| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package scrypt implements the scrypt key derivation function as defined in |
| // Colin Percival's paper "Stronger Key Derivation via Sequential Memory-Hard |
| // Functions" (https://www.tarsnap.com/scrypt/scrypt.pdf). |
| package scrypt // import "golang.org/x/crypto/scrypt" |
| |
| import ( |
| "crypto/sha256" |
| "encoding/binary" |
| "errors" |
| "math/bits" |
| |
| "golang.org/x/crypto/pbkdf2" |
| ) |
| |
| const maxInt = int(^uint(0) >> 1) |
| |
| // blockCopy copies n numbers from src into dst. |
| func blockCopy(dst, src []uint32, n int) { |
| copy(dst, src[:n]) |
| } |
| |
| // blockXOR XORs numbers from dst with n numbers from src. |
| func blockXOR(dst, src []uint32, n int) { |
| for i, v := range src[:n] { |
| dst[i] ^= v |
| } |
| } |
| |
| // salsaXOR applies Salsa20/8 to the XOR of 16 numbers from tmp and in, |
| // and puts the result into both tmp and out. |
| func salsaXOR(tmp *[16]uint32, in, out []uint32) { |
| w0 := tmp[0] ^ in[0] |
| w1 := tmp[1] ^ in[1] |
| w2 := tmp[2] ^ in[2] |
| w3 := tmp[3] ^ in[3] |
| w4 := tmp[4] ^ in[4] |
| w5 := tmp[5] ^ in[5] |
| w6 := tmp[6] ^ in[6] |
| w7 := tmp[7] ^ in[7] |
| w8 := tmp[8] ^ in[8] |
| w9 := tmp[9] ^ in[9] |
| w10 := tmp[10] ^ in[10] |
| w11 := tmp[11] ^ in[11] |
| w12 := tmp[12] ^ in[12] |
| w13 := tmp[13] ^ in[13] |
| w14 := tmp[14] ^ in[14] |
| w15 := tmp[15] ^ in[15] |
| |
| x0, x1, x2, x3, x4, x5, x6, x7, x8 := w0, w1, w2, w3, w4, w5, w6, w7, w8 |
| x9, x10, x11, x12, x13, x14, x15 := w9, w10, w11, w12, w13, w14, w15 |
| |
| for i := 0; i < 8; i += 2 { |
| x4 ^= bits.RotateLeft32(x0+x12, 7) |
| x8 ^= bits.RotateLeft32(x4+x0, 9) |
| x12 ^= bits.RotateLeft32(x8+x4, 13) |
| x0 ^= bits.RotateLeft32(x12+x8, 18) |
| |
| x9 ^= bits.RotateLeft32(x5+x1, 7) |
| x13 ^= bits.RotateLeft32(x9+x5, 9) |
| x1 ^= bits.RotateLeft32(x13+x9, 13) |
| x5 ^= bits.RotateLeft32(x1+x13, 18) |
| |
| x14 ^= bits.RotateLeft32(x10+x6, 7) |
| x2 ^= bits.RotateLeft32(x14+x10, 9) |
| x6 ^= bits.RotateLeft32(x2+x14, 13) |
| x10 ^= bits.RotateLeft32(x6+x2, 18) |
| |
| x3 ^= bits.RotateLeft32(x15+x11, 7) |
| x7 ^= bits.RotateLeft32(x3+x15, 9) |
| x11 ^= bits.RotateLeft32(x7+x3, 13) |
| x15 ^= bits.RotateLeft32(x11+x7, 18) |
| |
| x1 ^= bits.RotateLeft32(x0+x3, 7) |
| x2 ^= bits.RotateLeft32(x1+x0, 9) |
| x3 ^= bits.RotateLeft32(x2+x1, 13) |
| x0 ^= bits.RotateLeft32(x3+x2, 18) |
| |
| x6 ^= bits.RotateLeft32(x5+x4, 7) |
| x7 ^= bits.RotateLeft32(x6+x5, 9) |
| x4 ^= bits.RotateLeft32(x7+x6, 13) |
| x5 ^= bits.RotateLeft32(x4+x7, 18) |
| |
| x11 ^= bits.RotateLeft32(x10+x9, 7) |
| x8 ^= bits.RotateLeft32(x11+x10, 9) |
| x9 ^= bits.RotateLeft32(x8+x11, 13) |
| x10 ^= bits.RotateLeft32(x9+x8, 18) |
| |
| x12 ^= bits.RotateLeft32(x15+x14, 7) |
| x13 ^= bits.RotateLeft32(x12+x15, 9) |
| x14 ^= bits.RotateLeft32(x13+x12, 13) |
| x15 ^= bits.RotateLeft32(x14+x13, 18) |
| } |
| x0 += w0 |
| x1 += w1 |
| x2 += w2 |
| x3 += w3 |
| x4 += w4 |
| x5 += w5 |
| x6 += w6 |
| x7 += w7 |
| x8 += w8 |
| x9 += w9 |
| x10 += w10 |
| x11 += w11 |
| x12 += w12 |
| x13 += w13 |
| x14 += w14 |
| x15 += w15 |
| |
| out[0], tmp[0] = x0, x0 |
| out[1], tmp[1] = x1, x1 |
| out[2], tmp[2] = x2, x2 |
| out[3], tmp[3] = x3, x3 |
| out[4], tmp[4] = x4, x4 |
| out[5], tmp[5] = x5, x5 |
| out[6], tmp[6] = x6, x6 |
| out[7], tmp[7] = x7, x7 |
| out[8], tmp[8] = x8, x8 |
| out[9], tmp[9] = x9, x9 |
| out[10], tmp[10] = x10, x10 |
| out[11], tmp[11] = x11, x11 |
| out[12], tmp[12] = x12, x12 |
| out[13], tmp[13] = x13, x13 |
| out[14], tmp[14] = x14, x14 |
| out[15], tmp[15] = x15, x15 |
| } |
| |
| func blockMix(tmp *[16]uint32, in, out []uint32, r int) { |
| blockCopy(tmp[:], in[(2*r-1)*16:], 16) |
| for i := 0; i < 2*r; i += 2 { |
| salsaXOR(tmp, in[i*16:], out[i*8:]) |
| salsaXOR(tmp, in[i*16+16:], out[i*8+r*16:]) |
| } |
| } |
| |
| func integer(b []uint32, r int) uint64 { |
| j := (2*r - 1) * 16 |
| return uint64(b[j]) | uint64(b[j+1])<<32 |
| } |
| |
| func smix(b []byte, r, N int, v, xy []uint32) { |
| var tmp [16]uint32 |
| R := 32 * r |
| x := xy |
| y := xy[R:] |
| |
| j := 0 |
| for i := 0; i < R; i++ { |
| x[i] = binary.LittleEndian.Uint32(b[j:]) |
| j += 4 |
| } |
| for i := 0; i < N; i += 2 { |
| blockCopy(v[i*R:], x, R) |
| blockMix(&tmp, x, y, r) |
| |
| blockCopy(v[(i+1)*R:], y, R) |
| blockMix(&tmp, y, x, r) |
| } |
| for i := 0; i < N; i += 2 { |
| j := int(integer(x, r) & uint64(N-1)) |
| blockXOR(x, v[j*R:], R) |
| blockMix(&tmp, x, y, r) |
| |
| j = int(integer(y, r) & uint64(N-1)) |
| blockXOR(y, v[j*R:], R) |
| blockMix(&tmp, y, x, r) |
| } |
| j = 0 |
| for _, v := range x[:R] { |
| binary.LittleEndian.PutUint32(b[j:], v) |
| j += 4 |
| } |
| } |
| |
| // Key derives a key from the password, salt, and cost parameters, returning |
| // a byte slice of length keyLen that can be used as cryptographic key. |
| // |
| // N is a CPU/memory cost parameter, which must be a power of two greater than 1. |
| // r and p must satisfy r * p < 2³⁰. If the parameters do not satisfy the |
| // limits, the function returns a nil byte slice and an error. |
| // |
| // For example, you can get a derived key for e.g. AES-256 (which needs a |
| // 32-byte key) by doing: |
| // |
| // dk, err := scrypt.Key([]byte("some password"), salt, 32768, 8, 1, 32) |
| // |
| // The recommended parameters for interactive logins as of 2017 are N=32768, r=8 |
| // and p=1. The parameters N, r, and p should be increased as memory latency and |
| // CPU parallelism increases; consider setting N to the highest power of 2 you |
| // can derive within 100 milliseconds. Remember to get a good random salt. |
| func Key(password, salt []byte, N, r, p, keyLen int) ([]byte, error) { |
| if N <= 1 || N&(N-1) != 0 { |
| return nil, errors.New("scrypt: N must be > 1 and a power of 2") |
| } |
| if uint64(r)*uint64(p) >= 1<<30 || r > maxInt/128/p || r > maxInt/256 || N > maxInt/128/r { |
| return nil, errors.New("scrypt: parameters are too large") |
| } |
| |
| xy := make([]uint32, 64*r) |
| v := make([]uint32, 32*N*r) |
| b := pbkdf2.Key(password, salt, 1, p*128*r, sha256.New) |
| |
| for i := 0; i < p; i++ { |
| smix(b[i*128*r:], r, N, v, xy) |
| } |
| |
| return pbkdf2.Key(password, b, 1, keyLen, sha256.New), nil |
| } |