|  | // Copyright 2012 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package bn256 | 
|  |  | 
|  | import ( | 
|  | "math/big" | 
|  | ) | 
|  |  | 
|  | // curvePoint implements the elliptic curve y²=x³+3. Points are kept in | 
|  | // Jacobian form and t=z² when valid. G₁ is the set of points of this curve on | 
|  | // GF(p). | 
|  | type curvePoint struct { | 
|  | x, y, z, t *big.Int | 
|  | } | 
|  |  | 
|  | var curveB = new(big.Int).SetInt64(3) | 
|  |  | 
|  | // curveGen is the generator of G₁. | 
|  | var curveGen = &curvePoint{ | 
|  | new(big.Int).SetInt64(1), | 
|  | new(big.Int).SetInt64(-2), | 
|  | new(big.Int).SetInt64(1), | 
|  | new(big.Int).SetInt64(1), | 
|  | } | 
|  |  | 
|  | func newCurvePoint(pool *bnPool) *curvePoint { | 
|  | return &curvePoint{ | 
|  | pool.Get(), | 
|  | pool.Get(), | 
|  | pool.Get(), | 
|  | pool.Get(), | 
|  | } | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) String() string { | 
|  | c.MakeAffine(new(bnPool)) | 
|  | return "(" + c.x.String() + ", " + c.y.String() + ")" | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) Put(pool *bnPool) { | 
|  | pool.Put(c.x) | 
|  | pool.Put(c.y) | 
|  | pool.Put(c.z) | 
|  | pool.Put(c.t) | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) Set(a *curvePoint) { | 
|  | c.x.Set(a.x) | 
|  | c.y.Set(a.y) | 
|  | c.z.Set(a.z) | 
|  | c.t.Set(a.t) | 
|  | } | 
|  |  | 
|  | // IsOnCurve returns true iff c is on the curve where c must be in affine form. | 
|  | func (c *curvePoint) IsOnCurve() bool { | 
|  | yy := new(big.Int).Mul(c.y, c.y) | 
|  | xxx := new(big.Int).Mul(c.x, c.x) | 
|  | xxx.Mul(xxx, c.x) | 
|  | yy.Sub(yy, xxx) | 
|  | yy.Sub(yy, curveB) | 
|  | if yy.Sign() < 0 || yy.Cmp(p) >= 0 { | 
|  | yy.Mod(yy, p) | 
|  | } | 
|  | return yy.Sign() == 0 | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) SetInfinity() { | 
|  | c.z.SetInt64(0) | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) IsInfinity() bool { | 
|  | return c.z.Sign() == 0 | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) { | 
|  | if a.IsInfinity() { | 
|  | c.Set(b) | 
|  | return | 
|  | } | 
|  | if b.IsInfinity() { | 
|  | c.Set(a) | 
|  | return | 
|  | } | 
|  |  | 
|  | // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 | 
|  |  | 
|  | // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] | 
|  | // by [u1:s1:z1·z2] and [u2:s2:z1·z2] | 
|  | // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ | 
|  | z1z1 := pool.Get().Mul(a.z, a.z) | 
|  | z1z1.Mod(z1z1, p) | 
|  | z2z2 := pool.Get().Mul(b.z, b.z) | 
|  | z2z2.Mod(z2z2, p) | 
|  | u1 := pool.Get().Mul(a.x, z2z2) | 
|  | u1.Mod(u1, p) | 
|  | u2 := pool.Get().Mul(b.x, z1z1) | 
|  | u2.Mod(u2, p) | 
|  |  | 
|  | t := pool.Get().Mul(b.z, z2z2) | 
|  | t.Mod(t, p) | 
|  | s1 := pool.Get().Mul(a.y, t) | 
|  | s1.Mod(s1, p) | 
|  |  | 
|  | t.Mul(a.z, z1z1) | 
|  | t.Mod(t, p) | 
|  | s2 := pool.Get().Mul(b.y, t) | 
|  | s2.Mod(s2, p) | 
|  |  | 
|  | // Compute x = (2h)²(s²-u1-u2) | 
|  | // where s = (s2-s1)/(u2-u1) is the slope of the line through | 
|  | // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. | 
|  | // This is also: | 
|  | // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) | 
|  | //                        = r² - j - 2v | 
|  | // with the notations below. | 
|  | h := pool.Get().Sub(u2, u1) | 
|  | xEqual := h.Sign() == 0 | 
|  |  | 
|  | t.Add(h, h) | 
|  | // i = 4h² | 
|  | i := pool.Get().Mul(t, t) | 
|  | i.Mod(i, p) | 
|  | // j = 4h³ | 
|  | j := pool.Get().Mul(h, i) | 
|  | j.Mod(j, p) | 
|  |  | 
|  | t.Sub(s2, s1) | 
|  | yEqual := t.Sign() == 0 | 
|  | if xEqual && yEqual { | 
|  | c.Double(a, pool) | 
|  | return | 
|  | } | 
|  | r := pool.Get().Add(t, t) | 
|  |  | 
|  | v := pool.Get().Mul(u1, i) | 
|  | v.Mod(v, p) | 
|  |  | 
|  | // t4 = 4(s2-s1)² | 
|  | t4 := pool.Get().Mul(r, r) | 
|  | t4.Mod(t4, p) | 
|  | t.Add(v, v) | 
|  | t6 := pool.Get().Sub(t4, j) | 
|  | c.x.Sub(t6, t) | 
|  |  | 
|  | // Set y = -(2h)³(s1 + s*(x/4h²-u1)) | 
|  | // This is also | 
|  | // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j | 
|  | t.Sub(v, c.x) // t7 | 
|  | t4.Mul(s1, j) // t8 | 
|  | t4.Mod(t4, p) | 
|  | t6.Add(t4, t4) // t9 | 
|  | t4.Mul(r, t)   // t10 | 
|  | t4.Mod(t4, p) | 
|  | c.y.Sub(t4, t6) | 
|  |  | 
|  | // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 | 
|  | t.Add(a.z, b.z) // t11 | 
|  | t4.Mul(t, t)    // t12 | 
|  | t4.Mod(t4, p) | 
|  | t.Sub(t4, z1z1) // t13 | 
|  | t4.Sub(t, z2z2) // t14 | 
|  | c.z.Mul(t4, h) | 
|  | c.z.Mod(c.z, p) | 
|  |  | 
|  | pool.Put(z1z1) | 
|  | pool.Put(z2z2) | 
|  | pool.Put(u1) | 
|  | pool.Put(u2) | 
|  | pool.Put(t) | 
|  | pool.Put(s1) | 
|  | pool.Put(s2) | 
|  | pool.Put(h) | 
|  | pool.Put(i) | 
|  | pool.Put(j) | 
|  | pool.Put(r) | 
|  | pool.Put(v) | 
|  | pool.Put(t4) | 
|  | pool.Put(t6) | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) Double(a *curvePoint, pool *bnPool) { | 
|  | // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 | 
|  | A := pool.Get().Mul(a.x, a.x) | 
|  | A.Mod(A, p) | 
|  | B := pool.Get().Mul(a.y, a.y) | 
|  | B.Mod(B, p) | 
|  | C := pool.Get().Mul(B, B) | 
|  | C.Mod(C, p) | 
|  |  | 
|  | t := pool.Get().Add(a.x, B) | 
|  | t2 := pool.Get().Mul(t, t) | 
|  | t2.Mod(t2, p) | 
|  | t.Sub(t2, A) | 
|  | t2.Sub(t, C) | 
|  | d := pool.Get().Add(t2, t2) | 
|  | t.Add(A, A) | 
|  | e := pool.Get().Add(t, A) | 
|  | f := pool.Get().Mul(e, e) | 
|  | f.Mod(f, p) | 
|  |  | 
|  | t.Add(d, d) | 
|  | c.x.Sub(f, t) | 
|  |  | 
|  | t.Add(C, C) | 
|  | t2.Add(t, t) | 
|  | t.Add(t2, t2) | 
|  | c.y.Sub(d, c.x) | 
|  | t2.Mul(e, c.y) | 
|  | t2.Mod(t2, p) | 
|  | c.y.Sub(t2, t) | 
|  |  | 
|  | t.Mul(a.y, a.z) | 
|  | t.Mod(t, p) | 
|  | c.z.Add(t, t) | 
|  |  | 
|  | pool.Put(A) | 
|  | pool.Put(B) | 
|  | pool.Put(C) | 
|  | pool.Put(t) | 
|  | pool.Put(t2) | 
|  | pool.Put(d) | 
|  | pool.Put(e) | 
|  | pool.Put(f) | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint { | 
|  | sum := newCurvePoint(pool) | 
|  | sum.SetInfinity() | 
|  | t := newCurvePoint(pool) | 
|  |  | 
|  | for i := scalar.BitLen(); i >= 0; i-- { | 
|  | t.Double(sum, pool) | 
|  | if scalar.Bit(i) != 0 { | 
|  | sum.Add(t, a, pool) | 
|  | } else { | 
|  | sum.Set(t) | 
|  | } | 
|  | } | 
|  |  | 
|  | c.Set(sum) | 
|  | sum.Put(pool) | 
|  | t.Put(pool) | 
|  | return c | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint { | 
|  | if words := c.z.Bits(); len(words) == 1 && words[0] == 1 { | 
|  | return c | 
|  | } | 
|  |  | 
|  | zInv := pool.Get().ModInverse(c.z, p) | 
|  | t := pool.Get().Mul(c.y, zInv) | 
|  | t.Mod(t, p) | 
|  | zInv2 := pool.Get().Mul(zInv, zInv) | 
|  | zInv2.Mod(zInv2, p) | 
|  | c.y.Mul(t, zInv2) | 
|  | c.y.Mod(c.y, p) | 
|  | t.Mul(c.x, zInv2) | 
|  | t.Mod(t, p) | 
|  | c.x.Set(t) | 
|  | c.z.SetInt64(1) | 
|  | c.t.SetInt64(1) | 
|  |  | 
|  | pool.Put(zInv) | 
|  | pool.Put(t) | 
|  | pool.Put(zInv2) | 
|  |  | 
|  | return c | 
|  | } | 
|  |  | 
|  | func (c *curvePoint) Negative(a *curvePoint) { | 
|  | c.x.Set(a.x) | 
|  | c.y.Neg(a.y) | 
|  | c.z.Set(a.z) | 
|  | c.t.SetInt64(0) | 
|  | } |