go.crypto/curve25519: add package.
This consists of ~2000 lines of amd64 assembly and a, much slower,
generic Go version in curve25519.go. The assembly has been ported from
djb's public domain sources and the only semantic alterations are to
deal with Go's split stacks.
R=rsc
CC=golang-dev
https://golang.org/cl/5786045
diff --git a/curve25519/mont25519_amd64.go b/curve25519/mont25519_amd64.go
new file mode 100644
index 0000000..1cbf0c3
--- /dev/null
+++ b/curve25519/mont25519_amd64.go
@@ -0,0 +1,223 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package curve25519
+
+// These functions are implemented in the .s files. The names of the functions
+// in the rest of the file are also taken from the SUPERCOP sources to help
+// people following along.
+func cswap(*[5]uint64, uint64)
+func ladderstep(*[5][5]uint64)
+func freeze(inout *[5]uint64)
+func mul(dest, a, b *[5]uint64)
+func square(out, in *[5]uint64)
+
+// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
+func mladder(xr, zr *[5]uint64, s *[32]byte) {
+ var work [5][5]uint64
+
+ work[0] = *xr
+ setint(&work[1], 1)
+ setint(&work[2], 0)
+ work[3] = *xr
+ setint(&work[4], 1)
+
+ j := uint(6)
+ var prevbit byte
+
+ for i := 31; i >= 0; i-- {
+ for j < 8 {
+ bit := ((*s)[i] >> j) & 1
+ swap := bit ^ prevbit
+ prevbit = bit
+ cswap(&work[1], uint64(swap))
+ ladderstep(&work)
+ j--
+ }
+ j = 7
+ }
+
+ *xr = work[1]
+ *zr = work[2]
+}
+
+func scalarMult(out, in, base *[32]byte) {
+ var e [32]byte
+ copy(e[:], (*in)[:])
+ e[0] &= 248
+ e[31] &= 127
+ e[31] |= 64
+
+ var t, z [5]uint64
+ unpack(&t, base)
+ mladder(&t, &z, &e)
+ invert(&z, &z)
+ mul(&t, &t, &z)
+ pack(out, &t)
+}
+
+func setint(r *[5]uint64, v uint64) {
+ r[0] = v
+ r[1] = 0
+ r[2] = 0
+ r[3] = 0
+ r[4] = 0
+}
+
+// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
+// order.
+func unpack(r *[5]uint64, x *[32]byte) {
+ r[0] = uint64(x[0]) |
+ uint64(x[1])<<8 |
+ uint64(x[2])<<16 |
+ uint64(x[3])<<24 |
+ uint64(x[4])<<32 |
+ uint64(x[5])<<40 |
+ uint64(x[6]&7)<<48
+
+ r[1] = uint64(x[6])>>3 |
+ uint64(x[7])<<5 |
+ uint64(x[8])<<13 |
+ uint64(x[9])<<21 |
+ uint64(x[10])<<29 |
+ uint64(x[11])<<37 |
+ uint64(x[12]&63)<<45
+
+ r[2] = uint64(x[12])>>6 |
+ uint64(x[13])<<2 |
+ uint64(x[14])<<10 |
+ uint64(x[15])<<18 |
+ uint64(x[16])<<26 |
+ uint64(x[17])<<34 |
+ uint64(x[18])<<42 |
+ uint64(x[19]&1)<<50
+
+ r[3] = uint64(x[19])>>1 |
+ uint64(x[20])<<7 |
+ uint64(x[21])<<15 |
+ uint64(x[22])<<23 |
+ uint64(x[23])<<31 |
+ uint64(x[24])<<39 |
+ uint64(x[25]&15)<<47
+
+ r[4] = uint64(x[25])>>4 |
+ uint64(x[26])<<4 |
+ uint64(x[27])<<12 |
+ uint64(x[28])<<20 |
+ uint64(x[29])<<28 |
+ uint64(x[30])<<36 |
+ uint64(x[31]&127)<<44
+}
+
+// pack sets out = x where out is the usual, little-endian form of the 5,
+// 51-bit limbs in x.
+func pack(out *[32]byte, x *[5]uint64) {
+ t := *x
+ freeze(&t)
+
+ out[0] = byte(t[0])
+ out[1] = byte(t[0] >> 8)
+ out[2] = byte(t[0] >> 16)
+ out[3] = byte(t[0] >> 24)
+ out[4] = byte(t[0] >> 32)
+ out[5] = byte(t[0] >> 40)
+ out[6] = byte(t[0] >> 48)
+
+ out[6] ^= byte(t[1]<<3) & 0xf8
+ out[7] = byte(t[1] >> 5)
+ out[8] = byte(t[1] >> 13)
+ out[9] = byte(t[1] >> 21)
+ out[10] = byte(t[1] >> 29)
+ out[11] = byte(t[1] >> 37)
+ out[12] = byte(t[1] >> 45)
+
+ out[12] ^= byte(t[2]<<6) & 0xc0
+ out[13] = byte(t[2] >> 2)
+ out[14] = byte(t[2] >> 10)
+ out[15] = byte(t[2] >> 18)
+ out[16] = byte(t[2] >> 26)
+ out[17] = byte(t[2] >> 34)
+ out[18] = byte(t[2] >> 42)
+ out[19] = byte(t[2] >> 50)
+
+ out[19] ^= byte(t[3]<<1) & 0xfe
+ out[20] = byte(t[3] >> 7)
+ out[21] = byte(t[3] >> 15)
+ out[22] = byte(t[3] >> 23)
+ out[23] = byte(t[3] >> 31)
+ out[24] = byte(t[3] >> 39)
+ out[25] = byte(t[3] >> 47)
+
+ out[25] ^= byte(t[4]<<4) & 0xf0
+ out[26] = byte(t[4] >> 4)
+ out[27] = byte(t[4] >> 12)
+ out[28] = byte(t[4] >> 20)
+ out[29] = byte(t[4] >> 28)
+ out[30] = byte(t[4] >> 36)
+ out[31] = byte(t[4] >> 44)
+}
+
+// invert calculates r = x^-1 mod p using Fermat's little theorem.
+func invert(r *[5]uint64, x *[5]uint64) {
+ var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
+
+ square(&z2, x) /* 2 */
+ square(&t, &z2) /* 4 */
+ square(&t, &t) /* 8 */
+ mul(&z9, &t, x) /* 9 */
+ mul(&z11, &z9, &z2) /* 11 */
+ square(&t, &z11) /* 22 */
+ mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
+
+ square(&t, &z2_5_0) /* 2^6 - 2^1 */
+ for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
+ square(&t, &t)
+ }
+ mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
+
+ square(&t, &z2_10_0) /* 2^11 - 2^1 */
+ for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
+ square(&t, &t)
+ }
+ mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
+
+ square(&t, &z2_20_0) /* 2^21 - 2^1 */
+ for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
+ square(&t, &t)
+ }
+ mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
+
+ square(&t, &t) /* 2^41 - 2^1 */
+ for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
+ square(&t, &t)
+ }
+ mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
+
+ square(&t, &z2_50_0) /* 2^51 - 2^1 */
+ for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
+ square(&t, &t)
+ }
+ mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
+
+ square(&t, &z2_100_0) /* 2^101 - 2^1 */
+ for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
+ square(&t, &t)
+ }
+ mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
+
+ square(&t, &t) /* 2^201 - 2^1 */
+ for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
+ square(&t, &t)
+ }
+ mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
+
+ square(&t, &t) /* 2^251 - 2^1 */
+ square(&t, &t) /* 2^252 - 2^2 */
+ square(&t, &t) /* 2^253 - 2^3 */
+
+ square(&t, &t) /* 2^254 - 2^4 */
+
+ square(&t, &t) /* 2^255 - 2^5 */
+ mul(r, &t, &z11) /* 2^255 - 21 */
+}