blob: 2bc607b64938d2d9b1a1c426e55d53ca777b67a4 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import (
"bytes"
"crypto/rand"
"errors"
"fmt"
"io"
"net"
"reflect"
"runtime"
"strings"
"sync"
"testing"
)
type testChecker struct {
calls []string
}
func (t *testChecker) Check(dialAddr string, addr net.Addr, key PublicKey) error {
if dialAddr == "bad" {
return fmt.Errorf("dialAddr is bad")
}
if tcpAddr, ok := addr.(*net.TCPAddr); !ok || tcpAddr == nil {
return fmt.Errorf("testChecker: got %T want *net.TCPAddr", addr)
}
t.calls = append(t.calls, fmt.Sprintf("%s %v %s %x", dialAddr, addr, key.Type(), key.Marshal()))
return nil
}
// netPipe is analogous to net.Pipe, but it uses a real net.Conn, and
// therefore is buffered (net.Pipe deadlocks if both sides start with
// a write.)
func netPipe() (net.Conn, net.Conn, error) {
listener, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
listener, err = net.Listen("tcp", "[::1]:0")
if err != nil {
return nil, nil, err
}
}
defer listener.Close()
c1, err := net.Dial("tcp", listener.Addr().String())
if err != nil {
return nil, nil, err
}
c2, err := listener.Accept()
if err != nil {
c1.Close()
return nil, nil, err
}
return c1, c2, nil
}
// noiseTransport inserts ignore messages to check that the read loop
// and the key exchange filters out these messages.
type noiseTransport struct {
keyingTransport
}
func (t *noiseTransport) writePacket(p []byte) error {
ignore := []byte{msgIgnore}
if err := t.keyingTransport.writePacket(ignore); err != nil {
return err
}
debug := []byte{msgDebug, 1, 2, 3}
if err := t.keyingTransport.writePacket(debug); err != nil {
return err
}
return t.keyingTransport.writePacket(p)
}
func addNoiseTransport(t keyingTransport) keyingTransport {
return &noiseTransport{t}
}
// handshakePair creates two handshakeTransports connected with each
// other. If the noise argument is true, both transports will try to
// confuse the other side by sending ignore and debug messages.
func handshakePair(clientConf *ClientConfig, addr string, noise bool) (client *handshakeTransport, server *handshakeTransport, err error) {
a, b, err := netPipe()
if err != nil {
return nil, nil, err
}
var trC, trS keyingTransport
trC = newTransport(a, rand.Reader, true)
trS = newTransport(b, rand.Reader, false)
if noise {
trC = addNoiseTransport(trC)
trS = addNoiseTransport(trS)
}
clientConf.SetDefaults()
v := []byte("version")
client = newClientTransport(trC, v, v, clientConf, addr, a.RemoteAddr())
serverConf := &ServerConfig{}
serverConf.AddHostKey(testSigners["ecdsa"])
serverConf.AddHostKey(testSigners["rsa"])
serverConf.SetDefaults()
server = newServerTransport(trS, v, v, serverConf)
if err := server.waitSession(); err != nil {
return nil, nil, fmt.Errorf("server.waitSession: %v", err)
}
if err := client.waitSession(); err != nil {
return nil, nil, fmt.Errorf("client.waitSession: %v", err)
}
return client, server, nil
}
func TestHandshakeBasic(t *testing.T) {
if runtime.GOOS == "plan9" {
t.Skip("see golang.org/issue/7237")
}
checker := &syncChecker{
waitCall: make(chan int, 10),
called: make(chan int, 10),
}
checker.waitCall <- 1
trC, trS, err := handshakePair(&ClientConfig{HostKeyCallback: checker.Check}, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
defer trC.Close()
defer trS.Close()
// Let first kex complete normally.
<-checker.called
clientDone := make(chan int, 0)
gotHalf := make(chan int, 0)
const N = 20
errorCh := make(chan error, 1)
go func() {
defer close(clientDone)
// Client writes a bunch of stuff, and does a key
// change in the middle. This should not confuse the
// handshake in progress. We do this twice, so we test
// that the packet buffer is reset correctly.
for i := 0; i < N; i++ {
p := []byte{msgRequestSuccess, byte(i)}
if err := trC.writePacket(p); err != nil {
errorCh <- err
trC.Close()
return
}
if (i % 10) == 5 {
<-gotHalf
// halfway through, we request a key change.
trC.requestKeyExchange()
// Wait until we can be sure the key
// change has really started before we
// write more.
<-checker.called
}
if (i % 10) == 7 {
// write some packets until the kex
// completes, to test buffering of
// packets.
checker.waitCall <- 1
}
}
errorCh <- nil
}()
// Server checks that client messages come in cleanly
i := 0
for ; i < N; i++ {
p, err := trS.readPacket()
if err != nil && err != io.EOF {
t.Fatalf("server error: %v", err)
}
if (i % 10) == 5 {
gotHalf <- 1
}
want := []byte{msgRequestSuccess, byte(i)}
if bytes.Compare(p, want) != 0 {
t.Errorf("message %d: got %v, want %v", i, p, want)
}
}
<-clientDone
if err := <-errorCh; err != nil {
t.Fatalf("sendPacket: %v", err)
}
if i != N {
t.Errorf("received %d messages, want 10.", i)
}
close(checker.called)
if _, ok := <-checker.called; ok {
// If all went well, we registered exactly 2 key changes: one
// that establishes the session, and one that we requested
// additionally.
t.Fatalf("got another host key checks after 2 handshakes")
}
}
func TestForceFirstKex(t *testing.T) {
// like handshakePair, but must access the keyingTransport.
checker := &testChecker{}
clientConf := &ClientConfig{HostKeyCallback: checker.Check}
a, b, err := netPipe()
if err != nil {
t.Fatalf("netPipe: %v", err)
}
var trC, trS keyingTransport
trC = newTransport(a, rand.Reader, true)
// This is the disallowed packet:
trC.writePacket(Marshal(&serviceRequestMsg{serviceUserAuth}))
// Rest of the setup.
trS = newTransport(b, rand.Reader, false)
clientConf.SetDefaults()
v := []byte("version")
client := newClientTransport(trC, v, v, clientConf, "addr", a.RemoteAddr())
serverConf := &ServerConfig{}
serverConf.AddHostKey(testSigners["ecdsa"])
serverConf.AddHostKey(testSigners["rsa"])
serverConf.SetDefaults()
server := newServerTransport(trS, v, v, serverConf)
defer client.Close()
defer server.Close()
// We setup the initial key exchange, but the remote side
// tries to send serviceRequestMsg in cleartext, which is
// disallowed.
if err := server.waitSession(); err == nil {
t.Errorf("server first kex init should reject unexpected packet")
}
}
func TestHandshakeAutoRekeyWrite(t *testing.T) {
checker := &syncChecker{
called: make(chan int, 10),
waitCall: nil,
}
clientConf := &ClientConfig{HostKeyCallback: checker.Check}
clientConf.RekeyThreshold = 500
trC, trS, err := handshakePair(clientConf, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
defer trC.Close()
defer trS.Close()
input := make([]byte, 251)
input[0] = msgRequestSuccess
done := make(chan int, 1)
const numPacket = 5
go func() {
defer close(done)
j := 0
for ; j < numPacket; j++ {
if p, err := trS.readPacket(); err != nil {
break
} else if !bytes.Equal(input, p) {
t.Errorf("got packet type %d, want %d", p[0], input[0])
}
}
if j != numPacket {
t.Errorf("got %d, want 5 messages", j)
}
}()
<-checker.called
for i := 0; i < numPacket; i++ {
p := make([]byte, len(input))
copy(p, input)
if err := trC.writePacket(p); err != nil {
t.Errorf("writePacket: %v", err)
}
if i == 2 {
// Make sure the kex is in progress.
<-checker.called
}
}
<-done
}
type syncChecker struct {
waitCall chan int
called chan int
}
func (c *syncChecker) Check(dialAddr string, addr net.Addr, key PublicKey) error {
c.called <- 1
if c.waitCall != nil {
<-c.waitCall
}
return nil
}
func TestHandshakeAutoRekeyRead(t *testing.T) {
sync := &syncChecker{
called: make(chan int, 2),
waitCall: nil,
}
clientConf := &ClientConfig{
HostKeyCallback: sync.Check,
}
clientConf.RekeyThreshold = 500
trC, trS, err := handshakePair(clientConf, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
defer trC.Close()
defer trS.Close()
packet := make([]byte, 501)
packet[0] = msgRequestSuccess
if err := trS.writePacket(packet); err != nil {
t.Fatalf("writePacket: %v", err)
}
// While we read out the packet, a key change will be
// initiated.
errorCh := make(chan error, 1)
go func() {
_, err := trC.readPacket()
errorCh <- err
}()
if err := <-errorCh; err != nil {
t.Fatalf("readPacket(client): %v", err)
}
<-sync.called
}
// errorKeyingTransport generates errors after a given number of
// read/write operations.
type errorKeyingTransport struct {
packetConn
readLeft, writeLeft int
}
func (n *errorKeyingTransport) prepareKeyChange(*algorithms, *kexResult) error {
return nil
}
func (n *errorKeyingTransport) getSessionID() []byte {
return nil
}
func (n *errorKeyingTransport) writePacket(packet []byte) error {
if n.writeLeft == 0 {
n.Close()
return errors.New("barf")
}
n.writeLeft--
return n.packetConn.writePacket(packet)
}
func (n *errorKeyingTransport) readPacket() ([]byte, error) {
if n.readLeft == 0 {
n.Close()
return nil, errors.New("barf")
}
n.readLeft--
return n.packetConn.readPacket()
}
func (n *errorKeyingTransport) setStrictMode() error { return nil }
func (n *errorKeyingTransport) setInitialKEXDone() {}
func TestHandshakeErrorHandlingRead(t *testing.T) {
for i := 0; i < 20; i++ {
testHandshakeErrorHandlingN(t, i, -1, false)
}
}
func TestHandshakeErrorHandlingWrite(t *testing.T) {
for i := 0; i < 20; i++ {
testHandshakeErrorHandlingN(t, -1, i, false)
}
}
func TestHandshakeErrorHandlingReadCoupled(t *testing.T) {
for i := 0; i < 20; i++ {
testHandshakeErrorHandlingN(t, i, -1, true)
}
}
func TestHandshakeErrorHandlingWriteCoupled(t *testing.T) {
for i := 0; i < 20; i++ {
testHandshakeErrorHandlingN(t, -1, i, true)
}
}
// testHandshakeErrorHandlingN runs handshakes, injecting errors. If
// handshakeTransport deadlocks, the go runtime will detect it and
// panic.
func testHandshakeErrorHandlingN(t *testing.T, readLimit, writeLimit int, coupled bool) {
if (runtime.GOOS == "js" || runtime.GOOS == "wasip1") && runtime.GOARCH == "wasm" {
t.Skipf("skipping on %s/wasm; see golang.org/issue/32840", runtime.GOOS)
}
msg := Marshal(&serviceRequestMsg{strings.Repeat("x", int(minRekeyThreshold)/4)})
a, b := memPipe()
defer a.Close()
defer b.Close()
key := testSigners["ecdsa"]
serverConf := Config{RekeyThreshold: minRekeyThreshold}
serverConf.SetDefaults()
serverConn := newHandshakeTransport(&errorKeyingTransport{a, readLimit, writeLimit}, &serverConf, []byte{'a'}, []byte{'b'})
serverConn.hostKeys = []Signer{key}
go serverConn.readLoop()
go serverConn.kexLoop()
clientConf := Config{RekeyThreshold: 10 * minRekeyThreshold}
clientConf.SetDefaults()
clientConn := newHandshakeTransport(&errorKeyingTransport{b, -1, -1}, &clientConf, []byte{'a'}, []byte{'b'})
clientConn.hostKeyAlgorithms = []string{key.PublicKey().Type()}
clientConn.hostKeyCallback = InsecureIgnoreHostKey()
go clientConn.readLoop()
go clientConn.kexLoop()
var wg sync.WaitGroup
for _, hs := range []packetConn{serverConn, clientConn} {
if !coupled {
wg.Add(2)
go func(c packetConn) {
for i := 0; ; i++ {
str := fmt.Sprintf("%08x", i) + strings.Repeat("x", int(minRekeyThreshold)/4-8)
err := c.writePacket(Marshal(&serviceRequestMsg{str}))
if err != nil {
break
}
}
wg.Done()
c.Close()
}(hs)
go func(c packetConn) {
for {
_, err := c.readPacket()
if err != nil {
break
}
}
wg.Done()
}(hs)
} else {
wg.Add(1)
go func(c packetConn) {
for {
_, err := c.readPacket()
if err != nil {
break
}
if err := c.writePacket(msg); err != nil {
break
}
}
wg.Done()
}(hs)
}
}
wg.Wait()
}
func TestDisconnect(t *testing.T) {
if runtime.GOOS == "plan9" {
t.Skip("see golang.org/issue/7237")
}
checker := &testChecker{}
trC, trS, err := handshakePair(&ClientConfig{HostKeyCallback: checker.Check}, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
defer trC.Close()
defer trS.Close()
trC.writePacket([]byte{msgRequestSuccess, 0, 0})
errMsg := &disconnectMsg{
Reason: 42,
Message: "such is life",
}
trC.writePacket(Marshal(errMsg))
trC.writePacket([]byte{msgRequestSuccess, 0, 0})
packet, err := trS.readPacket()
if err != nil {
t.Fatalf("readPacket 1: %v", err)
}
if packet[0] != msgRequestSuccess {
t.Errorf("got packet %v, want packet type %d", packet, msgRequestSuccess)
}
_, err = trS.readPacket()
if err == nil {
t.Errorf("readPacket 2 succeeded")
} else if !reflect.DeepEqual(err, errMsg) {
t.Errorf("got error %#v, want %#v", err, errMsg)
}
_, err = trS.readPacket()
if err == nil {
t.Errorf("readPacket 3 succeeded")
}
}
func TestHandshakeRekeyDefault(t *testing.T) {
clientConf := &ClientConfig{
Config: Config{
Ciphers: []string{"aes128-ctr"},
},
HostKeyCallback: InsecureIgnoreHostKey(),
}
trC, trS, err := handshakePair(clientConf, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
defer trC.Close()
defer trS.Close()
trC.writePacket([]byte{msgRequestSuccess, 0, 0})
trC.Close()
rgb := (1024 + trC.readBytesLeft) >> 30
wgb := (1024 + trC.writeBytesLeft) >> 30
if rgb != 64 {
t.Errorf("got rekey after %dG read, want 64G", rgb)
}
if wgb != 64 {
t.Errorf("got rekey after %dG write, want 64G", wgb)
}
}
func TestHandshakeAEADCipherNoMAC(t *testing.T) {
for _, cipher := range []string{chacha20Poly1305ID, gcm128CipherID} {
checker := &syncChecker{
called: make(chan int, 1),
}
clientConf := &ClientConfig{
Config: Config{
Ciphers: []string{cipher},
MACs: []string{},
},
HostKeyCallback: checker.Check,
}
trC, trS, err := handshakePair(clientConf, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
defer trC.Close()
defer trS.Close()
<-checker.called
}
}
// TestNoSHA2Support tests a host key Signer that is not an AlgorithmSigner and
// therefore can't do SHA-2 signatures. Ensures the server does not advertise
// support for them in this case.
func TestNoSHA2Support(t *testing.T) {
c1, c2, err := netPipe()
if err != nil {
t.Fatalf("netPipe: %v", err)
}
defer c1.Close()
defer c2.Close()
serverConf := &ServerConfig{
PasswordCallback: func(conn ConnMetadata, password []byte) (*Permissions, error) {
return &Permissions{}, nil
},
}
serverConf.AddHostKey(&legacyRSASigner{testSigners["rsa"]})
go func() {
_, _, _, err := NewServerConn(c1, serverConf)
if err != nil {
t.Error(err)
}
}()
clientConf := &ClientConfig{
User: "test",
Auth: []AuthMethod{Password("testpw")},
HostKeyCallback: FixedHostKey(testSigners["rsa"].PublicKey()),
}
if _, _, _, err := NewClientConn(c2, "", clientConf); err != nil {
t.Fatal(err)
}
}
func TestMultiAlgoSignerHandshake(t *testing.T) {
algorithmSigner, ok := testSigners["rsa"].(AlgorithmSigner)
if !ok {
t.Fatal("rsa test signer does not implement the AlgorithmSigner interface")
}
multiAlgoSigner, err := NewSignerWithAlgorithms(algorithmSigner, []string{KeyAlgoRSASHA256, KeyAlgoRSASHA512})
if err != nil {
t.Fatalf("unable to create multi algorithm signer: %v", err)
}
c1, c2, err := netPipe()
if err != nil {
t.Fatalf("netPipe: %v", err)
}
defer c1.Close()
defer c2.Close()
serverConf := &ServerConfig{
PasswordCallback: func(conn ConnMetadata, password []byte) (*Permissions, error) {
return &Permissions{}, nil
},
}
serverConf.AddHostKey(multiAlgoSigner)
go NewServerConn(c1, serverConf)
clientConf := &ClientConfig{
User: "test",
Auth: []AuthMethod{Password("testpw")},
HostKeyCallback: FixedHostKey(testSigners["rsa"].PublicKey()),
HostKeyAlgorithms: []string{KeyAlgoRSASHA512},
}
if _, _, _, err := NewClientConn(c2, "", clientConf); err != nil {
t.Fatal(err)
}
}
func TestMultiAlgoSignerNoCommonHostKeyAlgo(t *testing.T) {
algorithmSigner, ok := testSigners["rsa"].(AlgorithmSigner)
if !ok {
t.Fatal("rsa test signer does not implement the AlgorithmSigner interface")
}
multiAlgoSigner, err := NewSignerWithAlgorithms(algorithmSigner, []string{KeyAlgoRSASHA256, KeyAlgoRSASHA512})
if err != nil {
t.Fatalf("unable to create multi algorithm signer: %v", err)
}
c1, c2, err := netPipe()
if err != nil {
t.Fatalf("netPipe: %v", err)
}
defer c1.Close()
defer c2.Close()
// ssh-rsa is disabled server side
serverConf := &ServerConfig{
PasswordCallback: func(conn ConnMetadata, password []byte) (*Permissions, error) {
return &Permissions{}, nil
},
}
serverConf.AddHostKey(multiAlgoSigner)
go NewServerConn(c1, serverConf)
// the client only supports ssh-rsa
clientConf := &ClientConfig{
User: "test",
Auth: []AuthMethod{Password("testpw")},
HostKeyCallback: FixedHostKey(testSigners["rsa"].PublicKey()),
HostKeyAlgorithms: []string{KeyAlgoRSA},
}
_, _, _, err = NewClientConn(c2, "", clientConf)
if err == nil {
t.Fatal("succeeded connecting with no common hostkey algorithm")
}
}
func TestPickIncompatibleHostKeyAlgo(t *testing.T) {
algorithmSigner, ok := testSigners["rsa"].(AlgorithmSigner)
if !ok {
t.Fatal("rsa test signer does not implement the AlgorithmSigner interface")
}
multiAlgoSigner, err := NewSignerWithAlgorithms(algorithmSigner, []string{KeyAlgoRSASHA256, KeyAlgoRSASHA512})
if err != nil {
t.Fatalf("unable to create multi algorithm signer: %v", err)
}
signer := pickHostKey([]Signer{multiAlgoSigner}, KeyAlgoRSA)
if signer != nil {
t.Fatal("incompatible signer returned")
}
}
func TestStrictKEXResetSeqFirstKEX(t *testing.T) {
if runtime.GOOS == "plan9" {
t.Skip("see golang.org/issue/7237")
}
checker := &syncChecker{
waitCall: make(chan int, 10),
called: make(chan int, 10),
}
checker.waitCall <- 1
trC, trS, err := handshakePair(&ClientConfig{HostKeyCallback: checker.Check}, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
<-checker.called
t.Cleanup(func() {
trC.Close()
trS.Close()
})
// Throw away the msgExtInfo packet sent during the handshake by the server
_, err = trC.readPacket()
if err != nil {
t.Fatalf("readPacket failed: %s", err)
}
// close the handshake transports before checking the sequence number to
// avoid races.
trC.Close()
trS.Close()
// check that the sequence number counters. We reset after msgNewKeys, but
// then the server immediately writes msgExtInfo, and we close the
// transports so we expect read 2, write 0 on the client and read 1, write 1
// on the server.
if trC.conn.(*transport).reader.seqNum != 2 || trC.conn.(*transport).writer.seqNum != 0 ||
trS.conn.(*transport).reader.seqNum != 1 || trS.conn.(*transport).writer.seqNum != 1 {
t.Errorf(
"unexpected sequence counters:\nclient: reader %d (expected 2), writer %d (expected 0)\nserver: reader %d (expected 1), writer %d (expected 1)",
trC.conn.(*transport).reader.seqNum,
trC.conn.(*transport).writer.seqNum,
trS.conn.(*transport).reader.seqNum,
trS.conn.(*transport).writer.seqNum,
)
}
}
func TestStrictKEXResetSeqSuccessiveKEX(t *testing.T) {
if runtime.GOOS == "plan9" {
t.Skip("see golang.org/issue/7237")
}
checker := &syncChecker{
waitCall: make(chan int, 10),
called: make(chan int, 10),
}
checker.waitCall <- 1
trC, trS, err := handshakePair(&ClientConfig{HostKeyCallback: checker.Check}, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
<-checker.called
t.Cleanup(func() {
trC.Close()
trS.Close()
})
// Throw away the msgExtInfo packet sent during the handshake by the server
_, err = trC.readPacket()
if err != nil {
t.Fatalf("readPacket failed: %s", err)
}
// write and read five packets on either side to bump the sequence numbers
for i := 0; i < 5; i++ {
if err := trC.writePacket([]byte{msgRequestSuccess}); err != nil {
t.Fatalf("writePacket failed: %s", err)
}
if _, err := trS.readPacket(); err != nil {
t.Fatalf("readPacket failed: %s", err)
}
if err := trS.writePacket([]byte{msgRequestSuccess}); err != nil {
t.Fatalf("writePacket failed: %s", err)
}
if _, err := trC.readPacket(); err != nil {
t.Fatalf("readPacket failed: %s", err)
}
}
// Request a key exchange, which should cause the sequence numbers to reset
checker.waitCall <- 1
trC.requestKeyExchange()
<-checker.called
// write a packet on the client, and then read it, to verify the key change has actually happened, since
// the HostKeyCallback is called _during_ the handshake, so isn't actually indicative of the handshake
// finishing.
dummyPacket := []byte{99}
if err := trS.writePacket(dummyPacket); err != nil {
t.Fatalf("writePacket failed: %s", err)
}
if p, err := trC.readPacket(); err != nil {
t.Fatalf("readPacket failed: %s", err)
} else if !bytes.Equal(p, dummyPacket) {
t.Fatalf("unexpected packet: got %x, want %x", p, dummyPacket)
}
// close the handshake transports before checking the sequence number to
// avoid races.
trC.Close()
trS.Close()
if trC.conn.(*transport).reader.seqNum != 2 || trC.conn.(*transport).writer.seqNum != 0 ||
trS.conn.(*transport).reader.seqNum != 1 || trS.conn.(*transport).writer.seqNum != 1 {
t.Errorf(
"unexpected sequence counters:\nclient: reader %d (expected 2), writer %d (expected 0)\nserver: reader %d (expected 1), writer %d (expected 1)",
trC.conn.(*transport).reader.seqNum,
trC.conn.(*transport).writer.seqNum,
trS.conn.(*transport).reader.seqNum,
trS.conn.(*transport).writer.seqNum,
)
}
}
func TestSeqNumIncrease(t *testing.T) {
if runtime.GOOS == "plan9" {
t.Skip("see golang.org/issue/7237")
}
checker := &syncChecker{
waitCall: make(chan int, 10),
called: make(chan int, 10),
}
checker.waitCall <- 1
trC, trS, err := handshakePair(&ClientConfig{HostKeyCallback: checker.Check}, "addr", false)
if err != nil {
t.Fatalf("handshakePair: %v", err)
}
<-checker.called
t.Cleanup(func() {
trC.Close()
trS.Close()
})
// Throw away the msgExtInfo packet sent during the handshake by the server
_, err = trC.readPacket()
if err != nil {
t.Fatalf("readPacket failed: %s", err)
}
// write and read five packets on either side to bump the sequence numbers
for i := 0; i < 5; i++ {
if err := trC.writePacket([]byte{msgRequestSuccess}); err != nil {
t.Fatalf("writePacket failed: %s", err)
}
if _, err := trS.readPacket(); err != nil {
t.Fatalf("readPacket failed: %s", err)
}
if err := trS.writePacket([]byte{msgRequestSuccess}); err != nil {
t.Fatalf("writePacket failed: %s", err)
}
if _, err := trC.readPacket(); err != nil {
t.Fatalf("readPacket failed: %s", err)
}
}
// close the handshake transports before checking the sequence number to
// avoid races.
trC.Close()
trS.Close()
if trC.conn.(*transport).reader.seqNum != 7 || trC.conn.(*transport).writer.seqNum != 5 ||
trS.conn.(*transport).reader.seqNum != 6 || trS.conn.(*transport).writer.seqNum != 6 {
t.Errorf(
"unexpected sequence counters:\nclient: reader %d (expected 7), writer %d (expected 5)\nserver: reader %d (expected 6), writer %d (expected 6)",
trC.conn.(*transport).reader.seqNum,
trC.conn.(*transport).writer.seqNum,
trS.conn.(*transport).reader.seqNum,
trS.conn.(*transport).writer.seqNum,
)
}
}
func TestStrictKEXUnexpectedMsg(t *testing.T) {
if runtime.GOOS == "plan9" {
t.Skip("see golang.org/issue/7237")
}
// Check that unexpected messages during the handshake cause failure
_, _, err := handshakePair(&ClientConfig{HostKeyCallback: func(hostname string, remote net.Addr, key PublicKey) error { return nil }}, "addr", true)
if err == nil {
t.Fatal("handshake should fail when there are unexpected messages during the handshake")
}
trC, trS, err := handshakePair(&ClientConfig{HostKeyCallback: func(hostname string, remote net.Addr, key PublicKey) error { return nil }}, "addr", false)
if err != nil {
t.Fatalf("handshake failed: %s", err)
}
// Check that ignore/debug pacekts are still ignored outside of the handshake
if err := trC.writePacket([]byte{msgIgnore}); err != nil {
t.Fatalf("writePacket failed: %s", err)
}
if err := trC.writePacket([]byte{msgDebug}); err != nil {
t.Fatalf("writePacket failed: %s", err)
}
dummyPacket := []byte{99}
if err := trC.writePacket(dummyPacket); err != nil {
t.Fatalf("writePacket failed: %s", err)
}
if p, err := trS.readPacket(); err != nil {
t.Fatalf("readPacket failed: %s", err)
} else if !bytes.Equal(p, dummyPacket) {
t.Fatalf("unexpected packet: got %x, want %x", p, dummyPacket)
}
}
func TestStrictKEXMixed(t *testing.T) {
// Test that we still support a mixed connection, where one side sends kex-strict but the other
// side doesn't.
a, b, err := netPipe()
if err != nil {
t.Fatalf("netPipe failed: %s", err)
}
var trC, trS keyingTransport
trC = newTransport(a, rand.Reader, true)
trS = newTransport(b, rand.Reader, false)
trS = addNoiseTransport(trS)
clientConf := &ClientConfig{HostKeyCallback: func(hostname string, remote net.Addr, key PublicKey) error { return nil }}
clientConf.SetDefaults()
v := []byte("version")
client := newClientTransport(trC, v, v, clientConf, "addr", a.RemoteAddr())
serverConf := &ServerConfig{}
serverConf.AddHostKey(testSigners["ecdsa"])
serverConf.AddHostKey(testSigners["rsa"])
serverConf.SetDefaults()
transport := newHandshakeTransport(trS, &serverConf.Config, []byte("version"), []byte("version"))
transport.hostKeys = serverConf.hostKeys
transport.publicKeyAuthAlgorithms = serverConf.PublicKeyAuthAlgorithms
readOneFailure := make(chan error, 1)
go func() {
if _, err := transport.readOnePacket(true); err != nil {
readOneFailure <- err
}
}()
// Basically sendKexInit, but without the kex-strict extension algorithm
msg := &kexInitMsg{
KexAlgos: transport.config.KeyExchanges,
CiphersClientServer: transport.config.Ciphers,
CiphersServerClient: transport.config.Ciphers,
MACsClientServer: transport.config.MACs,
MACsServerClient: transport.config.MACs,
CompressionClientServer: supportedCompressions,
CompressionServerClient: supportedCompressions,
ServerHostKeyAlgos: []string{KeyAlgoRSASHA256, KeyAlgoRSASHA512, KeyAlgoRSA},
}
packet := Marshal(msg)
// writePacket destroys the contents, so save a copy.
packetCopy := make([]byte, len(packet))
copy(packetCopy, packet)
if err := transport.pushPacket(packetCopy); err != nil {
t.Fatalf("pushPacket: %s", err)
}
transport.sentInitMsg = msg
transport.sentInitPacket = packet
if err := transport.getWriteError(); err != nil {
t.Fatalf("getWriteError failed: %s", err)
}
var request *pendingKex
select {
case err = <-readOneFailure:
t.Fatalf("server readOnePacket failed: %s", err)
case request = <-transport.startKex:
break
}
// We expect the following calls to fail if the side which does not support
// kex-strict sends unexpected/ignored packets during the handshake, even if
// the other side does support kex-strict.
if err := transport.enterKeyExchange(request.otherInit); err != nil {
t.Fatalf("enterKeyExchange failed: %s", err)
}
if err := client.waitSession(); err != nil {
t.Fatalf("client.waitSession: %v", err)
}
}