blob: f0578a4c007bf498f802567ab4fb88cf9de913b0 [file] [log] [blame]
package ssa
// This file defines the SSA builder.
//
// The builder has two phases, CREATE and BUILD. In the CREATE
// phase, all packages are constructed and type-checked and
// definitions of all package members are created, method-sets are
// computed, and bridge methods are synthesized. The create phase
// proceeds in topological order over the import dependency graph,
// initiated by client calls to CreatePackage.
//
// In the BUILD phase, the Builder traverses the AST of each Go source
// function and generates SSA instructions for the function body.
// Within each package, building proceeds in a topological order over
// the intra-package symbol reference graph, whose roots are the set
// of package-level declarations in lexical order. The BUILD phases
// for distinct packages are independent and are executed in parallel.
//
// The Builder's and Program's indices (maps) are populated and
// mutated during the CREATE phase, but during the BUILD phase they
// remain constant. The sole exception is Prog.methodSets, which is
// protected by a dedicated mutex.
import (
"fmt"
"go/ast"
"go/token"
"os"
"strconv"
"sync"
"sync/atomic"
"code.google.com/p/go.exp/go/exact"
"code.google.com/p/go.exp/go/types"
)
type opaqueType struct {
types.Type
name string
}
func (t *opaqueType) String() string { return t.name }
var (
varOk = types.NewVar(nil, "ok", tBool)
// Type constants.
tBool = types.Typ[types.Bool]
tByte = types.Typ[types.Byte]
tFloat32 = types.Typ[types.Float32]
tFloat64 = types.Typ[types.Float64]
tComplex64 = types.Typ[types.Complex64]
tComplex128 = types.Typ[types.Complex128]
tInt = types.Typ[types.Int]
tInvalid = types.Typ[types.Invalid]
tUntypedNil = types.Typ[types.UntypedNil]
tRangeIter = &opaqueType{nil, "iter"} // the type of all "range" iterators
tEface = new(types.Interface)
// The result type of a "select".
tSelect = types.NewTuple(
types.NewVar(nil, "index", tInt),
types.NewVar(nil, "recv", tEface),
varOk,
)
// SSA Value constants.
vZero = intLiteral(0)
vOne = intLiteral(1)
vTrue = newLiteral(exact.MakeBool(true), tBool)
vFalse = newLiteral(exact.MakeBool(false), tBool)
)
// A Context specifies the supporting context for SSA construction.
//
// TODO(adonovan): make it so empty => default behaviours?
// Currently not the case for Loader.
//
type Context struct {
// Mode is a bitfield of options controlling verbosity,
// logging and additional sanity checks.
Mode BuilderMode
// Loader is a SourceLoader function that finds, loads and
// parses Go source files for a given import path. (It is
// ignored if the mode bits include UseGCImporter.)
// See (e.g.) GoRootLoader.
Loader SourceLoader
// RetainAST is an optional user predicate that determines
// whether to retain (true) or discard (false) the AST and its
// type information for each package after BuildPackage has
// finished.
// Implementations must be thread-safe.
// If RetainAST is nil, all ASTs and TypeInfos are discarded.
RetainAST func(*Package) bool
// TypeChecker contains options relating to the type checker.
// The SSA Builder will override any user-supplied values for
// its Expr, Ident and Import fields; other fields will be
// passed through to the type checker.
TypeChecker types.Context
}
// BuilderMode is a bitmask of options for diagnostics and checking.
type BuilderMode uint
const (
LogPackages BuilderMode = 1 << iota // Dump package inventory to stderr
LogFunctions // Dump function SSA code to stderr
LogSource // Show source locations as SSA builder progresses
SanityCheckFunctions // Perform sanity checking of function bodies
UseGCImporter // Ignore SourceLoader; use gc-compiled object code for all imports
NaiveForm // Build naïve SSA form: don't replace local loads/stores with registers
BuildSerially // Build packages serially, not in parallel.
)
// A Builder creates the SSA representation of a single program.
// Instances may be created using NewBuilder.
//
// The SSA Builder constructs a Program containing Package instances
// for packages of Go source code, loading, parsing and recursively
// constructing packages for all imported dependencies as well.
//
// If the UseGCImporter mode flag is specified, binary object files
// produced by the gc compiler will be loaded instead of source code
// for all imported packages. Such files supply only the types of
// package-level declarations and values of constants, but no code, so
// this mode will not yield a whole program. It is intended for
// analyses that perform intraprocedural analysis of a single package.
//
// A typical client will create a Builder with NewBuilder; call
// CreatePackage for the "root" package(s), e.g. main; then call
// BuildPackage on the same set of packages to construct SSA-form code
// for functions and methods. After that, the representation of the
// program (Builder.Prog) is complete and transitively closed, and the
// Builder object can be discarded to reclaim its memory. The
// client's analysis may then begin.
//
type Builder struct {
Prog *Program // the program being built
Context *Context // the client context
importErrs map[string]error // across-packages import cache of failures
packages map[*types.Package]*Package // SSA packages by types.Package
globals map[types.Object]Value // all package-level funcs and vars, and universal built-ins
}
// NewBuilder creates and returns a new SSA builder with options
// specified by context.
//
func NewBuilder(context *Context) *Builder {
b := &Builder{
Prog: &Program{
Files: token.NewFileSet(),
Packages: make(map[string]*Package),
Builtins: make(map[types.Object]*Builtin),
methodSets: make(map[types.Type]MethodSet),
concreteMethods: make(map[*types.Func]*Function),
mode: context.Mode,
},
Context: context,
globals: make(map[types.Object]Value),
importErrs: make(map[string]error),
packages: make(map[*types.Package]*Package),
}
b.Context.TypeChecker.Import = func(imports map[string]*types.Package, path string) (pkg *types.Package, err error) {
return b.doImport(imports, path)
}
// Create Values for built-in functions.
for _, obj := range types.Universe.Entries {
switch obj := obj.(type) {
case *types.Func:
v := &Builtin{obj}
b.globals[obj] = v
b.Prog.Builtins[obj] = v
}
}
return b
}
// lookup returns the package-level *Function or *Global (or universal
// *Builtin) for the named object obj.
//
// Intra-package references are edges in the initialization dependency
// graph. If the result v is a Function or Global belonging to
// 'from', the package on whose behalf this lookup occurs, then lookup
// emits initialization code into from.Init if not already done.
//
func (b *Builder) lookup(from *Package, obj types.Object) (v Value, ok bool) {
v, ok = b.globals[obj]
if ok {
switch v := v.(type) {
case *Function:
if from == v.Pkg {
b.buildFunction(v)
}
case *Global:
if from == v.Pkg {
b.buildGlobal(v, obj)
}
}
}
return
}
// cond emits to fn code to evaluate boolean condition e and jump
// to t or f depending on its value, performing various simplifications.
//
// Postcondition: fn.currentBlock is nil.
//
func (b *Builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) {
switch e := e.(type) {
case *ast.ParenExpr:
b.cond(fn, e.X, t, f)
return
case *ast.BinaryExpr:
switch e.Op {
case token.LAND:
ltrue := fn.newBasicBlock("cond.true")
b.cond(fn, e.X, ltrue, f)
fn.currentBlock = ltrue
b.cond(fn, e.Y, t, f)
return
case token.LOR:
lfalse := fn.newBasicBlock("cond.false")
b.cond(fn, e.X, t, lfalse)
fn.currentBlock = lfalse
b.cond(fn, e.Y, t, f)
return
}
case *ast.UnaryExpr:
if e.Op == token.NOT {
b.cond(fn, e.X, f, t)
return
}
}
switch cond := b.expr(fn, e).(type) {
case *Literal:
// Dispatch constant conditions statically.
if exact.BoolVal(cond.Value) {
emitJump(fn, t)
} else {
emitJump(fn, f)
}
default:
emitIf(fn, cond, t, f)
}
}
// logicalBinop emits code to fn to evaluate e, a &&- or
// ||-expression whose reified boolean value is wanted.
// The value is returned.
//
func (b *Builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value {
rhs := fn.newBasicBlock("binop.rhs")
done := fn.newBasicBlock("binop.done")
var short Value // value of the short-circuit path
switch e.Op {
case token.LAND:
b.cond(fn, e.X, rhs, done)
short = vFalse
case token.LOR:
b.cond(fn, e.X, done, rhs)
short = vTrue
}
// Is rhs unreachable?
if rhs.Preds == nil {
// Simplify false&&y to false, true||y to true.
fn.currentBlock = done
return short
}
// Is done unreachable?
if done.Preds == nil {
// Simplify true&&y (or false||y) to y.
fn.currentBlock = rhs
return b.expr(fn, e.Y)
}
// All edges from e.X to done carry the short-circuit value.
var edges []Value
for _ = range done.Preds {
edges = append(edges, short)
}
// The edge from e.Y to done carries the value of e.Y.
fn.currentBlock = rhs
edges = append(edges, b.expr(fn, e.Y))
emitJump(fn, done)
fn.currentBlock = done
phi := &Phi{Edges: edges, Comment: e.Op.String()}
phi.Type_ = phi.Edges[0].Type()
return done.emit(phi)
}
// exprN lowers a multi-result expression e to SSA form, emitting code
// to fn and returning a single Value whose type is a *types.Results
// (tuple). The caller must access the components via Extract.
//
// Multi-result expressions include CallExprs in a multi-value
// assignment or return statement, and "value,ok" uses of
// TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op
// is token.ARROW).
//
func (b *Builder) exprN(fn *Function, e ast.Expr) Value {
var typ types.Type
var tuple Value
switch e := e.(type) {
case *ast.ParenExpr:
return b.exprN(fn, e.X)
case *ast.CallExpr:
// Currently, no built-in function nor type conversion
// has multiple results, so we can avoid some of the
// cases for single-valued CallExpr.
var c Call
b.setCall(fn, e, &c.Call)
c.Type_ = fn.Pkg.TypeOf(e)
return fn.emit(&c)
case *ast.IndexExpr:
mapt := underlyingType(fn.Pkg.TypeOf(e.X)).(*types.Map)
typ = mapt.Elt()
tuple = fn.emit(&Lookup{
X: b.expr(fn, e.X),
Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
CommaOk: true,
})
case *ast.TypeAssertExpr:
return emitTypeTest(fn, b.expr(fn, e.X), fn.Pkg.TypeOf(e))
case *ast.UnaryExpr: // must be receive <-
typ = underlyingType(fn.Pkg.TypeOf(e.X)).(*types.Chan).Elt()
tuple = fn.emit(&UnOp{
Op: token.ARROW,
X: b.expr(fn, e.X),
CommaOk: true,
})
default:
panic(fmt.Sprintf("unexpected exprN: %T", e))
}
// The typechecker sets the type of the expression to just the
// asserted type in the "value, ok" form, not to *types.Result
// (though it includes the valueOk operand in its error messages).
tuple.(interface {
setType(types.Type)
}).setType(types.NewTuple(
types.NewVar(nil, "value", typ),
varOk,
))
return tuple
}
// builtin emits to fn SSA instructions to implement a call to the
// built-in function called name with the specified arguments
// and return type. It returns the value defined by the result.
//
// The result is nil if no special handling was required; in this case
// the caller should treat this like an ordinary library function
// call.
//
func (b *Builder) builtin(fn *Function, name string, args []ast.Expr, typ types.Type, pos token.Pos) Value {
switch name {
case "make":
switch underlyingType(typ).(type) {
case *types.Slice:
n := b.expr(fn, args[1])
m := n
if len(args) == 3 {
m = b.expr(fn, args[2])
}
v := &MakeSlice{
Len: n,
Cap: m,
Pos: pos,
}
v.setType(typ)
return fn.emit(v)
case *types.Map:
var res Value
if len(args) == 2 {
res = b.expr(fn, args[1])
}
v := &MakeMap{Reserve: res, Pos: pos}
v.setType(typ)
return fn.emit(v)
case *types.Chan:
var sz Value = vZero
if len(args) == 2 {
sz = b.expr(fn, args[1])
}
v := &MakeChan{Size: sz, Pos: pos}
v.setType(typ)
return fn.emit(v)
}
case "new":
return emitNew(fn, indirectType(underlyingType(typ)), pos)
case "len", "cap":
// Special case: len or cap of an array or *array is
// based on the type, not the value which may be nil.
// We must still evaluate the value, though. (If it
// was side-effect free, the whole call would have
// been constant-folded.)
t := underlyingType(deref(fn.Pkg.TypeOf(args[0])))
if at, ok := t.(*types.Array); ok {
b.expr(fn, args[0]) // for effects only
return intLiteral(at.Len())
}
// Otherwise treat as normal.
case "panic":
fn.emit(&Panic{X: emitConv(fn, b.expr(fn, args[0]), tEface)})
fn.currentBlock = fn.newBasicBlock("unreachable")
return vFalse // any non-nil Value will do
}
return nil // treat all others as a regular function call
}
// selector evaluates the selector expression e and returns its value,
// or if wantAddr is true, its address, in which case escaping
// indicates whether the caller intends to use the resulting pointer
// in a potentially escaping way.
//
func (b *Builder) selector(fn *Function, e *ast.SelectorExpr, wantAddr, escaping bool) Value {
id := MakeId(e.Sel.Name, fn.Pkg.Types)
st := underlyingType(deref(fn.Pkg.TypeOf(e.X))).(*types.Struct)
index := -1
for i, n := 0, st.NumFields(); i < n; i++ {
f := st.Field(i)
if MakeId(f.Name, f.Pkg) == id {
index = i
break
}
}
var path *anonFieldPath
if index == -1 {
// Not a named field. Use breadth-first algorithm.
path, index = findPromotedField(st, id)
if path == nil {
panic("field not found, even with promotion: " + e.Sel.Name)
}
}
fieldType := fn.Pkg.TypeOf(e)
if wantAddr {
return b.fieldAddr(fn, e.X, path, index, fieldType, escaping)
}
return b.fieldExpr(fn, e.X, path, index, fieldType)
}
// fieldAddr evaluates the base expression (a struct or *struct),
// applies to it any implicit field selections from path, and then
// selects the field #index of type fieldType.
// Its address is returned.
//
// (fieldType can be derived from base+index.)
//
func (b *Builder) fieldAddr(fn *Function, base ast.Expr, path *anonFieldPath, index int, fieldType types.Type, escaping bool) Value {
var x Value
if path != nil {
switch underlyingType(path.field.Type).(type) {
case *types.Struct:
x = b.fieldAddr(fn, base, path.tail, path.index, path.field.Type, escaping)
case *types.Pointer:
x = b.fieldExpr(fn, base, path.tail, path.index, path.field.Type)
}
} else {
switch underlyingType(fn.Pkg.TypeOf(base)).(type) {
case *types.Struct:
x = b.addr(fn, base, escaping).(address).addr
case *types.Pointer:
x = b.expr(fn, base)
}
}
v := &FieldAddr{
X: x,
Field: index,
}
v.setType(pointer(fieldType))
return fn.emit(v)
}
// fieldExpr evaluates the base expression (a struct or *struct),
// applies to it any implicit field selections from path, and then
// selects the field #index of type fieldType.
// Its value is returned.
//
// (fieldType can be derived from base+index.)
//
func (b *Builder) fieldExpr(fn *Function, base ast.Expr, path *anonFieldPath, index int, fieldType types.Type) Value {
var x Value
if path != nil {
x = b.fieldExpr(fn, base, path.tail, path.index, path.field.Type)
} else {
x = b.expr(fn, base)
}
switch underlyingType(x.Type()).(type) {
case *types.Struct:
v := &Field{
X: x,
Field: index,
}
v.setType(fieldType)
return fn.emit(v)
case *types.Pointer: // *struct
v := &FieldAddr{
X: x,
Field: index,
}
v.setType(pointer(fieldType))
return emitLoad(fn, fn.emit(v))
}
panic("unreachable")
}
// addr lowers a single-result addressable expression e to SSA form,
// emitting code to fn and returning the location (an lvalue) defined
// by the expression.
//
// If escaping is true, addr marks the base variable of the
// addressable expression e as being a potentially escaping pointer
// value. For example, in this code:
//
// a := A{
// b: [1]B{B{c: 1}}
// }
// return &a.b[0].c
//
// the application of & causes a.b[0].c to have its address taken,
// which means that ultimately the local variable a must be
// heap-allocated. This is a simple but very conservative escape
// analysis.
//
// Operations forming potentially escaping pointers include:
// - &x, including when implicit in method call or composite literals.
// - a[:] iff a is an array (not *array)
// - references to variables in lexically enclosing functions.
//
func (b *Builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue {
switch e := e.(type) {
case *ast.Ident:
obj := fn.Pkg.ObjectOf(e)
v, ok := b.lookup(fn.Pkg, obj) // var (address)
if !ok {
v = fn.lookup(obj, escaping)
}
return address{v}
case *ast.CompositeLit:
t := deref(fn.Pkg.TypeOf(e))
var v Value
if escaping {
v = emitNew(fn, t, e.Lbrace)
} else {
v = fn.addLocal(t, e.Lbrace)
}
b.compLit(fn, v, e, t) // initialize in place
return address{v}
case *ast.ParenExpr:
return b.addr(fn, e.X, escaping)
case *ast.SelectorExpr:
// p.M where p is a package.
if obj := fn.Pkg.isPackageRef(e); obj != nil {
if v, ok := b.lookup(fn.Pkg, obj); ok {
return address{v}
}
panic("undefined package-qualified name: " + obj.Name())
}
// e.f where e is an expression.
return address{b.selector(fn, e, true, escaping)}
case *ast.IndexExpr:
var x Value
var et types.Type
switch t := underlyingType(fn.Pkg.TypeOf(e.X)).(type) {
case *types.Array:
x = b.addr(fn, e.X, escaping).(address).addr
et = pointer(t.Elt())
case *types.Pointer: // *array
x = b.expr(fn, e.X)
et = pointer(underlyingType(t.Elt()).(*types.Array).Elt())
case *types.Slice:
x = b.expr(fn, e.X)
et = pointer(t.Elt())
case *types.Map:
return &element{
m: b.expr(fn, e.X),
k: emitConv(fn, b.expr(fn, e.Index), t.Key()),
t: t.Elt(),
}
default:
panic("unexpected container type in IndexExpr: " + t.String())
}
v := &IndexAddr{
X: x,
Index: emitConv(fn, b.expr(fn, e.Index), tInt),
}
v.setType(et)
return address{fn.emit(v)}
case *ast.StarExpr:
return address{b.expr(fn, e.X)}
}
panic(fmt.Sprintf("unexpected address expression: %T", e))
}
// exprInPlace emits to fn code to initialize the lvalue loc with the
// value of expression e.
//
// This is equivalent to loc.store(fn, b.expr(fn, e)) but may
// generate better code in some cases, e.g. for composite literals
// in an addressable location.
//
func (b *Builder) exprInPlace(fn *Function, loc lvalue, e ast.Expr) {
if addr, ok := loc.(address); ok {
if e, ok := e.(*ast.CompositeLit); ok {
typ := addr.typ()
switch underlyingType(typ).(type) {
case *types.Pointer: // implicit & -- possibly escaping
ptr := b.addr(fn, e, true).(address).addr
addr.store(fn, ptr) // copy address
return
case *types.Interface:
// e.g. var x interface{} = T{...}
// Can't in-place initialize an interface value.
// Fall back to copying.
default:
b.compLit(fn, addr.addr, e, typ) // in place
return
}
}
}
loc.store(fn, b.expr(fn, e)) // copy value
}
// expr lowers a single-result expression e to SSA form, emitting code
// to fn and returning the Value defined by the expression.
//
func (b *Builder) expr(fn *Function, e ast.Expr) Value {
if lit := fn.Pkg.ValueOf(e); lit != nil {
return lit
}
switch e := e.(type) {
case *ast.BasicLit:
panic("non-constant BasicLit") // unreachable
case *ast.FuncLit:
posn := b.Prog.Files.Position(e.Type.Func)
fn2 := &Function{
Name_: fmt.Sprintf("func@%d.%d", posn.Line, posn.Column),
Signature: underlyingType(fn.Pkg.TypeOf(e.Type)).(*types.Signature),
Pos: e.Type.Func,
Enclosing: fn,
Pkg: fn.Pkg,
Prog: b.Prog,
syntax: &funcSyntax{
paramFields: e.Type.Params,
resultFields: e.Type.Results,
body: e.Body,
},
}
fn.AnonFuncs = append(fn.AnonFuncs, fn2)
b.buildFunction(fn2)
if fn2.FreeVars == nil {
return fn2
}
v := &MakeClosure{Fn: fn2}
v.setType(fn.Pkg.TypeOf(e))
for _, fv := range fn2.FreeVars {
v.Bindings = append(v.Bindings, fv.Outer)
}
return fn.emit(v)
case *ast.ParenExpr:
return b.expr(fn, e.X)
case *ast.TypeAssertExpr: // single-result form only
return emitTypeAssert(fn, b.expr(fn, e.X), fn.Pkg.TypeOf(e))
case *ast.CallExpr:
typ := fn.Pkg.TypeOf(e)
if fn.Pkg.IsType(e.Fun) {
// Explicit type conversion, e.g. string(x) or big.Int(x)
x := b.expr(fn, e.Args[0])
y := emitConv(fn, x, typ)
if y != x {
switch y := y.(type) {
case *Convert:
y.Pos = e.Lparen
case *ChangeType:
y.Pos = e.Lparen
case *MakeInterface:
y.Pos = e.Lparen
}
}
return y
}
// Call to "intrinsic" built-ins, e.g. new, make, panic.
if id, ok := e.Fun.(*ast.Ident); ok {
obj := fn.Pkg.ObjectOf(id)
if _, ok := fn.Prog.Builtins[obj]; ok {
if v := b.builtin(fn, id.Name, e.Args, typ, e.Lparen); v != nil {
return v
}
}
}
// Regular function call.
var v Call
b.setCall(fn, e, &v.Call)
v.setType(typ)
return fn.emit(&v)
case *ast.UnaryExpr:
switch e.Op {
case token.AND: // &X --- potentially escaping.
return b.addr(fn, e.X, true).(address).addr
case token.ADD:
return b.expr(fn, e.X)
case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^
v := &UnOp{
Op: e.Op,
X: b.expr(fn, e.X),
}
v.setType(fn.Pkg.TypeOf(e))
return fn.emit(v)
default:
panic(e.Op)
}
case *ast.BinaryExpr:
switch e.Op {
case token.LAND, token.LOR:
return b.logicalBinop(fn, e)
case token.SHL, token.SHR:
fallthrough
case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), fn.Pkg.TypeOf(e))
case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ:
return emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y))
default:
panic("illegal op in BinaryExpr: " + e.Op.String())
}
case *ast.SliceExpr:
var low, high Value
var x Value
switch underlyingType(fn.Pkg.TypeOf(e.X)).(type) {
case *types.Array:
// Potentially escaping.
x = b.addr(fn, e.X, true).(address).addr
case *types.Basic, *types.Slice, *types.Pointer: // *array
x = b.expr(fn, e.X)
default:
unreachable()
}
if e.High != nil {
high = b.expr(fn, e.High)
}
if e.Low != nil {
low = b.expr(fn, e.Low)
}
v := &Slice{
X: x,
Low: low,
High: high,
}
v.setType(fn.Pkg.TypeOf(e))
return fn.emit(v)
case *ast.Ident:
obj := fn.Pkg.ObjectOf(e)
// Global or universal?
if v, ok := b.lookup(fn.Pkg, obj); ok {
if objKind(obj) == ast.Var {
v = emitLoad(fn, v) // var (address)
}
return v
}
// Local?
return emitLoad(fn, fn.lookup(obj, false)) // var (address)
case *ast.SelectorExpr:
// p.M where p is a package.
if obj := fn.Pkg.isPackageRef(e); obj != nil {
return b.expr(fn, e.Sel)
}
// (*T).f or T.f, the method f from the method-set of type T.
if fn.Pkg.IsType(e.X) {
id := MakeId(e.Sel.Name, fn.Pkg.Types)
typ := fn.Pkg.TypeOf(e.X)
if m := b.Prog.MethodSet(typ)[id]; m != nil {
return m
}
// T must be an interface; return method thunk.
return makeImethodThunk(b.Prog, typ, id)
}
// e.f where e is an expression.
return b.selector(fn, e, false, false)
case *ast.IndexExpr:
switch t := underlyingType(fn.Pkg.TypeOf(e.X)).(type) {
case *types.Array:
// Non-addressable array (in a register).
v := &Index{
X: b.expr(fn, e.X),
Index: emitConv(fn, b.expr(fn, e.Index), tInt),
}
v.setType(t.Elt())
return fn.emit(v)
case *types.Map:
// Maps are not addressable.
mapt := underlyingType(fn.Pkg.TypeOf(e.X)).(*types.Map)
v := &Lookup{
X: b.expr(fn, e.X),
Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
}
v.setType(mapt.Elt())
return fn.emit(v)
case *types.Basic: // => string
// Strings are not addressable.
v := &Lookup{
X: b.expr(fn, e.X),
Index: b.expr(fn, e.Index),
}
v.setType(tByte)
return fn.emit(v)
case *types.Slice, *types.Pointer: // *array
// Addressable slice/array; use IndexAddr and Load.
return b.addr(fn, e, false).load(fn)
default:
panic("unexpected container type in IndexExpr: " + t.String())
}
case *ast.CompositeLit, *ast.StarExpr:
// Addressable types (lvalues)
return b.addr(fn, e, false).load(fn)
}
panic(fmt.Sprintf("unexpected expr: %T", e))
}
// stmtList emits to fn code for all statements in list.
func (b *Builder) stmtList(fn *Function, list []ast.Stmt) {
for _, s := range list {
b.stmt(fn, s)
}
}
// setCallFunc populates the function parts of a CallCommon structure
// (Func, Method, Recv, Args[0]) based on the kind of invocation
// occurring in e.
//
func (b *Builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) {
c.Pos = e.Lparen
c.HasEllipsis = e.Ellipsis != 0
// Is the call of the form x.f()?
sel, ok := noparens(e.Fun).(*ast.SelectorExpr)
// Case 0: e.Fun evaluates normally to a function.
if !ok {
c.Func = b.expr(fn, e.Fun)
return
}
// Case 1: call of form x.F() where x is a package name.
if obj := fn.Pkg.isPackageRef(sel); obj != nil {
// This is a specialization of expr(ast.Ident(obj)).
if v, ok := b.lookup(fn.Pkg, obj); ok {
if _, ok := v.(*Function); !ok {
v = emitLoad(fn, v) // var (address)
}
c.Func = v
return
}
panic("undefined package-qualified name: " + obj.Name())
}
// Case 2a: X.f() or (*X).f(): a statically dipatched call to
// the method f in the method-set of X or *X. X may be
// an interface. Treat like case 0.
// TODO(adonovan): opt: inline expr() here, to make the call static
// and to avoid generation of a stub for an interface method.
if fn.Pkg.IsType(sel.X) {
c.Func = b.expr(fn, e.Fun)
return
}
// Let X be the type of x.
typ := fn.Pkg.TypeOf(sel.X)
// Case 2: x.f(): a statically dispatched call to a method
// from the method-set of X or perhaps *X (if x is addressable
// but not a pointer).
id := MakeId(sel.Sel.Name, fn.Pkg.Types)
// Consult method-set of X.
if m := b.Prog.MethodSet(typ)[id]; m != nil {
var recv Value
aptr := isPointer(typ)
fptr := isPointer(m.Signature.Recv().Type())
if aptr == fptr {
// Actual's and formal's "pointerness" match.
recv = b.expr(fn, sel.X)
} else {
// Actual is a pointer, formal is not.
// Load a copy.
recv = emitLoad(fn, b.expr(fn, sel.X))
}
c.Func = m
c.Args = append(c.Args, recv)
return
}
if !isPointer(typ) {
// Consult method-set of *X.
if m := b.Prog.MethodSet(pointer(typ))[id]; m != nil {
// A method found only in MS(*X) must have a
// pointer formal receiver; but the actual
// value is not a pointer.
// Implicit & -- possibly escaping.
recv := b.addr(fn, sel.X, true).(address).addr
c.Func = m
c.Args = append(c.Args, recv)
return
}
}
switch t := underlyingType(typ).(type) {
case *types.Struct, *types.Pointer:
// Case 3: x.f() where x.f is a function value in a
// struct field f; not a method call. f is a 'var'
// (of function type) in the Fields of types.Struct X.
// Treat like case 0.
c.Func = b.expr(fn, e.Fun)
case *types.Interface:
// Case 4: x.f() where a dynamically dispatched call
// to an interface method f. f is a 'func' object in
// the Methods of types.Interface X
c.Method, _ = methodIndex(t, id)
c.Recv = b.expr(fn, sel.X)
default:
panic(fmt.Sprintf("illegal (%s).%s() call; X:%T", t, sel.Sel.Name, sel.X))
}
}
// emitCallArgs emits to f code for the actual parameters of call e to
// a (possibly built-in) function of effective type sig.
// The argument values are appended to args, which is then returned.
//
func (b *Builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value {
// f(x, y, z...): pass slice z straight through.
if e.Ellipsis != 0 {
for i, arg := range e.Args {
// TODO(gri): annoyingly Signature.Params doesn't
// reflect the slice type for a final ...T param.
t := sig.Params().At(i).Type()
if sig.IsVariadic() && i == len(e.Args)-1 {
t = types.NewSlice(t)
}
args = append(args, emitConv(fn, b.expr(fn, arg), t))
}
return args
}
offset := len(args) // 1 if call has receiver, 0 otherwise
// Evaluate actual parameter expressions.
//
// If this is a chained call of the form f(g()) where g has
// multiple return values (MRV), they are flattened out into
// args; a suffix of them may end up in a varargs slice.
for _, arg := range e.Args {
v := b.expr(fn, arg)
if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain
for i, n := 0, ttuple.Arity(); i < n; i++ {
args = append(args, emitExtract(fn, v, i, ttuple.At(i).Type()))
}
} else {
args = append(args, v)
}
}
// Actual->formal assignability conversions for normal parameters.
np := sig.Params().Arity() // number of normal parameters
if sig.IsVariadic() {
np--
}
for i := 0; i < np; i++ {
args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type())
}
// Actual->formal assignability conversions for variadic parameter,
// and construction of slice.
if sig.IsVariadic() {
varargs := args[offset+np:]
vt := sig.Params().At(np).Type()
st := types.NewSlice(vt)
if len(varargs) == 0 {
args = append(args, nilLiteral(st))
} else {
// Replace a suffix of args with a slice containing it.
at := types.NewArray(vt, int64(len(varargs)))
a := emitNew(fn, at, e.Lparen)
for i, arg := range varargs {
iaddr := &IndexAddr{
X: a,
Index: intLiteral(int64(i)),
}
iaddr.setType(pointer(vt))
fn.emit(iaddr)
emitStore(fn, iaddr, arg)
}
s := &Slice{X: a}
s.setType(st)
args[offset+np] = fn.emit(s)
args = args[:offset+np+1]
}
}
return args
}
// setCall emits to fn code to evaluate all the parameters of a function
// call e, and populates *c with those values.
//
func (b *Builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) {
// First deal with the f(...) part and optional receiver.
b.setCallFunc(fn, e, c)
// Then append the other actual parameters.
sig, _ := underlyingType(fn.Pkg.TypeOf(e.Fun)).(*types.Signature)
if sig == nil {
sig = builtinCallSignature(&fn.Pkg.TypeInfo, e)
}
c.Args = b.emitCallArgs(fn, sig, e, c.Args)
}
// assignOp emits to fn code to perform loc += incr or loc -= incr.
func (b *Builder) assignOp(fn *Function, loc lvalue, incr Value, op token.Token) {
oldv := loc.load(fn)
loc.store(fn, emitArith(fn, op, oldv, emitConv(fn, incr, oldv.Type()), loc.typ()))
}
// buildGlobal emits code to the g.Pkg.Init function for the variable
// definition(s) of g. Effects occur out of lexical order; see
// explanation at globalValueSpec.
// Precondition: g == b.globals[obj]
//
func (b *Builder) buildGlobal(g *Global, obj types.Object) {
spec := g.spec
if spec == nil {
return // already built (or in progress)
}
b.globalValueSpec(g.Pkg.Init, spec, g, obj)
}
// globalValueSpec emits to init code to define one or all of the vars
// in the package-level ValueSpec spec.
//
// It implements the build phase for a ValueSpec, ensuring that all
// vars are initialized if not already visited by buildGlobal during
// the reference graph traversal.
//
// This function may be called in two modes:
// A) with g and obj non-nil, to initialize just a single global.
// This occurs during the reference graph traversal.
// B) with g and obj nil, to initialize all globals in the same ValueSpec.
// This occurs during the left-to-right traversal over the ast.File.
//
// Precondition: g == b.globals[obj]
//
// Package-level var initialization order is quite subtle.
// The side effects of:
// var a, b = f(), g()
// are not observed left-to-right if b is referenced before a in the
// reference graph traversal. So, we track which Globals have been
// initialized by setting Global.spec=nil.
//
// Blank identifiers make things more complex since they don't have
// associated types.Objects or ssa.Globals yet we must still ensure
// that their corresponding side effects are observed at the right
// moment. Consider:
// var a, _, b = f(), g(), h()
// Here, the relative ordering of the call to g() is unspecified but
// it must occur exactly once, during mode B. So globalValueSpec for
// blanks must special-case n:n assigments and just evaluate the RHS
// g() for effect.
//
// In a n:1 assignment:
// var a, _, b = f()
// a reference to either a or b causes both globals to be initialized
// at the same time. Furthermore, no further work is required to
// ensure that the effects of the blank assignment occur. We must
// keep track of which n:1 specs have been evaluated, independent of
// which Globals are on the LHS (possibly none, if all are blank).
//
// See also localValueSpec.
//
func (b *Builder) globalValueSpec(init *Function, spec *ast.ValueSpec, g *Global, obj types.Object) {
switch {
case len(spec.Values) == len(spec.Names):
// e.g. var x, y = 0, 1
// 1:1 assignment.
// Only the first time for a given GLOBAL has any effect.
for i, id := range spec.Names {
var lval lvalue = blank{}
if g != nil {
// Mode A: initialized only a single global, g
if isBlankIdent(id) || init.Pkg.ObjectOf(id) != obj {
continue
}
g.spec = nil
lval = address{g}
} else {
// Mode B: initialize all globals.
if !isBlankIdent(id) {
g2 := b.globals[init.Pkg.ObjectOf(id)].(*Global)
if g2.spec == nil {
continue // already done
}
g2.spec = nil
lval = address{g2}
}
}
if b.Context.Mode&LogSource != 0 {
fmt.Fprintln(os.Stderr, "build global", id.Name)
}
b.exprInPlace(init, lval, spec.Values[i])
if g != nil {
break
}
}
case len(spec.Values) == 0:
// e.g. var x, y int
// Globals are implicitly zero-initialized.
default:
// e.g. var x, _, y = f()
// n:1 assignment.
// Only the first time for a given SPEC has any effect.
if !init.Pkg.nTo1Vars[spec] {
init.Pkg.nTo1Vars[spec] = true
if b.Context.Mode&LogSource != 0 {
defer logStack("build globals %s", spec.Names)()
}
tuple := b.exprN(init, spec.Values[0])
result := tuple.Type().(*types.Tuple)
for i, id := range spec.Names {
if !isBlankIdent(id) {
g := b.globals[init.Pkg.ObjectOf(id)].(*Global)
g.spec = nil // just an optimization
emitStore(init, g, emitExtract(init, tuple, i, result.At(i).Type()))
}
}
}
}
}
// localValueSpec emits to fn code to define all of the vars in the
// function-local ValueSpec, spec.
//
// See also globalValueSpec: the two routines are similar but local
// ValueSpecs are much simpler since they are encountered once only,
// in their entirety, in lexical order.
//
func (b *Builder) localValueSpec(fn *Function, spec *ast.ValueSpec) {
switch {
case len(spec.Values) == len(spec.Names):
// e.g. var x, y = 0, 1
// 1:1 assignment
for i, id := range spec.Names {
var lval lvalue = blank{}
if !isBlankIdent(id) {
lval = address{fn.addNamedLocal(fn.Pkg.ObjectOf(id))}
}
b.exprInPlace(fn, lval, spec.Values[i])
}
case len(spec.Values) == 0:
// e.g. var x, y int
// Locals are implicitly zero-initialized.
for _, id := range spec.Names {
if !isBlankIdent(id) {
fn.addNamedLocal(fn.Pkg.ObjectOf(id))
}
}
default:
// e.g. var x, y = pos()
tuple := b.exprN(fn, spec.Values[0])
result := tuple.Type().(*types.Tuple)
for i, id := range spec.Names {
if !isBlankIdent(id) {
lhs := fn.addNamedLocal(fn.Pkg.ObjectOf(id))
emitStore(fn, lhs, emitExtract(fn, tuple, i, result.At(i).Type()))
}
}
}
}
// assignStmt emits code to fn for a parallel assignment of rhss to lhss.
// isDef is true if this is a short variable declaration (:=).
//
// Note the similarity with localValueSpec.
//
func (b *Builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) {
// Side effects of all LHSs and RHSs must occur in left-to-right order.
var lvals []lvalue
for _, lhs := range lhss {
var lval lvalue = blank{}
if !isBlankIdent(lhs) {
if isDef {
// Local may be "redeclared" in the same
// scope, so don't blindly create anew.
obj := fn.Pkg.ObjectOf(lhs.(*ast.Ident))
if _, ok := fn.objects[obj]; !ok {
fn.addNamedLocal(obj)
}
}
lval = b.addr(fn, lhs, false) // non-escaping
}
lvals = append(lvals, lval)
}
if len(lhss) == len(rhss) {
// e.g. x, y = f(), g()
if len(lhss) == 1 {
// x = type{...}
// Optimization: in-place construction
// of composite literals.
b.exprInPlace(fn, lvals[0], rhss[0])
} else {
// Parallel assignment. All reads must occur
// before all updates, precluding exprInPlace.
// TODO(adonovan): opt: is it sound to
// perform exprInPlace if !isDef?
var rvals []Value
for _, rval := range rhss {
rvals = append(rvals, b.expr(fn, rval))
}
for i, lval := range lvals {
lval.store(fn, rvals[i])
}
}
} else {
// e.g. x, y = pos()
tuple := b.exprN(fn, rhss[0])
result := tuple.Type().(*types.Tuple)
for i, lval := range lvals {
lval.store(fn, emitExtract(fn, tuple, i, result.At(i).Type()))
}
}
}
// arrayLen returns the length of the array whose composite literal elements are elts.
func (b *Builder) arrayLen(fn *Function, elts []ast.Expr) int64 {
var max int64 = -1
var i int64 = -1
for _, e := range elts {
if kv, ok := e.(*ast.KeyValueExpr); ok {
i = b.expr(fn, kv.Key).(*Literal).Int64()
} else {
i++
}
if i > max {
max = i
}
}
return max + 1
}
// compLit emits to fn code to initialize a composite literal e at
// address addr with type typ, typically allocated by Alloc.
// Nested composite literals are recursively initialized in place
// where possible.
//
func (b *Builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, typ types.Type) {
// TODO(adonovan): document how and why typ ever differs from
// fn.Pkg.TypeOf(e).
switch t := underlyingType(typ).(type) {
case *types.Struct:
for i, e := range e.Elts {
fieldIndex := i
if kv, ok := e.(*ast.KeyValueExpr); ok {
fname := kv.Key.(*ast.Ident).Name
for i, n := 0, t.NumFields(); i < n; i++ {
sf := t.Field(i)
if sf.Name == fname {
fieldIndex = i
e = kv.Value
break
}
}
}
sf := t.Field(fieldIndex)
faddr := &FieldAddr{
X: addr,
Field: fieldIndex,
}
faddr.setType(pointer(sf.Type))
fn.emit(faddr)
b.exprInPlace(fn, address{faddr}, e)
}
case *types.Array, *types.Slice:
var at *types.Array
var array Value
switch t := t.(type) {
case *types.Slice:
at = types.NewArray(t.Elt(), b.arrayLen(fn, e.Elts))
array = emitNew(fn, at, e.Lbrace)
case *types.Array:
at = t
array = addr
}
var idx *Literal
for _, e := range e.Elts {
if kv, ok := e.(*ast.KeyValueExpr); ok {
idx = b.expr(fn, kv.Key).(*Literal)
e = kv.Value
} else {
var idxval int64
if idx != nil {
idxval = idx.Int64() + 1
}
idx = intLiteral(idxval)
}
iaddr := &IndexAddr{
X: array,
Index: idx,
}
iaddr.setType(pointer(at.Elt()))
fn.emit(iaddr)
b.exprInPlace(fn, address{iaddr}, e)
}
if t != at { // slice
s := &Slice{X: array}
s.setType(t)
emitStore(fn, addr, fn.emit(s))
}
case *types.Map:
m := &MakeMap{Reserve: intLiteral(int64(len(e.Elts))), Pos: e.Lbrace}
m.setType(typ)
emitStore(fn, addr, fn.emit(m))
for _, e := range e.Elts {
e := e.(*ast.KeyValueExpr)
up := &MapUpdate{
Map: m,
Key: emitConv(fn, b.expr(fn, e.Key), t.Key()),
Value: emitConv(fn, b.expr(fn, e.Value), t.Elt()),
}
fn.emit(up)
}
case *types.Pointer:
// Pointers can only occur in the recursive case; we
// strip them off in addr() before calling compLit
// again, so that we allocate space for a T not a *T.
panic("compLit(fn, addr, e, *types.Pointer")
default:
panic("unexpected CompositeLit type: " + t.String())
}
}
// switchStmt emits to fn code for the switch statement s, optionally
// labelled by label.
//
func (b *Builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) {
// We treat SwitchStmt like a sequential if-else chain.
// More efficient strategies (e.g. multiway dispatch)
// are possible if all cases are free of side effects.
if s.Init != nil {
b.stmt(fn, s.Init)
}
var tag Value = vTrue
if s.Tag != nil {
tag = b.expr(fn, s.Tag)
}
done := fn.newBasicBlock("switch.done")
if label != nil {
label._break = done
}
// We pull the default case (if present) down to the end.
// But each fallthrough label must point to the next
// body block in source order, so we preallocate a
// body block (fallthru) for the next case.
// Unfortunately this makes for a confusing block order.
var dfltBody *[]ast.Stmt
var dfltFallthrough *BasicBlock
var fallthru, dfltBlock *BasicBlock
ncases := len(s.Body.List)
for i, clause := range s.Body.List {
body := fallthru
if body == nil {
body = fn.newBasicBlock("switch.body") // first case only
}
// Preallocate body block for the next case.
fallthru = done
if i+1 < ncases {
fallthru = fn.newBasicBlock("switch.body")
}
cc := clause.(*ast.CaseClause)
if cc.List == nil {
// Default case.
dfltBody = &cc.Body
dfltFallthrough = fallthru
dfltBlock = body
continue
}
var nextCond *BasicBlock
for _, cond := range cc.List {
nextCond = fn.newBasicBlock("switch.next")
// TODO(adonovan): opt: when tag==vTrue, we'd
// get better much code if we use b.cond(cond)
// instead of BinOp(EQL, tag, b.expr(cond))
// followed by If. Don't forget conversions
// though.
cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond))
emitIf(fn, cond, body, nextCond)
fn.currentBlock = nextCond
}
fn.currentBlock = body
fn.targets = &targets{
tail: fn.targets,
_break: done,
_fallthrough: fallthru,
}
b.stmtList(fn, cc.Body)
fn.targets = fn.targets.tail
emitJump(fn, done)
fn.currentBlock = nextCond
}
if dfltBlock != nil {
emitJump(fn, dfltBlock)
fn.currentBlock = dfltBlock
fn.targets = &targets{
tail: fn.targets,
_break: done,
_fallthrough: dfltFallthrough,
}
b.stmtList(fn, *dfltBody)
fn.targets = fn.targets.tail
}
emitJump(fn, done)
fn.currentBlock = done
}
// typeSwitchStmt emits to fn code for the type switch statement s, optionally
// labelled by label.
//
func (b *Builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) {
// We treat TypeSwitchStmt like a sequential if-else
// chain. More efficient strategies (e.g. multiway
// dispatch) are possible.
// Typeswitch lowering:
//
// var x X
// switch y := x.(type) {
// case T1, T2: S1 // >1 (y := x)
// default: SD // 0 types (y := x)
// case T3: S3 // 1 type (y := x.(T3))
// }
//
// ...s.Init...
// x := eval x
// y := x
// .caseT1:
// t1, ok1 := typeswitch,ok x <T1>
// if ok1 then goto S1 else goto .caseT2
// .caseT2:
// t2, ok2 := typeswitch,ok x <T2>
// if ok2 then goto S1 else goto .caseT3
// .S1:
// ...S1...
// goto done
// .caseT3:
// t3, ok3 := typeswitch,ok x <T3>
// if ok3 then goto S3 else goto default
// .S3:
// y' := t3 // Kludge: within scope of S3, y resolves here
// ...S3...
// goto done
// .default:
// goto done
// .done:
if s.Init != nil {
b.stmt(fn, s.Init)
}
var x, y Value
var id *ast.Ident
switch ass := s.Assign.(type) {
case *ast.ExprStmt: // x.(type)
x = b.expr(fn, noparens(ass.X).(*ast.TypeAssertExpr).X)
case *ast.AssignStmt: // y := x.(type)
x = b.expr(fn, noparens(ass.Rhs[0]).(*ast.TypeAssertExpr).X)
id = ass.Lhs[0].(*ast.Ident)
y = fn.addNamedLocal(fn.Pkg.ObjectOf(id))
emitStore(fn, y, x)
}
done := fn.newBasicBlock("typeswitch.done")
if label != nil {
label._break = done
}
var dfltBody []ast.Stmt
for _, clause := range s.Body.List {
cc := clause.(*ast.CaseClause)
if cc.List == nil {
dfltBody = cc.Body
continue
}
body := fn.newBasicBlock("typeswitch.body")
var next *BasicBlock
var casetype types.Type
var ti Value // t_i, ok := typeassert,ok x <T_i>
for _, cond := range cc.List {
next = fn.newBasicBlock("typeswitch.next")
casetype = fn.Pkg.TypeOf(cond)
var condv Value
if casetype == tUntypedNil {
condv = emitCompare(fn, token.EQL, x, nilLiteral(x.Type()))
} else {
yok := emitTypeTest(fn, x, casetype)
ti = emitExtract(fn, yok, 0, casetype)
condv = emitExtract(fn, yok, 1, tBool)
}
emitIf(fn, condv, body, next)
fn.currentBlock = next
}
fn.currentBlock = body
if id != nil && len(cc.List) == 1 && casetype != tUntypedNil {
// Declare a new shadow local variable of the
// same name but a more specific type.
// Side effect: reassociates binding for y's object.
y2 := fn.addNamedLocal(fn.Pkg.ObjectOf(id))
y2.Name_ += "'" // debugging aid
y2.Type_ = pointer(casetype)
emitStore(fn, y2, ti)
}
fn.targets = &targets{
tail: fn.targets,
_break: done,
}
b.stmtList(fn, cc.Body)
fn.targets = fn.targets.tail
if id != nil {
fn.objects[fn.Pkg.ObjectOf(id)] = y // restore previous y binding
}
emitJump(fn, done)
fn.currentBlock = next
}
fn.targets = &targets{
tail: fn.targets,
_break: done,
}
b.stmtList(fn, dfltBody)
fn.targets = fn.targets.tail
emitJump(fn, done)
fn.currentBlock = done
}
// selectStmt emits to fn code for the select statement s, optionally
// labelled by label.
//
func (b *Builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) {
// A blocking select of a single case degenerates to a
// simple send or receive.
// TODO(adonovan): opt: is this optimization worth its weight?
if len(s.Body.List) == 1 {
clause := s.Body.List[0].(*ast.CommClause)
if clause.Comm != nil {
b.stmt(fn, clause.Comm)
done := fn.newBasicBlock("select.done")
if label != nil {
label._break = done
}
fn.targets = &targets{
tail: fn.targets,
_break: done,
}
b.stmtList(fn, clause.Body)
fn.targets = fn.targets.tail
emitJump(fn, done)
fn.currentBlock = done
return
}
}
// First evaluate all channels in all cases, and find
// the directions of each state.
var states []SelectState
blocking := true
for _, clause := range s.Body.List {
switch comm := clause.(*ast.CommClause).Comm.(type) {
case nil: // default case
blocking = false
case *ast.SendStmt: // ch<- i
ch := b.expr(fn, comm.Chan)
states = append(states, SelectState{
Dir: ast.SEND,
Chan: ch,
Send: emitConv(fn, b.expr(fn, comm.Value),
underlyingType(ch.Type()).(*types.Chan).Elt()),
})
case *ast.AssignStmt: // x := <-ch
states = append(states, SelectState{
Dir: ast.RECV,
Chan: b.expr(fn, noparens(comm.Rhs[0]).(*ast.UnaryExpr).X),
})
case *ast.ExprStmt: // <-ch
states = append(states, SelectState{
Dir: ast.RECV,
Chan: b.expr(fn, noparens(comm.X).(*ast.UnaryExpr).X),
})
}
}
// We dispatch on the (fair) result of Select using a
// sequential if-else chain, in effect:
//
// idx, recv, recvOk := select(...)
// if idx == 0 { // receive on channel 0
// x, ok := recv.(T0), recvOk
// ...state0...
// } else if v == 1 { // send on channel 1
// ...state1...
// } else {
// ...default...
// }
triple := &Select{
States: states,
Blocking: blocking,
}
triple.setType(tSelect)
fn.emit(triple)
idx := emitExtract(fn, triple, 0, tInt)
done := fn.newBasicBlock("select.done")
if label != nil {
label._break = done
}
var dfltBody *[]ast.Stmt
state := 0
for _, cc := range s.Body.List {
clause := cc.(*ast.CommClause)
if clause.Comm == nil {
dfltBody = &clause.Body
continue
}
body := fn.newBasicBlock("select.body")
next := fn.newBasicBlock("select.next")
emitIf(fn, emitCompare(fn, token.EQL, idx, intLiteral(int64(state))), body, next)
fn.currentBlock = body
fn.targets = &targets{
tail: fn.targets,
_break: done,
}
switch comm := clause.Comm.(type) {
case *ast.AssignStmt: // x := <-states[state].Chan
xdecl := fn.addNamedLocal(fn.Pkg.ObjectOf(comm.Lhs[0].(*ast.Ident)))
recv := emitTypeAssert(fn, emitExtract(fn, triple, 1, tEface), indirectType(xdecl.Type()))
emitStore(fn, xdecl, recv)
if len(comm.Lhs) == 2 { // x, ok := ...
okdecl := fn.addNamedLocal(fn.Pkg.ObjectOf(comm.Lhs[1].(*ast.Ident)))
emitStore(fn, okdecl, emitExtract(fn, triple, 2, indirectType(okdecl.Type())))
}
}
b.stmtList(fn, clause.Body)
fn.targets = fn.targets.tail
emitJump(fn, done)
fn.currentBlock = next
state++
}
if dfltBody != nil {
fn.targets = &targets{
tail: fn.targets,
_break: done,
}
b.stmtList(fn, *dfltBody)
fn.targets = fn.targets.tail
}
emitJump(fn, done)
fn.currentBlock = done
}
// forStmt emits to fn code for the for statement s, optionally
// labelled by label.
//
func (b *Builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) {
// ...init...
// jump loop
// loop:
// if cond goto body else done
// body:
// ...body...
// jump post
// post: (target of continue)
// ...post...
// jump loop
// done: (target of break)
if s.Init != nil {
b.stmt(fn, s.Init)
}
body := fn.newBasicBlock("for.body")
done := fn.newBasicBlock("for.done") // target of 'break'
loop := body // target of back-edge
if s.Cond != nil {
loop = fn.newBasicBlock("for.loop")
}
cont := loop // target of 'continue'
if s.Post != nil {
cont = fn.newBasicBlock("for.post")
}
if label != nil {
label._break = done
label._continue = cont
}
emitJump(fn, loop)
fn.currentBlock = loop
if loop != body {
b.cond(fn, s.Cond, body, done)
fn.currentBlock = body
}
fn.targets = &targets{
tail: fn.targets,
_break: done,
_continue: cont,
}
b.stmt(fn, s.Body)
fn.targets = fn.targets.tail
emitJump(fn, cont)
if s.Post != nil {
fn.currentBlock = cont
b.stmt(fn, s.Post)
emitJump(fn, loop) // back-edge
}
fn.currentBlock = done
}
// rangeIndexed emits to fn the header for an integer indexed loop
// over array, *array or slice value x.
// The v result is defined only if tv is non-nil.
//
func (b *Builder) rangeIndexed(fn *Function, x Value, tv types.Type) (k, v Value, loop, done *BasicBlock) {
//
// length = len(x)
// index = -1
// loop: (target of continue)
// index++
// if index < length goto body else done
// body:
// k = index
// v = x[index]
// ...body...
// jump loop
// done: (target of break)
// Determine number of iterations.
var length Value
if arr, ok := deref(x.Type()).(*types.Array); ok {
// For array or *array, the number of iterations is
// known statically thanks to the type. We avoid a
// data dependence upon x, permitting later dead-code
// elimination if x is pure, static unrolling, etc.
// Ranging over a nil *array may have >0 iterations.
length = intLiteral(arr.Len())
} else {
// length = len(x).
var c Call
c.Call.Func = b.globals[types.Universe.Lookup("len")]
c.Call.Args = []Value{x}
c.setType(tInt)
length = fn.emit(&c)
}
index := fn.addLocal(tInt, token.NoPos)
emitStore(fn, index, intLiteral(-1))
loop = fn.newBasicBlock("rangeindex.loop")
emitJump(fn, loop)
fn.currentBlock = loop
incr := &BinOp{
Op: token.ADD,
X: emitLoad(fn, index),
Y: vOne,
}
incr.setType(tInt)
emitStore(fn, index, fn.emit(incr))
body := fn.newBasicBlock("rangeindex.body")
done = fn.newBasicBlock("rangeindex.done")
emitIf(fn, emitCompare(fn, token.LSS, incr, length), body, done)
fn.currentBlock = body
k = emitLoad(fn, index)
if tv != nil {
switch t := underlyingType(x.Type()).(type) {
case *types.Array:
instr := &Index{
X: x,
Index: k,
}
instr.setType(t.Elt())
v = fn.emit(instr)
case *types.Pointer: // *array
instr := &IndexAddr{
X: x,
Index: k,
}
instr.setType(pointer(t.Elt().(*types.Array).Elt()))
v = emitLoad(fn, fn.emit(instr))
case *types.Slice:
instr := &IndexAddr{
X: x,
Index: k,
}
instr.setType(pointer(t.Elt()))
v = emitLoad(fn, fn.emit(instr))
default:
panic("rangeIndexed x:" + t.String())
}
}
return
}
// rangeIter emits to fn the header for a loop using
// Range/Next/Extract to iterate over map or string value x.
// tk and tv are the types of the key/value results k and v, or nil
// if the respective component is not wanted.
//
func (b *Builder) rangeIter(fn *Function, x Value, tk, tv types.Type) (k, v Value, loop, done *BasicBlock) {
//
// it = range x
// loop: (target of continue)
// okv = next it (ok, key, value)
// ok = extract okv #0
// if ok goto body else done
// body:
// k = extract okv #1
// v = extract okv #2
// ...body...
// jump loop
// done: (target of break)
//
if tk == nil {
tk = tInvalid
}
if tv == nil {
tv = tInvalid
}
rng := &Range{X: x}
rng.setType(tRangeIter)
it := fn.emit(rng)
loop = fn.newBasicBlock("rangeiter.loop")
emitJump(fn, loop)
fn.currentBlock = loop
_, isString := underlyingType(x.Type()).(*types.Basic)
okv := &Next{
Iter: it,
IsString: isString,
}
okv.setType(types.NewTuple(
varOk,
types.NewVar(nil, "k", tk),
types.NewVar(nil, "v", tv),
))
fn.emit(okv)
body := fn.newBasicBlock("rangeiter.body")
done = fn.newBasicBlock("rangeiter.done")
emitIf(fn, emitExtract(fn, okv, 0, tBool), body, done)
fn.currentBlock = body
if tk != tInvalid {
k = emitExtract(fn, okv, 1, tk)
}
if tv != tInvalid {
v = emitExtract(fn, okv, 2, tv)
}
return
}
// rangeChan emits to fn the header for a loop that receives from
// channel x until it fails.
// tk is the channel's element type, or nil if the k result is
// not wanted
//
func (b *Builder) rangeChan(fn *Function, x Value, tk types.Type) (k Value, loop, done *BasicBlock) {
//
// loop: (target of continue)
// ko = <-x (key, ok)
// ok = extract ko #1
// if ok goto body else done
// body:
// k = extract ko #0
// ...
// goto loop
// done: (target of break)
loop = fn.newBasicBlock("rangechan.loop")
emitJump(fn, loop)
fn.currentBlock = loop
recv := &UnOp{
Op: token.ARROW,
X: x,
CommaOk: true,
}
recv.setType(types.NewTuple(
types.NewVar(nil, "k", tk),
varOk,
))
ko := fn.emit(recv)
body := fn.newBasicBlock("rangechan.body")
done = fn.newBasicBlock("rangechan.done")
emitIf(fn, emitExtract(fn, ko, 1, tBool), body, done)
fn.currentBlock = body
if tk != nil {
k = emitExtract(fn, ko, 0, tk)
}
return
}
// rangeStmt emits to fn code for the range statement s, optionally
// labelled by label.
//
func (b *Builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) {
var tk, tv types.Type
if !isBlankIdent(s.Key) {
tk = fn.Pkg.TypeOf(s.Key)
}
if s.Value != nil && !isBlankIdent(s.Value) {
tv = fn.Pkg.TypeOf(s.Value)
}
// If iteration variables are defined (:=), this
// occurs once outside the loop.
//
// Unlike a short variable declaration, a RangeStmt
// using := never redeclares an existing variable; it
// always creates a new one.
if s.Tok == token.DEFINE {
if tk != nil {
fn.addNamedLocal(fn.Pkg.ObjectOf(s.Key.(*ast.Ident)))
}
if tv != nil {
fn.addNamedLocal(fn.Pkg.ObjectOf(s.Value.(*ast.Ident)))
}
}
x := b.expr(fn, s.X)
var k, v Value
var loop, done *BasicBlock
switch rt := underlyingType(x.Type()).(type) {
case *types.Slice, *types.Array, *types.Pointer: // *array
k, v, loop, done = b.rangeIndexed(fn, x, tv)
case *types.Chan:
k, loop, done = b.rangeChan(fn, x, tk)
case *types.Map, *types.Basic: // string
k, v, loop, done = b.rangeIter(fn, x, tk, tv)
default:
panic("Cannot range over: " + rt.String())
}
// Evaluate both LHS expressions before we update either.
var kl, vl lvalue
if tk != nil {
kl = b.addr(fn, s.Key, false) // non-escaping
}
if tv != nil {
vl = b.addr(fn, s.Value, false) // non-escaping
}
if tk != nil {
kl.store(fn, k)
}
if tv != nil {
vl.store(fn, v)
}
if label != nil {
label._break = done
label._continue = loop
}
fn.targets = &targets{
tail: fn.targets,
_break: done,
_continue: loop,
}
b.stmt(fn, s.Body)
fn.targets = fn.targets.tail
emitJump(fn, loop) // back-edge
fn.currentBlock = done
}
// stmt lowers statement s to SSA form, emitting code to fn.
func (b *Builder) stmt(fn *Function, _s ast.Stmt) {
// The label of the current statement. If non-nil, its _goto
// target is always set; its _break and _continue are set only
// within the body of switch/typeswitch/select/for/range.
// It is effectively an additional default-nil parameter of stmt().
var label *lblock
start:
switch s := _s.(type) {
case *ast.EmptyStmt:
// ignore. (Usually removed by gofmt.)
case *ast.DeclStmt: // Con, Var or Typ
d := s.Decl.(*ast.GenDecl)
for _, spec := range d.Specs {
if vs, ok := spec.(*ast.ValueSpec); ok {
b.localValueSpec(fn, vs)
}
}
case *ast.LabeledStmt:
label = fn.labelledBlock(s.Label)
emitJump(fn, label._goto)
fn.currentBlock = label._goto
_s = s.Stmt
goto start // effectively: tailcall stmt(fn, s.Stmt, label)
case *ast.ExprStmt:
b.expr(fn, s.X)
case *ast.SendStmt:
fn.emit(&Send{
Chan: b.expr(fn, s.Chan),
X: emitConv(fn, b.expr(fn, s.Value),
underlyingType(fn.Pkg.TypeOf(s.Chan)).(*types.Chan).Elt()),
})
case *ast.IncDecStmt:
op := token.ADD
if s.Tok == token.DEC {
op = token.SUB
}
b.assignOp(fn, b.addr(fn, s.X, false), vOne, op)
case *ast.AssignStmt:
switch s.Tok {
case token.ASSIGN, token.DEFINE:
b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE)
default: // +=, etc.
op := s.Tok + token.ADD - token.ADD_ASSIGN
b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op)
}
case *ast.GoStmt:
// The "intrinsics" new/make/len/cap are forbidden here.
// panic is treated like an ordinary function call.
var v Go
b.setCall(fn, s.Call, &v.Call)
fn.emit(&v)
case *ast.DeferStmt:
// The "intrinsics" new/make/len/cap are forbidden here.
// panic is treated like an ordinary function call.
var v Defer
b.setCall(fn, s.Call, &v.Call)
fn.emit(&v)
case *ast.ReturnStmt:
if fn == fn.Pkg.Init {
// A "return" within an init block is treated
// like a "goto" to the next init block. We
// use the outermost BREAK target for this purpose.
var block *BasicBlock
for t := fn.targets; t != nil; t = t.tail {
if t._break != nil {
block = t._break
}
}
// Run function calls deferred in this init
// block when explicitly returning from it.
fn.emit(new(RunDefers))
emitJump(fn, block)
fn.currentBlock = fn.newBasicBlock("unreachable")
return
}
var results []Value
if len(s.Results) == 1 && fn.Signature.Results().Arity() > 1 {
// Return of one expression in a multi-valued function.
tuple := b.exprN(fn, s.Results[0])
ttuple := tuple.Type().(*types.Tuple)
for i, n := 0, ttuple.Arity(); i < n; i++ {
results = append(results,
emitConv(fn, emitExtract(fn, tuple, i, ttuple.At(i).Type()),
fn.Signature.Results().At(i).Type()))
}
} else {
// 1:1 return, or no-arg return in non-void function.
for i, r := range s.Results {
v := emitConv(fn, b.expr(fn, r), fn.Signature.Results().At(i).Type())
results = append(results, v)
}
}
if fn.namedResults != nil {
// Function has named result parameters (NRPs).
// Perform parallel assignment of return operands to NRPs.
for i, r := range results {
emitStore(fn, fn.namedResults[i], r)
}
}
// Run function calls deferred in this
// function when explicitly returning from it.
fn.emit(new(RunDefers))
if fn.namedResults != nil {
// Reload NRPs to form the result tuple.
results = results[:0]
for _, r := range fn.namedResults {
results = append(results, emitLoad(fn, r))
}
}
fn.emit(&Ret{Results: results})
fn.currentBlock = fn.newBasicBlock("unreachable")
case *ast.BranchStmt:
var block *BasicBlock
switch s.Tok {
case token.BREAK:
if s.Label != nil {
block = fn.labelledBlock(s.Label)._break
} else {
for t := fn.targets; t != nil && block == nil; t = t.tail {
block = t._break
}
}
case token.CONTINUE:
if s.Label != nil {
block = fn.labelledBlock(s.Label)._continue
} else {
for t := fn.targets; t != nil && block == nil; t = t.tail {
block = t._continue
}
}
case token.FALLTHROUGH:
for t := fn.targets; t != nil && block == nil; t = t.tail {
block = t._fallthrough
}
case token.GOTO:
block = fn.labelledBlock(s.Label)._goto
}
if block == nil {
// TODO(gri): fix: catch these in the typechecker.
fmt.Printf("ignoring illegal branch: %s %s\n", s.Tok, s.Label)
} else {
emitJump(fn, block)
fn.currentBlock = fn.newBasicBlock("unreachable")
}
case *ast.BlockStmt:
b.stmtList(fn, s.List)
case *ast.IfStmt:
if s.Init != nil {
b.stmt(fn, s.Init)
}
then := fn.newBasicBlock("if.then")
done := fn.newBasicBlock("if.done")
els := done
if s.Else != nil {
els = fn.newBasicBlock("if.else")
}
b.cond(fn, s.Cond, then, els)
fn.currentBlock = then
b.stmt(fn, s.Body)
emitJump(fn, done)
if s.Else != nil {
fn.currentBlock = els
b.stmt(fn, s.Else)
emitJump(fn, done)
}
fn.currentBlock = done
case *ast.SwitchStmt:
b.switchStmt(fn, s, label)
case *ast.TypeSwitchStmt:
b.typeSwitchStmt(fn, s, label)
case *ast.SelectStmt:
b.selectStmt(fn, s, label)
case *ast.ForStmt:
b.forStmt(fn, s, label)
case *ast.RangeStmt:
b.rangeStmt(fn, s, label)
default:
panic(fmt.Sprintf("unexpected statement kind: %T", s))
}
}
// buildFunction builds SSA code for the body of function fn. Idempotent.
func (b *Builder) buildFunction(fn *Function) {
if fn.Blocks != nil {
return // building already started
}
if fn.syntax == nil {
return // not a Go source function. (Synthetic, or from object file.)
}
if fn.syntax.body == nil {
// External function.
if fn.Params == nil {
// This condition ensures we add a non-empty
// params list once only, but we may attempt
// the degenerate empty case repeatedly.
// TODO(adonovan): opt: don't do that.
// We set Function.Params even though there is no body
// code to reference them. This simplifies clients.
if recv := fn.Signature.Recv(); recv != nil {
fn.addParam(recv.Name(), recv.Type())
}
fn.Signature.Params().ForEach(func(p *types.Var) {
fn.addParam(p.Name(), p.Type())
})
}
return
}
if fn.Prog.mode&LogSource != 0 {
defer logStack("build function %s @ %s",
fn.FullName(), fn.Prog.Files.Position(fn.Pos))()
}
fn.startBody()
fn.createSyntacticParams(fn.Pkg.idents)
b.stmt(fn, fn.syntax.body)
if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb.Preds != nil) {
// Run function calls deferred in this function when
// falling off the end of the body block.
fn.emit(new(RunDefers))
fn.emit(new(Ret))
}
fn.finishBody()
}
// memberFromObject populates package pkg with a member for the
// typechecker object obj.
//
// For objects from Go source code, syntax is the associated syntax
// tree (for funcs and vars only); it will be used during the build
// phase.
//
func (b *Builder) memberFromObject(pkg *Package, obj types.Object, syntax ast.Node) {
name := obj.Name()
switch obj := obj.(type) {
case *types.TypeName:
pkg.Members[name] = &Type{NamedType: obj.Type().(*types.Named)}
case *types.Const:
pkg.Members[name] = &Constant{
Name_: name,
Value: newLiteral(obj.Val(), obj.Type()),
Pos: obj.Pos(),
}
case *types.Var:
spec, _ := syntax.(*ast.ValueSpec)
g := &Global{
Pkg: pkg,
Name_: name,
Type_: pointer(obj.Type()), // address
Pos: obj.Pos(),
spec: spec,
}
b.globals[obj] = g
pkg.Members[name] = g
case *types.Func:
var fs *funcSyntax
if decl, ok := syntax.(*ast.FuncDecl); ok {
fs = &funcSyntax{
recvField: decl.Recv,
paramFields: decl.Type.Params,
resultFields: decl.Type.Results,
body: decl.Body,
}
}
sig := obj.Type().(*types.Signature)
fn := &Function{
Name_: name,
Signature: sig,
Pos: obj.Pos(), // (iff syntax)
Pkg: pkg,
Prog: b.Prog,
syntax: fs,
}
if sig.Recv() == nil {
// Function declaration.
b.globals[obj] = fn
pkg.Members[name] = fn
} else {
// Method declaration.
nt := deref(sig.Recv().Type()).(*types.Named)
_, method := methodIndex(nt, MakeId(name, pkg.Types))
b.Prog.concreteMethods[method] = fn
}
default: // (incl. *types.Package)
panic(fmt.Sprintf("unexpected Object type: %T", obj))
}
}
// membersFromDecl populates package pkg with members for each
// typechecker object (var, func, const or type) associated with the
// specified decl.
//
func (b *Builder) membersFromDecl(pkg *Package, decl ast.Decl) {
switch decl := decl.(type) {
case *ast.GenDecl: // import, const, type or var
switch decl.Tok {
case token.CONST:
for _, spec := range decl.Specs {
for _, id := range spec.(*ast.ValueSpec).Names {
if !isBlankIdent(id) {
b.memberFromObject(pkg, pkg.ObjectOf(id), nil)
}
}
}
case token.VAR:
for _, spec := range decl.Specs {
for _, id := range spec.(*ast.ValueSpec).Names {
if !isBlankIdent(id) {
b.memberFromObject(pkg, pkg.ObjectOf(id), spec)
}
}
}
case token.TYPE:
for _, spec := range decl.Specs {
id := spec.(*ast.TypeSpec).Name
if !isBlankIdent(id) {
b.memberFromObject(pkg, pkg.ObjectOf(id), nil)
}
}
}
case *ast.FuncDecl:
id := decl.Name
if decl.Recv == nil && id.Name == "init" {
if !pkg.Init.Pos.IsValid() {
pkg.Init.Pos = decl.Name.Pos()
}
return // init blocks aren't functions
}
if !isBlankIdent(id) {
b.memberFromObject(pkg, pkg.ObjectOf(id), decl)
}
}
}
// typecheck invokes the type-checker on files and returns the
// type-checker's package so formed, plus the AST type information.
//
func (b *Builder) typecheck(importPath string, files []*ast.File) (*types.Package, *TypeInfo, error) {
info := &TypeInfo{
types: make(map[ast.Expr]types.Type),
idents: make(map[*ast.Ident]types.Object),
constants: make(map[ast.Expr]*Literal),
}
tc := b.Context.TypeChecker
tc.Expr = func(x ast.Expr, typ types.Type, val exact.Value) {
info.types[x] = typ
if val != nil {
info.constants[x] = newLiteral(val, typ)
}
}
tc.Ident = func(ident *ast.Ident, obj types.Object) {
// Invariants:
// - obj is non-nil.
// - isBlankIdent(ident) <=> obj.GetType()==nil
info.idents[ident] = obj
}
typkg, firstErr := tc.Check(importPath, b.Prog.Files, files...)
tc.Expr = nil
tc.Ident = nil
if firstErr != nil {
return nil, nil, firstErr
}
return typkg, info, nil
}
// CreatePackage creates a package from the specified set of files,
// performs type-checking, and allocates all global SSA Values for the
// package. It returns a new SSA Package providing access to these
// values. The order of files determines the package initialization order.
//
// importPath is the full name under which this package is known, such
// as appears in an import declaration. e.g. "sync/atomic".
//
// The ParseFiles() utility may be helpful for parsing a set of Go
// source files.
//
func (b *Builder) CreatePackage(importPath string, files []*ast.File) (*Package, error) {
typkg, info, err := b.typecheck(importPath, files)
if err != nil {
return nil, err
}
return b.createPackageImpl(typkg, importPath, files, info), nil
}
// createPackageImpl constructs an SSA Package from an error-free
// types.Package typkg and populates its Members mapping. It returns
// the newly constructed ssa.Package.
//
// The real work of building SSA form for each function is not done
// until a subsequent call to BuildPackage.
//
// If files is non-nil, its declarations will be used to generate code
// for functions, methods and init blocks in a subsequent call to
// BuildPackage; info must contains the type information for those files.
// Otherwise, typkg is assumed to have been imported
// from the gc compiler's object files; no code will be available.
//
func (b *Builder) createPackageImpl(typkg *types.Package, importPath string, files []*ast.File, info *TypeInfo) *Package {
p := &Package{
Prog: b.Prog,
Types: typkg,
Members: make(map[string]Member),
Files: files,
nTo1Vars: make(map[*ast.ValueSpec]bool),
}
if files != nil {
p.TypeInfo = *info
}
b.packages[typkg] = p
b.Prog.Packages[importPath] = p
// Add init() function (but not to Members since it can't be referenced).
p.Init = &Function{
Name_: "init",
Signature: new(types.Signature),
Pkg: p,
Prog: b.Prog,
}
// CREATE phase.
// Allocate all package members: vars, funcs and consts and types.
if len(files) > 0 {
// Go source package.
// TODO(gri): make it a typechecker error for there to
// be duplicate (e.g.) main functions in the same package.
for _, file := range p.Files {
for _, decl := range file.Decls {
b.membersFromDecl(p, decl)
}
}
} else {
// GC-compiled binary package.
// No code.
// No position information.
for _, obj := range p.Types.Scope().Entries {
b.memberFromObject(p, obj, nil)
}
}
// Compute the method sets
for _, mem := range p.Members {
switch t := mem.(type) {
case *Type:
t.Methods = b.Prog.MethodSet(t.NamedType)
t.PtrMethods = b.Prog.MethodSet(pointer(t.NamedType))
}
}
// Add initializer guard variable.
initguard := &Global{
Pkg: p,
Name_: "init·guard",
Type_: pointer(tBool),
}
p.Members[initguard.Name()] = initguard
if b.Context.Mode&LogPackages != 0 {
p.DumpTo(os.Stderr)
}
return p
}
// buildDecl builds SSA code for all globals, functions or methods
// declared by decl in package pkg.
//
func (b *Builder) buildDecl(pkg *Package, decl ast.Decl) {
switch decl := decl.(type) {
case *ast.GenDecl:
switch decl.Tok {
// Nothing to do for CONST, IMPORT.
case token.VAR:
for _, spec := range decl.Specs {
b.globalValueSpec(pkg.Init, spec.(*ast.ValueSpec), nil, nil)
}
case token.TYPE:
for _, spec := range decl.Specs {
id := spec.(*ast.TypeSpec).Name
if isBlankIdent(id) {
continue
}
obj := pkg.ObjectOf(id).(*types.TypeName)
nt := obj.Type().(*types.Named)
nt.ForEachMethod(func(m *types.Func) {
b.buildFunction(b.Prog.concreteMethods[m])
})
}
}
case *ast.FuncDecl:
id := decl.Name
if isBlankIdent(id) {
// no-op
} else if decl.Recv == nil && id.Name == "init" {
// init() block
if b.Context.Mode&LogSource != 0 {
fmt.Fprintln(os.Stderr, "build init block @", b.Prog.Files.Position(decl.Pos()))
}
init := pkg.Init
// A return statement within an init block is
// treated like a "goto" to the the next init
// block, which we stuff in the outermost
// break label.
next := init.newBasicBlock("init.next")
init.targets = &targets{
tail: init.targets,
_break: next,
}
b.stmt(init, decl.Body)
// Run function calls deferred in this init
// block when falling off the end of the block.
init.emit(new(RunDefers))
emitJump(init, next)
init.targets = init.targets.tail
init.currentBlock = next
} else if m, ok := b.globals[pkg.ObjectOf(id)]; ok {
// Package-level function.
b.buildFunction(m.(*Function))
}
}
}
// BuildAllPackages constructs the SSA representation of the bodies of
// all functions in all packages known to the Builder. Construction
// occurs in parallel unless the BuildSerially mode flag was set.
//
// BuildAllPackages is idempotent and thread-safe.
//
func (b *Builder) BuildAllPackages() {
var wg sync.WaitGroup
for _, p := range b.Prog.Packages {
if b.Context.Mode&BuildSerially != 0 {
b.BuildPackage(p)
} else {
wg.Add(1)
go func(p *Package) {
b.BuildPackage(p)
wg.Done()
}(p)
}
}
wg.Wait()
}
// BuildPackage builds SSA code for all functions and vars in package p.
//
// BuildPackage is idempotent and thread-safe.
//
func (b *Builder) BuildPackage(p *Package) {
if !atomic.CompareAndSwapInt32(&p.started, 0, 1) {
return // already started
}
if p.Files == nil {
return // nothing to do
}
if b.Context.Mode&LogSource != 0 {
defer logStack("build package %s", p.Types.Path)()
}
init := p.Init
init.startBody()
// Make init() skip if package is already initialized.
initguard := p.Var("init·guard")
doinit := init.newBasicBlock("init.start")
done := init.newBasicBlock("init.done")
emitIf(init, emitLoad(init, initguard), done, doinit)
init.currentBlock = doinit
emitStore(init, initguard, vTrue)
// TODO(gri): fix: the types.Package.Imports map may contains
// entries for other package's import statements, if produced
// by GcImport. Project it down to just the ones for us.
imports := make(map[string]*types.Package)
for _, file := range p.Files {
for _, imp := range file.Imports {
path, _ := strconv.Unquote(imp.Path.Value)
if path != "unsafe" {
imports[path] = p.Types.Imports()[path]
}
}
}
// Call the init() function of each package we import.
// Order is unspecified (and is in fact nondeterministic).
for name, imported := range imports {
p2 := b.packages[imported]
if p2 == nil {
panic("Building " + p.Name() + ": CreatePackage has not been called for package " + name)
}
var v Call
v.Call.Func = p2.Init
v.Call.Pos = init.Pos
v.setType(types.NewTuple())
init.emit(&v)
}
// Visit the package's var decls and init funcs in source
// order. This causes init() code to be generated in
// topological order. We visit them transitively through
// functions of the same package, but we don't treat functions
// as roots.
//
// We also ensure all functions and methods are built, even if
// they are unreachable.
for _, file := range p.Files {
for _, decl := range file.Decls {
b.buildDecl(p, decl)
}
}
// Clear out the typed ASTs unless otherwise requested.
if retain := b.Context.RetainAST; retain == nil || !retain(p) {
p.Files = nil
p.TypeInfo = TypeInfo{} // clear
}
p.nTo1Vars = nil
// Finish up.
emitJump(init, done)
init.currentBlock = done
init.emit(new(RunDefers))
init.emit(new(Ret))
init.finishBody()
}