Adam Langley | 71484c7 | 2012-07-27 12:54:55 -0400 | [diff] [blame] | 1 | // Copyright 2012 The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | package bn256 |
| 6 | |
| 7 | import ( |
| 8 | "math/big" |
| 9 | ) |
| 10 | |
| 11 | // curvePoint implements the elliptic curve y²=x³+3. Points are kept in |
| 12 | // Jacobian form and t=z² when valid. G₁ is the set of points of this curve on |
| 13 | // GF(p). |
| 14 | type curvePoint struct { |
| 15 | x, y, z, t *big.Int |
| 16 | } |
| 17 | |
| 18 | var curveB = new(big.Int).SetInt64(3) |
| 19 | |
| 20 | // curveGen is the generator of G₁. |
| 21 | var curveGen = &curvePoint{ |
| 22 | new(big.Int).SetInt64(1), |
| 23 | new(big.Int).SetInt64(-2), |
| 24 | new(big.Int).SetInt64(1), |
| 25 | new(big.Int).SetInt64(1), |
| 26 | } |
| 27 | |
| 28 | func newCurvePoint(pool *bnPool) *curvePoint { |
| 29 | return &curvePoint{ |
| 30 | pool.Get(), |
| 31 | pool.Get(), |
| 32 | pool.Get(), |
| 33 | pool.Get(), |
| 34 | } |
| 35 | } |
| 36 | |
| 37 | func (c *curvePoint) String() string { |
| 38 | c.MakeAffine(new(bnPool)) |
| 39 | return "(" + c.x.String() + ", " + c.y.String() + ")" |
| 40 | } |
| 41 | |
| 42 | func (c *curvePoint) Put(pool *bnPool) { |
| 43 | pool.Put(c.x) |
| 44 | pool.Put(c.y) |
| 45 | pool.Put(c.z) |
| 46 | pool.Put(c.t) |
| 47 | } |
| 48 | |
| 49 | func (c *curvePoint) Set(a *curvePoint) { |
| 50 | c.x.Set(a.x) |
| 51 | c.y.Set(a.y) |
| 52 | c.z.Set(a.z) |
| 53 | c.t.Set(a.t) |
| 54 | } |
| 55 | |
| 56 | // IsOnCurve returns true iff c is on the curve where c must be in affine form. |
| 57 | func (c *curvePoint) IsOnCurve() bool { |
| 58 | yy := new(big.Int).Mul(c.y, c.y) |
| 59 | xxx := new(big.Int).Mul(c.x, c.x) |
| 60 | xxx.Mul(xxx, c.x) |
| 61 | yy.Sub(yy, xxx) |
| 62 | yy.Sub(yy, curveB) |
| 63 | if yy.Sign() < 0 || yy.Cmp(p) >= 0 { |
| 64 | yy.Mod(yy, p) |
| 65 | } |
| 66 | return yy.Sign() == 0 |
| 67 | } |
| 68 | |
| 69 | func (c *curvePoint) SetInfinity() { |
| 70 | c.z.SetInt64(0) |
| 71 | } |
| 72 | |
| 73 | func (c *curvePoint) IsInfinity() bool { |
| 74 | return c.z.Sign() == 0 |
| 75 | } |
| 76 | |
| 77 | func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) { |
| 78 | if a.IsInfinity() { |
| 79 | c.Set(b) |
| 80 | return |
| 81 | } |
| 82 | if b.IsInfinity() { |
| 83 | c.Set(a) |
| 84 | return |
| 85 | } |
| 86 | |
| 87 | // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 |
| 88 | |
| 89 | // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] |
| 90 | // by [u1:s1:z1·z2] and [u2:s2:z1·z2] |
| 91 | // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ |
| 92 | z1z1 := pool.Get().Mul(a.z, a.z) |
| 93 | z1z1.Mod(z1z1, p) |
| 94 | z2z2 := pool.Get().Mul(b.z, b.z) |
| 95 | z2z2.Mod(z2z2, p) |
| 96 | u1 := pool.Get().Mul(a.x, z2z2) |
| 97 | u1.Mod(u1, p) |
| 98 | u2 := pool.Get().Mul(b.x, z1z1) |
| 99 | u2.Mod(u2, p) |
| 100 | |
| 101 | t := pool.Get().Mul(b.z, z2z2) |
| 102 | t.Mod(t, p) |
| 103 | s1 := pool.Get().Mul(a.y, t) |
| 104 | s1.Mod(s1, p) |
| 105 | |
| 106 | t.Mul(a.z, z1z1) |
| 107 | t.Mod(t, p) |
| 108 | s2 := pool.Get().Mul(b.y, t) |
| 109 | s2.Mod(s2, p) |
| 110 | |
| 111 | // Compute x = (2h)²(s²-u1-u2) |
| 112 | // where s = (s2-s1)/(u2-u1) is the slope of the line through |
| 113 | // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. |
| 114 | // This is also: |
| 115 | // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) |
| 116 | // = r² - j - 2v |
| 117 | // with the notations below. |
| 118 | h := pool.Get().Sub(u2, u1) |
| 119 | xEqual := h.Sign() == 0 |
| 120 | |
| 121 | t.Add(h, h) |
| 122 | // i = 4h² |
| 123 | i := pool.Get().Mul(t, t) |
| 124 | i.Mod(i, p) |
| 125 | // j = 4h³ |
| 126 | j := pool.Get().Mul(h, i) |
| 127 | j.Mod(j, p) |
| 128 | |
| 129 | t.Sub(s2, s1) |
| 130 | yEqual := t.Sign() == 0 |
| 131 | if xEqual && yEqual { |
| 132 | c.Double(a, pool) |
| 133 | return |
| 134 | } |
| 135 | r := pool.Get().Add(t, t) |
| 136 | |
| 137 | v := pool.Get().Mul(u1, i) |
| 138 | v.Mod(v, p) |
| 139 | |
| 140 | // t4 = 4(s2-s1)² |
| 141 | t4 := pool.Get().Mul(r, r) |
| 142 | t4.Mod(t4, p) |
| 143 | t.Add(v, v) |
| 144 | t6 := pool.Get().Sub(t4, j) |
| 145 | c.x.Sub(t6, t) |
| 146 | |
| 147 | // Set y = -(2h)³(s1 + s*(x/4h²-u1)) |
| 148 | // This is also |
| 149 | // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j |
| 150 | t.Sub(v, c.x) // t7 |
| 151 | t4.Mul(s1, j) // t8 |
| 152 | t4.Mod(t4, p) |
| 153 | t6.Add(t4, t4) // t9 |
| 154 | t4.Mul(r, t) // t10 |
| 155 | t4.Mod(t4, p) |
| 156 | c.y.Sub(t4, t6) |
| 157 | |
| 158 | // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 |
| 159 | t.Add(a.z, b.z) // t11 |
| 160 | t4.Mul(t, t) // t12 |
| 161 | t4.Mod(t4, p) |
| 162 | t.Sub(t4, z1z1) // t13 |
| 163 | t4.Sub(t, z2z2) // t14 |
| 164 | c.z.Mul(t4, h) |
| 165 | c.z.Mod(c.z, p) |
| 166 | |
| 167 | pool.Put(z1z1) |
| 168 | pool.Put(z2z2) |
| 169 | pool.Put(u1) |
| 170 | pool.Put(u2) |
| 171 | pool.Put(t) |
| 172 | pool.Put(s1) |
| 173 | pool.Put(s2) |
| 174 | pool.Put(h) |
| 175 | pool.Put(i) |
| 176 | pool.Put(j) |
| 177 | pool.Put(r) |
| 178 | pool.Put(v) |
| 179 | pool.Put(t4) |
| 180 | pool.Put(t6) |
| 181 | } |
| 182 | |
| 183 | func (c *curvePoint) Double(a *curvePoint, pool *bnPool) { |
| 184 | // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 |
| 185 | A := pool.Get().Mul(a.x, a.x) |
| 186 | A.Mod(A, p) |
| 187 | B := pool.Get().Mul(a.y, a.y) |
| 188 | B.Mod(B, p) |
| 189 | C := pool.Get().Mul(B, B) |
| 190 | C.Mod(C, p) |
| 191 | |
| 192 | t := pool.Get().Add(a.x, B) |
| 193 | t2 := pool.Get().Mul(t, t) |
| 194 | t2.Mod(t2, p) |
| 195 | t.Sub(t2, A) |
| 196 | t2.Sub(t, C) |
| 197 | d := pool.Get().Add(t2, t2) |
| 198 | t.Add(A, A) |
| 199 | e := pool.Get().Add(t, A) |
| 200 | f := pool.Get().Mul(e, e) |
| 201 | f.Mod(f, p) |
| 202 | |
| 203 | t.Add(d, d) |
| 204 | c.x.Sub(f, t) |
| 205 | |
| 206 | t.Add(C, C) |
| 207 | t2.Add(t, t) |
| 208 | t.Add(t2, t2) |
| 209 | c.y.Sub(d, c.x) |
| 210 | t2.Mul(e, c.y) |
| 211 | t2.Mod(t2, p) |
| 212 | c.y.Sub(t2, t) |
| 213 | |
| 214 | t.Mul(a.y, a.z) |
| 215 | t.Mod(t, p) |
| 216 | c.z.Add(t, t) |
| 217 | |
| 218 | pool.Put(A) |
| 219 | pool.Put(B) |
| 220 | pool.Put(C) |
| 221 | pool.Put(t) |
| 222 | pool.Put(t2) |
| 223 | pool.Put(d) |
| 224 | pool.Put(e) |
| 225 | pool.Put(f) |
| 226 | } |
| 227 | |
| 228 | func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint { |
| 229 | sum := newCurvePoint(pool) |
| 230 | sum.SetInfinity() |
| 231 | t := newCurvePoint(pool) |
| 232 | |
| 233 | for i := scalar.BitLen(); i >= 0; i-- { |
| 234 | t.Double(sum, pool) |
| 235 | if scalar.Bit(i) != 0 { |
| 236 | sum.Add(t, a, pool) |
| 237 | } else { |
| 238 | sum.Set(t) |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | c.Set(sum) |
| 243 | sum.Put(pool) |
| 244 | t.Put(pool) |
| 245 | return c |
| 246 | } |
| 247 | |
| 248 | func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint { |
| 249 | if words := c.z.Bits(); len(words) == 1 && words[0] == 1 { |
| 250 | return c |
| 251 | } |
| 252 | |
| 253 | zInv := pool.Get().ModInverse(c.z, p) |
| 254 | t := pool.Get().Mul(c.y, zInv) |
| 255 | t.Mod(t, p) |
| 256 | zInv2 := pool.Get().Mul(zInv, zInv) |
| 257 | zInv2.Mod(zInv2, p) |
| 258 | c.y.Mul(t, zInv2) |
| 259 | c.y.Mod(c.y, p) |
| 260 | t.Mul(c.x, zInv2) |
| 261 | t.Mod(t, p) |
| 262 | c.x.Set(t) |
| 263 | c.z.SetInt64(1) |
| 264 | c.t.SetInt64(1) |
| 265 | |
| 266 | pool.Put(zInv) |
| 267 | pool.Put(t) |
| 268 | pool.Put(zInv2) |
| 269 | |
| 270 | return c |
| 271 | } |
| 272 | |
| 273 | func (c *curvePoint) Negative(a *curvePoint) { |
| 274 | c.x.Set(a.x) |
| 275 | c.y.Neg(a.y) |
| 276 | c.z.Set(a.z) |
| 277 | c.t.SetInt64(0) |
| 278 | } |