()
z.z.MoveTo(z.relVec2(x, y))
}
func (z *Rasterizer) AbsHLineTo(x float32) {
if z.disabled {
return
}
_, py := z.z.Pen()
z.prevSmoothType = smoothTypeNone
z.z.LineTo(z.absX(x), py)
}
func (z *Rasterizer) RelHLineTo(x float32) {
if z.disabled {
return
}
px, py := z.z.Pen()
z.prevSmoothType = smoothTypeNone
z.z.LineTo(px+z.relX(x), py)
}
func (z *Rasterizer) AbsVLineTo(y float32) {
if z.disabled {
return
}
px, _ := z.z.Pen()
z.prevSmoothType = smoothTypeNone
z.z.LineTo(px, z.absY(y))
}
func (z *Rasterizer) RelVLineTo(y float32) {
if z.disabled {
return
}
px, py := z.z.Pen()
z.prevSmoothType = smoothTypeNone
z.z.LineTo(px, py+z.relY(y))
}
func (z *Rasterizer) AbsLineTo(x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
z.z.LineTo(z.absVec2(x, y))
}
func (z *Rasterizer) RelLineTo(x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
z.z.LineTo(z.relVec2(x, y))
}
func (z *Rasterizer) AbsSmoothQuadTo(x, y float32) {
if z.disabled {
return
}
x1, y1 := z.implicitSmoothPoint(smoothTypeQuad)
x, y = z.absVec2(x, y)
z.prevSmoothType = smoothTypeQuad
z.prevSmoothPointX, z.prevSmoothPointY = x1, y1
z.z.QuadTo(x1, y1, x, y)
}
func (z *Rasterizer) RelSmoothQuadTo(x, y float32) {
if z.disabled {
return
}
x1, y1 := z.implicitSmoothPoint(smoothTypeQuad)
x, y = z.relVec2(x, y)
z.prevSmoothType = smoothTypeQuad
z.prevSmoothPointX, z.prevSmoothPointY = x1, y1
z.z.QuadTo(x1, y1, x, y)
}
func (z *Rasterizer) AbsQuadTo(x1, y1, x, y float32) {
if z.disabled {
return
}
x1, y1 = z.absVec2(x1, y1)
x, y = z.absVec2(x, y)
z.prevSmoothType = smoothTypeQuad
z.prevSmoothPointX, z.prevSmoothPointY = x1, y1
z.z.QuadTo(x1, y1, x, y)
}
func (z *Rasterizer) RelQuadTo(x1, y1, x, y float32) {
if z.disabled {
return
}
x1, y1 = z.relVec2(x1, y1)
x, y = z.relVec2(x, y)
z.prevSmoothType = smoothTypeQuad
z.prevSmoothPointX, z.prevSmoothPointY = x1, y1
z.z.QuadTo(x1, y1, x, y)
}
func (z *Rasterizer) AbsSmoothCubeTo(x2, y2, x, y float32) {
if z.disabled {
return
}
x1, y1 := z.implicitSmoothPoint(smoothTypeCube)
x2, y2 = z.absVec2(x2, y2)
x, y = z.absVec2(x, y)
z.prevSmoothType = smoothTypeCube
z.prevSmoothPointX, z.prevSmoothPointY = x2, y2
z.z.CubeTo(x1, y1, x2, y2, x, y)
}
func (z *Rasterizer) RelSmoothCubeTo(x2, y2, x, y float32) {
if z.disabled {
return
}
x1, y1 := z.implicitSmoothPoint(smoothTypeCube)
x2, y2 = z.relVec2(x2, y2)
x, y = z.relVec2(x, y)
z.prevSmoothType = smoothTypeCube
z.prevSmoothPointX, z.prevSmoothPointY = x2, y2
z.z.CubeTo(x1, y1, x2, y2, x, y)
}
func (z *Rasterizer) AbsCubeTo(x1, y1, x2, y2, x, y float32) {
if z.disabled {
return
}
x1, y1 = z.absVec2(x1, y1)
x2, y2 = z.absVec2(x2, y2)
x, y = z.absVec2(x, y)
z.prevSmoothType = smoothTypeCube
z.prevSmoothPointX, z.prevSmoothPointY = x2, y2
z.z.CubeTo(x1, y1, x2, y2, x, y)
}
func (z *Rasterizer) RelCubeTo(x1, y1, x2, y2, x, y float32) {
if z.disabled {
return
}
x1, y1 = z.relVec2(x1, y1)
x2, y2 = z.relVec2(x2, y2)
x, y = z.relVec2(x, y)
z.prevSmoothType = smoothTypeCube
z.prevSmoothPointX, z.prevSmoothPointY = x2, y2
z.z.CubeTo(x1, y1, x2, y2, x, y)
}
func (z *Rasterizer) AbsArcTo(rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) {
if z.disabled {
return
}
z.prevSmoothType = smoothTypeNone
// We follow the "Conversion from endpoint to center parameterization"
// algorithm as per
// https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
// There seems to be a bug in the spec's "implementation notes".
//
// Actual implementations, such as
// - https://git.gnome.org/browse/librsvg/tree/rsvg-path.c
// - http://svn.apache.org/repos/asf/xmlgraphics/batik/branches/svg11/sources/org/apache/batik/ext/awt/geom/ExtendedGeneralPath.java
// - https://java.net/projects/svgsalamander/sources/svn/content/trunk/svg-core/src/main/java/com/kitfox/svg/pathcmd/Arc.java
// - https://github.com/millermedeiros/SVGParser/blob/master/com/millermedeiros/geom/SVGArc.as
// do something slightly different (marked with a †).
// (†) The Abs isn't part of the spec. Neither is checking that Rx and Ry
// are non-zero (and non-NaN).
Rx := math.Abs(float64(rx))
Ry := math.Abs(float64(ry))
if !(Rx > 0 && Ry > 0) {
z.z.LineTo(x, y)
return
}
// We work in IconVG coordinates (e.g. from -32 to +32 by default), rather
// than destination image coordinates (e.g. the width of the dst image),
// since the rx and ry radii also need to be scaled, but their scaling
// factors can be different, and aren't trivial to calculate due to
// xAxisRotation.
//
// We convert back to destination image coordinates via absX and absY calls
// later, during arcSegmentTo.
penX, penY := z.z.Pen()
x1 := float64(z.unabsX(penX))
y1 := float64(z.unabsY(penY))
x2 := float64(x)
y2 := float64(y)
phi := 2 * math.Pi * float64(xAxisRotation)
// Step 1: Compute (x1′, y1′)
halfDx := (x1 - x2) / 2
halfDy := (y1 - y2) / 2
cosPhi := math.Cos(phi)
sinPhi := math.Sin(phi)
x1Prime := +cosPhi*halfDx + sinPhi*halfDy
y1Prime := -sinPhi*halfDx + cosPhi*halfDy
// Step 2: Compute (cx′, cy′)
rxSq := Rx * Rx
rySq := Ry * Ry
x1PrimeSq := x1Prime * x1Prime
y1PrimeSq := y1Prime * y1Prime
// (†) Check that the radii are large enough.
radiiCheck := x1PrimeSq/rxSq + y1PrimeSq/rySq
if radiiCheck > 1 {
c := math.Sqrt(radiiCheck)
Rx *= c
Ry *= c
rxSq = Rx * Rx
rySq = Ry * Ry
}
denom := rxSq*y1PrimeSq + rySq*x1PrimeSq
step2 := 0.0
if a := rxSq*rySq/denom - 1; a > 0 {
step2 = math.Sqrt(a)
}
if largeArc == sweep {
step2 = -step2
}
cxPrime := +step2 * Rx * y1Prime / Ry
cyPrime := -step2 * Ry * x1Prime / Rx
// Step 3: Compute (cx, cy) from (cx′, cy′)
cx := +cosPhi*cxPrime - sinPhi*cyPrime + (x1+x2)/2
cy := +sinPhi*cxPrime + cosPhi*cyPrime + (y1+y2)/2
// Step 4: Compute θ1 and Δθ
ax := (+x1Prime - cxPrime) / Rx
ay := (+y1Prime - cyPrime) / Ry
bx := (-x1Prime - cxPrime) / Rx
by := (-y1Prime - cyPrime) / Ry
theta1 := angle(1, 0, ax, ay)
deltaTheta := angle(ax, ay, bx, by)
if sweep {
if deltaTheta < 0 {
deltaTheta += 2 * math.Pi
}
} else {
if deltaTheta > 0 {
deltaTheta -= 2 * math.Pi
}
}
// This ends the
// https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
// algorithm. What follows below is specific to this implementation.
// We approximate an arc by one or more cubic Bézier curves.
n := int(math.Ceil(math.Abs(deltaTheta) / (math.Pi/2 + 0.001)))
for i := 0; i < n; i++ {
z.arcSegmentTo(cx, cy,
theta1+deltaTheta*float64(i+0)/float64(n),
theta1+deltaTheta*float64(i+1)/float64(n),
Rx, Ry, cosPhi, sinPhi,
)
}
}
// arcSegmentTo approximates an arc by a cubic Bézier curve. The mathematical
// formulae for the control points are the same as that used by librsvg.
func (z *Rasterizer) arcSegmentTo(cx, cy, theta1, theta2, rx, ry, cosPhi, sinPhi float64) {
halfDeltaTheta := (theta2 - theta1) * 0.5
q := math.Sin(halfDeltaTheta * 0.5)
t := (8 * q * q) / (3 * math.Sin(halfDeltaTheta))
cos1 := math.Cos(theta1)
sin1 := math.Sin(theta1)
cos2 := math.Cos(theta2)
sin2 := math.Sin(theta2)
x1 := rx * (+cos1 - t*sin1)
y1 := ry * (+sin1 + t*cos1)
x2 := rx * (+cos2 + t*sin2)
y2 := ry * (+sin2 - t*cos2)
x3 := rx * (+cos2)
y3 := ry * (+sin2)
z.z.CubeTo(
z.absX(float32(cx+cosPhi*x1-sinPhi*y1)),
z.absY(float32(cy+sinPhi*x1+cosPhi*y1)),
z.absX(float32(cx+cosPhi*x2-sinPhi*y2)),
z.absY(float32(cy+sinPhi*x2+cosPhi*y2)),
z.absX(float32(cx+cosPhi*x3-sinPhi*y3)),
z.absY(float32(cy+sinPhi*x3+cosPhi*y3)),
)
}
func (z *Rasterizer) RelArcTo(rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) {
ax, ay := z.relVec2(x, y)
z.AbsArcTo(rx, ry, xAxisRotation, largeArc, sweep, z.unabsX(ax), z.unabsY(ay))
}
// angle returns the angle between the u and v vectors.
func angle(ux, uy, vx, vy float64) float64 {
uNorm := math.Sqrt(ux*ux + uy*uy)
vNorm := math.Sqrt(vx*vx + vy*vy)
norm := uNorm * vNorm
cos := (ux*vx + uy*vy) / norm
ret := 0.0
if cos <= -1 {
ret = math.Pi
} else if cos >= +1 {
ret = 0
} else {
ret = math.Acos(cos)
}
if ux*vy < uy*vx {
return -ret
}
return +ret
}